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ABSTRACT

Biological databases contain a wide variety of data types,
often with rich relational structure. Consequently multi-
relational data mining techniques frequently are applied to
biological data. This paper presents several applications of
multi-relational data mining to biological data, taking care
to cover a broad range of multi-relational data mining tech-
niques.

1. INTRODUCTION

Biological databases contain a wide variety of data. Con-
sider storing in a database the operational details of a single-
cell organism. At minimum one would need to encode the
following.

e Genome: DNA sequence and gene locations

e Proteome: the organism’s full complement of proteins,
not necessarily a direct mapping from its genes

e Metabolic pathways: linked biochemical reactions in-
volving multiple proteins, small molecules and protein-
protein interactions

o Regulatory pathways: the mechanism by which the ex-
pression of some genes into proteins, such as transcrip-
tion factors, influences the expression of other genes—
includes protein-DNA interactions

In fact, such a database exists for part of what is known
of the widely-studied model organism E. coli—EcoCyc [28].
This database contains other information as well besides the
items listed above, such as operons (see Section 6).
Recording the diversity of data in the previous paragraph
obviously requires a rich relational schema with multiple, in-
teracting relational tables. In fact, even recording one type
of data, such as metabolic pathways, requires multiple re-
lational tables because of the graphical nature of pathways.
And biological data can grow much more involved still. For
example, when we move to multi-cellular organisms we need
to include cell signaling and other aspects of one cell’s inter-
action with other cells. Furthermore, because at present we
do not have complete knowledge of the workings of any or-
ganism, biological databases often encode a variety of types
of laboratory data that provide further insight into organism
behavior. This may include data from the following high-
throughput techniques:
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o Gene expression microarrays: measure the degree to
which each gene is being transcribed into messenger
RNA (mRNA) under various conditions

e Proteomics (primarily mass spectrometry): provides
insight into which proteins are present in significant
concentrations, as well as protein-protein interactions

o Metabolomics: measures the concentrations of small
molecules (i.e., those with low molecular weight) in a
sample

o Single-nucleotide polymorphism (SNP) measurements:
SNP patterns are used as a surrogate for complete
DNA sequences of multiple individuals, e.g. human
patients — SNPs are single-base positions in DNA where
individuals commonly differ

It is possible to gain insights from using any one of the data
types described so far by itself. For example, standard ma-
chine learning and data mining algorithms have been applied
to gene expression microarray data for a variety of purposes,
as surveyed by Molla et al. [37]. Nevertheless, researchers
in both data mining and biology are realizing that, often,
stronger results can be obtained by using many of these data
types together. Mining a database that contains several, or
all, of these data types necessarily requires multi-relational
techniques, either to analyze the data directly or to convert
it into a single table in a useful way. The last two KDD Cup
competitions have focused on biological databases and, not
coincidentally, have highlighted the need for multi-relational
data mining tools [9; 11].

The data types discussed so far, though many and diverse,
only scratch the surface for biological databases. As re-
searchers attempt to modulate the behavior of biological
processes, for example through development of novel phar-
maceuticals, still more types of data arise. Each year mil-
lions of compounds (molecules) are tested in vitro (in the
“test tube”) and in vivo (in organisms) to see if they will
bind to a target protein or have a desired biological effect.
Even if a molecule has a desired effect, such as killing a
harmful bacterium, it may be useless as a drug because it
may be toxic to humans, it may break down too quickly
or too slowly within the human body, it may not diffuse
from the gut to the bloodstream (so it has to be taken
by injection—unacceptable for some target activities), or
it may not cross the blood-brain barrier (unacceptable, for
example, for an anti-depressant or migraine medication).
Therefore, molecules also are tested for these other factors,
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giving rise to volumes of diverse data within pharmaceuti-
cal companies and university laboratories. Furthermore, the
three-dimensional structures of molecules and target pro-
teins, where known or estimated, are important items of
information that require multiple relational tables to fully
represent.

Both the amount and diversity of biological data will con-
tinue to grow rapidly because of a coming paradigm shift in
biology, toward systems biology. As Hood and Galas (2003)
note, whereas in the past biologists could study a “complex
system only one gene or one protein at a time,” the “systems
approach permits the study of all elements in a system in re-
sponse to genetic (digital) or environmental perturbations.”
Hood and Galas go on to state:

The study of cellular and organismal biology us-
ing the systems approach is at its very beginning.
It will require integrated teams of scientists from
across disciplines—biologists, chemists, computer
scientists, engineers, mathematicians and physi-
cists. New methods for acquiring and analyzing
high-throughput biological data are needed [24].

