Learning Bayesian Network Structure from Correlation-Immune
Data

Eric Lantz
Computer Sciences Dept.
University of Wisconsin-Madison
Madison, WI 53706

Abstract

Searching the complete space of possible
Bayesian networks is intractable for problems
of interesting size, so Bayesian network struc-
ture learning algorithms, such as the com-
monly used Sparse Candidate algorithm, em-
ploy heuristics. However, these heuristics
also restrict the types of relationships that
can be learned exclusively from data. They
are unable to learn relationships that exhibit
“correlation-immunity”, such as exclusive-
OR and parity. To learn Bayesian networks
in the presence of correlation-immune rela-
tionships, we extend the Sparse Candidate
algorithm with a technique called “skewing”.
This technique uses the observation that re-
lationships that are correlation-immune un-
der a specific input distribution may not
be correlation-immune under another, suffi-
ciently different distribution. We show that
by extending Sparse Candidate with this
technique we are able to discover relation-
ships between random variables that are ap-
proximately correlation-immune, with a sig-
nificantly lower computational cost than the
alternative of considering multiple parents of
a node at a time.

1 INTRODUCTION

Bayesian networks (BNs) are an elegant representation
of dependency relationships present over a set of ran-
dom variables. The structure of the network defines
a factored probability distribution over the variables
and allows many inference questions over the vari-
ables to be answered efficiently. However, there are
a super-exponential number of possible network struc-
tures that