In addition to data describing our current knowledge of or-
ganisms, novel types of high-throughput data, and data that
arises from our attempts to alter organism behavior, an-
other major type of biological data is semi-structured or
text data. For example, the MEDLINE database [41] indexes
more than 11 million articles in the biomedical literature,
and contains abstracts and pointers to electronic versions
for many of these articles. As another example, one of the
web sites used most widely by biologists is GeneCards [46],
which presents, for each human gene, information mined
from biological text. Text data also has been integrated
into the process of mining other types of data such as gene
expression microarray data [53; 36].

Discussing in detail the variety of data types in biological
databases is beyond the scope of any single paper. The goal
of the present paper is to look more closely at a few examples
of multi-relational data mining applied to biological data.
The paper seeks to present a diversity of data types and of
approaches, not focusing on any one particular method for
multi-relational data mining.

2. BRIEF SURVEY OF BIOLOGICAL AP-
PLICATIONS OF MULTI-RELATIONAL
DATA MINING

Before focusing on a small number of biological applications
of multi-relational data mining with which we are most fa-
miliar, we first present an overview of a variety of such ap-
plications. The earliest such work involved the application
of inductive logic programming (ILP) to molecular data.
Molecular data is a natural application for multi-relational
data mining because no method has been found for repre-
senting molecules in ordinary feature-vector form without
some loss of information.

In the first successful application of ILP to molecular data
[29], the GOLEM program [39] was used to model the structure-
activity relationships of trimethoprim analogues binding to
dihydrofolate reductase.’ The training data consisted of 44
trimethoprim analogues and their observed inhibition of E.

'In structure-activity prediction, the task is to train a model
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Figure 1: The family of analogues in the first ILP study. A)
Template of 2,4-diamino-5(substituted-benzyl)pyrimidines:
R3, R4, and R5 are the three possible substitution positions.
B) Example compound: R3——Cl; R4——NH>; Rs——CHjs

coli dihydrofolate reductase. Eleven additional compounds
were used as unseen test data. GOLEM obtained rules that
were statistically more accurate on the training data and
on the test data than a previously published linear regres-
sion model. It was possible to run linear regression on this
set because the molecules shared a common structure. Fig-
ure 1 shows the shared structure, or template, for all the
molecules, as well as one particular instance of the template.
Following shortly after this work [30] the two-dimensional
atom-and-bond molecular descriptions of 229 aromatic and
heteroaromatic nitro compounds [15] were given to the ILP
system PROGOL [38]. Such compounds frequently are muta-
genic. The study was confined to the problem of obtaining
structural descriptions that discriminate molecules with pos-
itive mutagenicity from those which have zero or negative
mutagenicity. A set of eight optimally compact rules were
automatically discovered by PROGOL. These rules suggested
three previously unknown features leading to mutagenicity.
Attempts to force the multi-relational representation of the
atom-and-bond structures into feature vectors resulted in
the generation of examples containing millions of features
each. Hence, unlike in the earlier molecular application, a
claim can be made that this application truly needed multi-
relational data mining. The mutagenicity data set remains a
widely-used testbed for multi-relational learning algorithms.
A number of interesting lines of research were motivated by
this work on mutagenicity. First, this work led to a com-
petition called the Predictive Toxicology Challenge 2000-
2001 [22], in which both ordinary and multi-relational data
mining tools were applied to the task of predicting rodent

to accurately predict which molecules have a particular bi-
ological activity (or to predict their degrees of the activity)
from molecular structure. Details of the specific biological
activities discussed in this section are beyond the scope of
the paper.
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carcinogenicity for 185 compounds slated to be tested in
mice and rats. Further details and results can be found in
the special issue of Bioinformatics (Vol. 19, No. 10) de-
voted to the challenge. Another line of research motivated
by the previous work is pharmacophore discovery. This
task requires data mining systems to move from the two-
dimensional atom-and-bond representation of a molecule to
a three-dimensional representation. Because a molecule may
have multiple three-dimensional shapes, or conformers, this
line of research has interesting links with multiple instance
learning and is described in more detail in the next sec-
tion. In another line of work, the Apriori-like ILP system
WARMR was used to find all the molecular substructures (in
the two-dimensional atom-and-bond structures) that appear
with at least some minimum frequency in a set of molecules
[16]. That work, which won a KDD Best Applied Paper
Award, in turn motivated work on a molecular feature miner
system, Molfea [32]. It also motivated work on Apriori-like
algorithms for finding commonly-occurring subgraphs in a
set of graphs [25; 57]. This is an exciting line of research
that requires scaling Apriori’s notion of frequent itemsets to
apply to graphs, but doing so in such a way that the compu-
tational demands do not become overwhelming. One other
piece of work in the area of mining molecular data was work
on predicting the biodegradability of various compounds us-
ing TLP [18].

Another early application of multi-relational data mining
was to protein secondary structure prediction [40]. We will
not discuss this application because secondary structure pre-
diction, while difficult, has proven amenable to feature-based
approaches, such as neural networks as employed in the
PHD system [50]. Nevertheless, protein tertiary structure,
or three-dimensional topology, involves a variety of relation-
ships among the portions of a protein and hence appears
to demand the power of multi-relational data mining. Pro-
teins are categorized into different “fold types,” or classes
of three-dimensional structure. One notable application in
this area is the use of ILP to classify proteins into different
fold types [56].

Perhaps the most exciting new direction for biological appli-
cations of multi-relational data mining is in the construction
of biological pathways from data. Section 4 goes into some
detail about such an application of probabilistic relational
models (PRMs), a multi-relational form of Bayesian net-
works. Other multi-relational techniques that have been
applied to this task include graph learning [10] and ILP
[6; 47]. One interesting twist in the application of ILP is
the automatic proposal and execution of experiments. In
this project, dubbed the “Robot Scientist Project,” the ILP
system starts with a partial pathway model for biosynthe-
sis of aromatic amino acids in yeast, expressed in logic.
The system then formulates experiments that will provide
it with information enabling it to complete its model, and
a robot carries out the experiments. All experiments are
auxotrophic growth experiments. In other words, they test
whether some given yeast “knock-out” —yeast with one gene
effectively removed—will grow on some particular medium,
that is, in the presence of a certain set of nutrients. As the
system obtains experimental results, it refines its model and,
if necessary, performs further experiments.

Having presented an overview of biological applications of
multi-relational data mining, we now turn to an more in-
depth treatment of a small set of such applications. This

SIGKDD Explorations.

more in-depth treatment will permit us to better discuss
lessons and challenges for such applications.

3. PHARMACOPHORE DISCOVERY

Motivated by the success of multi-relational data mining
techniques to handle two-dimensional atom-and-bond molec-
ular structure data, researchers in the pharmaceutical indus-
try began to inquire whether these tools could be used to
handle three-dimensional molecular structures. Such struc-
tures are of particular interest because the ability of a drug
molecule to bind to its target protein typically is depen-
dent on the ability of the drug molecule to fit into a pocket
in the target protein and establish interactions based on
charges or other properties of atoms. The 3D substructure
of a molecule that interacts with the target is called a phar-
macophore; identifying a pharmacophore can be an impor-
tant step in the design of new drug molecules. For example,
the following is a potential pharmacophore for ACE inhi-
bition (a form of hypertension medication), where the spa-
tial relationships are described through pairwise distances in
units of Angstroms.? This pharmacophore was learned by
an ILP system in an initial study applying multi-relational
data mining to three-dimensional molecular structures. Fig-
ures 2 and 3 show two different ACE inhibitors with the
parts of pharmacophore highlighted and labeled. The same
ILP approach has been applied successfully to other related
tasks and has been extended to predict activity levels [34].

Molecule A is an ACE inhibitor if
for some conformer Conf of A:

molecule A contains a zinc binding site B;
molecule A contains a hydrogen acceptor C;
the distance between B and C in Conf is 7.9 +/- .75;
molecule A contains a hydrogen acceptor D;
the distance between B and D in Conf is 8.5 +/- .75;
the distance between C and D in Conf is 2.1 +/- .75;
molecule A contains a hydrogen acceptor E;
the distance between B and E in Conf is 4.9 +/- .75;
the distance between C and E in Conf is 3.1 +/- .75;
the distance between D and E in Conf is 3.8 +/- .75.

Figure 4 illustrates how biomolecular activity and three-
dimensional structure might be represented in a relational
database. Attempts to represent the atom-and-bond struc-
ture and multiple conformations (three-dimensional shapes)
of a molecule in a single file lead to loss of information for
the data mining task. Even performing a natural join on the
tables in Figure 4, while resulting in a single table, will not
leave the features of the molecules aligned in a way that will
permit standard feature-based algorithms to learn a phar-
macophore. Correctly aligning the features resulting from
the natural join would require almost complete knowledge
of the target concept, or true pharmacophore.

Notice furthermore how the ILP-learned rule naturally ad-
dresses the multiple-instance problem [17]. While molecules
(examples) are labeled as active or not, they obtain their ac-
tivity through one or more of their conformers (instances).
The rule labels a molecule A as active just if it has some
conformer Conf that satisfies the rule.

2Hydrogen acceptors are atoms with a weak negative charge.
Ordinarily, zinc-binding would be irrelevant; it is relevant
here because ACE is one of several proteins in the body that
typically contains an associated zinc ion. This is an auto-
matically generated translation of an ILP-generated clause.
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Figure 2: ACE inhibitor number 1 with highlighted 4-point
pharmacophore.

Before closing this section, several areas of related work
should be mentioned. First, the pharmaceutical industry
has developed a variety of creative ways to encode molecules
into features vectors so that, even though some important
information is lost, feature-based techniques can be applied
from statistics, machine learning and data-mining. One ex-
ample of such an encoding is the one used for Task 1 of KDD
Cup 2001, predicting binding to thrombin [9]. Another ex-
ample is the feature-generation stage of the cOMPASs algo-
rithm [26; 27].

One may conclude based on the preceding paragraph that
multi-relational data mining algorithms are not always re-
quired in order to mine a multi-relational database. We take
a broader view, that multi-relational techniques still are be-
ing employed in order to convert the task to a feature-based
task. These multi-relational techniques may be domain-
specific, as in the case of carefully-engineered feature-genera-
tion algorithms for molecular data, or they may be general-
purpose. One example of a general-purpose algorithm is
the ILP system RELAGGS, which was used to win Task 2 of
KDD Cup 2001 [9]. RELAGGS was used to convert a multi-
relational databases containing information about genes, gene
expression, proteins, and protein-protein interactions into a
single table. From this table, a model was learned using the
support vector machine package SVM-light (svmlight.joa-
chims.org) to predict protein function. Another general-
purpose approach that has been employed to convert a multi-
relational data set into a single table is the use of ILP to
learn rules for a task, such as predicting mutagenicity; these
ILP-learned rules are then used as features in order to pro-
duce a feature vector [55]. An example has a value of one
for a given binary feature if and only if the ILP rule that
corresponds to that feature applies to the example.
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Figure 3: ACE inhibitor number 2 with highlighted 4-point
pharmacophore.

Sternberg [56] using ILP to learn rules to predict the three-
dimensional structural classes of proteins.

4. GENE REGULATION

As noted in the introduction, systems biology seeks to in-
tegrate data from a variety of related sources in order to
construct whole-system models. One exciting example of
multi-relational data mining in systems biology is the work
of Segal et al. [52] in applying probabilistic relational mod-
els (PRMs) to induce gene regulatory networks from both
sequence data and gene expression microarray data. Gene
expression refers to the two-step process through which a
gene is transcribed into mRNA, and that mRNA is trans-
lated into protein. Gene expression microarrays measure

Molecule |Target_1|... |Target_n Molecule | Bond_ID |Atom_1_ID |Atom_2_ID |Bond_Type

mall | inactive 1 nactive moll | bondl al a2 aromatic

mol2 active inactive

Molecular Bioactivity Bonds

Molecule | Conformer |Atom_ID |Atom_Type |X_Coordinate |Y_Coordinate | Z_Coordinate

moll confl al carbon 2.58 -123 0.69

3D Atom Locations

Figure 4: Sample three-dimensional molecular database.
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Figure 5: The PRM employed by Segal and colleagues. The
Ezpression table records the measured mRNA level for each
given {Gene, Ezperiment) pair. The Phase field of the Ez-
periment table gives the experimental condition, while the
ACluster field assigns experiments to clusters of similar ex-
periments. The Gene relational table is simplified in the
drawing; it actually contains nine nodes of the form R(#;)
and nine nodes of the form L(¢;), corresponding to nine
known transcription factors. R(t;) tells whether transcrip-
tion factor t; actually can bind to a site just upstream of
the given gene. L(t;) is a (noisy) measurement of whether
such binding occurs. The S; fields specify the bases in the
DNA sequence upstream of the given gene; showing only
three such fields is another simplification. In the database,
the actual values for the R(t;) and ACluster fields are not
known; these are missing values, for which the learning al-
gorithm will provide a prediction method.

the first part of this process, because mRNA levels are eas-
ier to measure than protein levels. In using microarray data,
there often is a tacit assumption that transcription is a good
surrogate for expression.

When the expression of one gene goes up, that gene’s prod-
uct (protein or mRNA) can influence the expression of other
genes, or of that gene itself in a feedback loop. Such regula-
tion is especially likely if the gene codes for a transcription
factor. Transcription factors are proteins that bind to a sub-
sequence of the DNA before a gene and encourage or repress
the start of transcription. The subsequence to which a tran-
scription factor binds is called the transcription factor bind-
ing site. If two genes have similar expression profiles, it is
likely that they are controlled by the same transcription fac-
tor(s) and therefore have similar transcription factor binding
sites in the sequence preceding them. Segal and colleagues
seek to model both expression data, from microarrays, and
sequence data.

A PRM can be viewed as a Bayes net where the variables
of the Bayes net correspond to particular fields of a multi-
relational database. The conditional probability distribu-
tions for a variable may be dependent on other variables
from the same relational table or from other tables. In
their application of PRMs to gene regulation, Segal and col-
leagues have a relational table for genes, a relational table
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for experiments, and a relational table for gene expression
microarray measurements, as shown in Figure 5. An expres-
sion measurement is for one gene within one experiment, i.e.
under one set of experimental conditions. Therefore, in the
database schema the expression measurement table captures
the many-to-many relationship that exists between genes
and experiments.

As with ordinary Bayes net learning given known structure,
the task is to estimate the conditional probability distribu-
tions given data. This task is straightforward when there
is no missing data. But in the present application, the val-
ues of the R(t;) fields (matching transcription factors with
genes) and the ACluster field (matching each experiment
with a cluster of related experiments) are in fact unknown.
Therefore an expectation-maximization (EM) algorithm is
used to simultaneously learn which genes are controlled by
which transcription factors and to cluster the experiments.
The relationship between these two types of hidden variables
is that under different experimental conditions, or in differ-
ent clusters of experiments, different transcription factors
will be active. While other work has been done on either
modeling gene expression experiments or modeling the se-
quences of transcription factor binding sites, the novelty of
this multi-relational application is that both types of mod-
eling are done together, in synergy, using EM. The experi-
mental results provide support for the claim of synergy, that
modeling the two disparate types of data together is more
successful than modeling either alone. We will return later
to the general issue of predicting multiple aspects of gene
regulation in concert.

5. INFORMATION EXTRACTION
FROM TEXT

Many biological learning problems have a sequential nature.
In this section and the next, we discuss two applications of
this type and describe how they can be framed as multi-
relational data mining problems. The first task that we
consider is information extraction (IE) from the biological
literature, which has received much attention recently [23].
In this task, one is interested in automatically recognizing
and extracting specific classes of entities (e.g. proteins), re-
lations among entities, or even complex events composed
from relations. The ability to perform this task with high
accuracy would be of great interest to many biologists. For
example, this capability would significantly increase the pro-
ductivity of the curators of genome databases who spend
much of their time performing this task manually.

Figure 6 provides an illustration of the information extrac-
tion task. In this example, we are assuming that we are in-
terested in identifying the names of proteins and the names
of subcellular locations. Additionally, we are interested in

extracting instances of the binary relation subcellular-localization,

which represents the location of particular proteins within
cells. We refer to an instance of a relation as a tuple. The
top of the figure shows two sentences in an abstract, and
the bottom of the figure shows the instances of the target
classes and relation we would like to extract from the sec-
ond sentence. The relation tuple asserts that the protein
UBC6 is found in the subcellular compartment called the
endoplasmic reticulum.

In order to learn models to perform this task, we could use
training examples consisting of passages of text, annotated
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“

Here we report the identification of an integral mem-
brane ubiquitin-conjugating enzyme. This enzyme,
UBCS6, localizes to the endoplasmic reticulum, with
the catalytic domain facing the cytosol.

”

protein(UBC6)
location(endoplasmic reticulum)
subcellular-localization(UBC6,endoplasmic reticulum)

Figure 6: An example of the information extraction task.
The top of the figure shows part of a document being pro-
cessed. The bottom of the figure shows two extracted enti-
ties and one extracted relation instance.

with the entities and tuples that should be extracted from
them. Since natural language has such rich structure, this
task can naturally be framed as a multi-relational data min-
ing problem.

Figure 7 shows a sentence representation that has been used
in one biological IE project [45; 54]. This representation is
based on syntactic parses produced by the Sundance [49] sys-
tem. The sentence is segmented into typed phrases and each
phrase is segmented into words typed with part-of-speech
tags. For example, the second phrase segment is a noun
phrase (NP_SEGMENT) that contains the protein name UBC6
(hence the PROTEIN label). In positive training examples, if
a segment contains a word or words that belong to a domain
in a target tuple, the segment and the words of interest are
annotated with the corresponding domain. We refer to these
annotations as labels. Test instances do not contain labels —
the labels are to be predicted by the learned IE model.
Figure 7 illustrates some of the relationships that might
be encoded in a representation for learning information-
extraction models. There are others as well. Riloff [48] has
developed semi-supervised IE methods that exploit subject-
verb-object relationships. In learning models for recognizing
protein names, Bunescu et al. [6] augment their representa-
tion with matches against a generalized dictionary of protein
names. This generalized dictionary is created from a list of
known protein names by replacing numbers with a generic
number symbol <n>, Roman letters with <>, and Greek
letters with <g¢>. For example, the protein name “NL-IL6-
beta” would be generalized to “NF IL <n> <¢>.” Given
a sentence to be processed, Bunescu et al. look for sub-
strings that match an item in the generalized dictionary.
Such matches are recorded in the input representation of
the sentence. Some of these matches represent actual pro-
tein names, but others do not. The learner, however, can try
to learn the conditions under which such matches do corre-
spond to actual protein names, and it can learn to recognize
protein names that do not involve dictionary matches.

A variety of learning algorithms have been used to induce
models for information extraction from the biological liter-
ature. Bunescu et al. [6] have conducted an empirical in-
vestigation comparing a handful of learning algorithms and
several hand-coded systems on two biological information-
extraction tasks. In their experiments, the learned IE sys-
tems are consistently more accurate than the hand-coded
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“This enzyme, UBCS6, localizes to the endoplasmic reticulum, with
the catalytic domain facing the cytosol.”

1 NP_SEGMENT DET this
UNK enzyme
2 NP_SEGMENT:PROTEIN UNK:PROTEIN ubc6é
3 VP_SEGMENT \4 localizes
4 PP SEGMENT PREP to
5 NP_SEGMENT:LOCATION ART the
N:LOCATION endoplasmic
N:LOCATION reticulum
6 PP SEGMENT PREP with
NP_SEGMENT ART the
N catalytic
UNK domain
8 VP_SEGMENT \% facing
9 NP_SEGMENT ART the
N cytosol
(a) (b) (c)

Figure 7: Input representation for a sentence which contains
a subcellular-localization tuple: the sentence is segmented
into typed phrases and each phrase is segmented into words
typed with part-of-speech tags. Phrase types and labels
are shown in column (a). Word part-of-speech tags and
labels are shown in column (b). The words of the sentence
are shown in column (c). Note the grouping of words in
phrases. The labels (PROTEIN, LOCATION) are present only
in the training sentences.

ones. Among other algorithms, they evaluate several that
employ relational representations, including RAPIER [8] and
BWI [21]. In earlier work, Craven and Kumlien [12] used
a relational learner [14] based on FOIL [43; 44] to learn
information-extraction models for such problems. It is not
clear yet which learning algorithms are best suited to biolog-
ical IE tasks. However, a proposed series of community-wide
evaluations [1] promises to shed more light on this issue.
From the early work in biological IE, one lesson that seems
to hold is that rich, structured representations are benefi-
cial. We consider one such case in more detail. The Craven
group has developed an approach [45; 54] based on using hs-
erarchical hidden Markov models [19] to extract information
from the scientific literature. Hierarchical hidden Markov
models have multiple “levels” of states which describe input
sequences at different levels of granularity. This approach
uses the input representation depicted in Figure 7, and thus
each sentence is represented as a partially “flattened”, two-
level description of each Sundance parse tree.

A schematic of one of their hierarchical HMMs is shown
in Figure 8. The top of the figure shows the positive model,
which is trained to represent sentences that contain instances
of the target relation. The bottom of the figure shows the
null model, which is trained to represent sentences that do
not contain relation instances (e.g. off-topic sentences). At
the “coarse” level, the hierarchical HMMSs represent sen-
tences as sequences of phrases. Thus, we can think of the
top level as an HMM whose states emit phrases. This HMM
is referred to as the phrase HMM, and its states are referred
to as phrase states. At the “fine” level, each phrase is repre-
sented as a sequence of words. This is achieved by embed-
ding an HMM within each phrase state. These embedded
HMMs are referred to as word HMMs and their states as
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Figure 8: Schematic of the architecture of a hierarchical
HMM for the subcellular-localization relation. The top part
of the figure shows the positive model and the bottom part
the null model. Phrase states are depicted as rounded rect-
angles and word states as ovals. The types and labels of
the phrase states are shown within rectangles at the bottom
right of each state. Labels are shown in bold and states as-
sociated with non-empty label sets are depicted with bold
borders. The labels of word states are abbreviated for com-
pactness.

word states. The phrase states in Figure 8 are depicted
with rounded rectangles and word states are depicted with
ovals. To explain a sentence, the HMM would first follow
a transition from the START state to some phrase state g;,
then use the word HMM of ¢; to emit the first phrase of the
sentence, then transition to another phrase state g;, emit
another phrase using the word HMM of ¢; and so on until
it moves to the END state of the phrase HMM.

Like the phrases in the input representation, each phrase
state in the HMM has a type and may have one or more
labels. Each phrase state is constrained to emit only phrases
whose type agrees with the state’s type. Once a model has
been trained, the Viterbi algorithm is used to predict tuples
in test sentences. A tuple is extracted from a given sentence
if the Viterbi path goes through states with labels for all the
domains of the relation. For example, for the subcellular-
localization relation, the Viterbi path for a sentence must
pass through a state with the PROTEIN label and a state
with the LOCATION label.

The experimental evaluation of this approach has shown
that, in general, the more grammatical information incorpo-
rated into the models, the more accurate they are [54]. This
result indicates the importance of using a multi-relational
representation for the IE problem in biological domains.
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Figure 9: The concept of an operon. The curved line rep-
resents part of a bacterial chromosome and the rectangu-
lar boxes on it represent genes. An operon is a sequence
of genes, such as [¢2, g3, g4] that is transcribed as a unit.
Transcription is controlled via an upstream sequence, called
a promoter, and a downstream sequence, called a terminator.
A promoter enables the molecule performing transcription
to bind to the DNA, and terminator signals the molecule to
detach from the DNA. Each gene is transcribed in a partic-
ular direction, determined by which of the two strands it is
located. The arrows in the figure indicate the direction of
transcription for each gene.

6. SEQUENCE ANALYSIS

There are many data mining problems in molecular biol-
ogy that involve representing and reasoning about DNA,
RNA and protein sequences. Among these problems are
gene finding [7], motif discovery [33], and protein structure
prediction [51]. We argue that, increasingly, such sequence-
analysis tasks are becoming multi-relational problems. The
reasons for this trend are twofold. First, other sources of
evidence, in addition to the sequences themselves are being
leveraged in the learning and inference processes. Second,
many sequence elements of interest are composed from other
sequence elements. In this section, we discuss these issues
in more detail, focusing in particular on our recent work in
analyzing bacterial genomes. [3; 4; 13].

Recall that the first step in the process of a gene being ex-
pressed is for it to be transcribed into a similar RNA se-
quence. Although the expression of a gene can be regulated
at various points, the most significant regulatory controls are
exerted on the transcription process. For example, a gene
can be “shut off” by preventing it from being transcribed. In
some organisms, especially bacteria, there are certain sets of
contiguous genes, called operons that are transcribed coor-
dinately. In other words, the genes in an operon are “turned
on” or “shut off” as a unit.

Figure 9 illustrates the concept of an operon. The tran-
scription process is initiated when a molecule called RNA
polymerase binds to the DNA before the first gene in an
operon. The RNA polymerase binds to a special sequence
called a promoter. It then moves along the DNA using it as
a template to produce an RNA molecule. When the RNA
polymerase gets past the last gene in the operon, it encoun-
ters a special sequence called a terminator that signals it to
release the DNA and ceases transcription.

Consider the task of analyzing and annotating a newly se-
quenced genome. More than 100 bacterial genomes have
been sequenced [2], and several hundred others are in the
process of being sequenced, so this is an increasingly com-
mon task to be addressed. In addition to identifying the
genes in the genome and predicting something about their
functions, we would also like to identify regulatory elements
such as operons, promoters, terminators, and others. Of-
ten, it is the case that we know about some experimentally
determined instances of these elements.

Figure 10 shows a sample database that represents what

Volume 4, Issue 2 - page 7



OperonID | Name GenelD Name Function LeftCoord | RightCoord Operon
Opl aceBAK b4014 | aceB enzyme 4213057 | 4214658 aceBAK
Op2 alkA b4014 | aceB enzyme 4214688 | 4215992 aceBAK
Op3 araBAD b4047 | yjbL 2 4257900 | 4258154 2
Operons Genes
ProbelD | Coordinate| Expl Exp2 Exp3 Exp4 Exps
pl 16646 -2.10 0.14 3.01 -1.23 0.69
p2 16663 -1.91 0.21 3.01 -1.05 0.82
Expression Data
PromID Coordinate TermID Coordinate
Prom1 4212991 Terml 4216005
Prom2 421980 Term2 4257870
Promoters Terminators

Figure 10: A sample database describing known attributes
of a bacterial genome.

might be known about a particular bacterial genome. The
operon table lists known operons. The gene table describes
attributes of known genes including their sequence coordi-
nates and which operon they are contained within, if this is
known. The promoter and terminator tables list a reference
sequence coordinate for each known instance. The expres-
sion table contains expression measurements from microar-
rays, across a variety of experimental conditions. The table
also lists a reference sequence coordinate for each probe that
is used to take an expression measurement. Note that the
sequence coordinates provide a means for computing other
relations among entities, such as the linear order of known
genes, promoters and terminators in the genome.

Given a data set such as that shown in Figure 10, there are a
number of prediction tasks that we might want to address.
These include predicting additional genes, promoters and
terminators, and predicting how genes are organized into
operons, in cases where this is not known. Note that these
tasks are clearly multi-relational in that the representation
includes attributes of genes (e.g. sequence coordinates), re-
lations among genes (e.g. containment in the same operon),
and relations between genes and other entities, such as pro-
moters and terminators. Additionally, the records in the ex-
pression table are linked to these entities via their sequence
coordinates.

In our research, we have considered various approaches to
recognizing regulatory elements in bacterial genomes. In
our most recent work [4], we have developed a probabilistic
language model to simultaneously predict promoters, ter-
minators and operons. This model is, for the most part, a
hidden Markov model, although two components of it are
actually stochastic context free grammars. Most of the re-
lational structure in this problem is sequential, and thus
probabilistic language models are especially suited to the
task.
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We argue that those interested in relational data mining
should consider probabilistic language models, such as HMMs,
to be powerful tools in their arsenal. For many key biolog-
ical sequence-analysis tasks, such as gene finding [7], these
methods are the ones that provide state-of-the-art predictive
accuracy.

One exciting topic of research in this area is investigating
ways in which learned models can take into account all of
the relevant data that is available. For example, there are
several new gene-finding HMM methods [31; 35] that take
sequences from multiple organisms as input, and use the evo-
lutionary relationships among the organisms to aid in gene
prediction. Asanother example, our bacterial genome model
takes gene expression data (as illustrated in Figure 10) as in-
put in addition to sequence data. In both of these cases, the
augmented representation has resulted in improved predic-
tive accuracy. We conjecture that this trend of leveraging
additional data will lead to representations that are even
more multi-relational than current ones.

7. LESSONS AND CHALLENGES

One interesting lesson that biological applications such as
pharmacophore discovery have provided is how naturally
multi-relational data mining address the multiple instance
problem. This has been noted earlier, for example in the
original pharmacophore discovery paper [20]. Recently, Per-
lich and Provost have provided a useful hierarchy of data
mining tasks, based on representation, where multiple in-
stance tasks form a class subsumed by multi-relational tasks
[42].

A second lesson, important though perhaps not novel, is
that multiple distinct sources of information can provide
improved accuracy. For example, the application of PRMs
used both expression data and sequence data to accurately
recognize which genes are controlled by the same transcrip-
tion factors. As another example, two consecutive genes
are likely to be in the same operon if their expression pat-
terns are correlated, if they are separated by a relatively
small number of bases, and if no promoters or terminators
appear between them; using these multiple sources of infor-
mation provides improved operon prediction over using any
one source alone. Multi-relational data mining is naturally
suited to using distinct sources of information that can be
encoded in distinct relational tables.

One major challenge that biological applications highlight
for the area of multi-relational data mining is simply com-
putational complexity. Biological databases are growing at
an exponential rate. Moreover, the time to simply check a
potential hypothesis or discovery against the data can be
much higher for a multi-relational system that for an or-
dinary single-table or feature-vector system. For example,
the task of determining whether a molecule contains a given
substructure is the NP-complete task of subgraph isomor-
phism.

A second, related challenge that biological applications raise
for multi-relational data mining systems is ease of use. A bi-
ologist can run a decision-tree learner or a linear regression
routine on his or her data with relatively little training and
preprocessing. But running a multi-relational data mining
system typically requires a much larger knowledge engineer-
ing effort. Research is needed into ways of making multi-
relational data mining systems easier to use by biologists or
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other domain experts.

8. CONCLUSION

Multi-relational data mining tools have been applied to a
variety of biological tasks. Nevertheless, the breadth of
inter-related data types discussed in the introduction is sig-
nificantly greater than in any of the specific applications we
discussed. Furthermore, with the growth in systems biology,
the breadth and relational structure of biological databases
will only increase. Therefore, biological databases provide a
major challenge for multi-relational data mining. Already,
data mining researchers should be more ambitious in apply-
ing multi-relational algorithms to larger and more diverse
databases. For example, we should be integrating data on
DNA (SNPs), mRNA (from gene expression microarrays),
proteins (from mass spectrometry) and metabolomics into
multi-relational analyses. We should be drawing on relevant
text sources as well. Stretching ourselves in this manner in
applications is sure to reveal new research directions in the
development of multi-relational data mining algorithms.
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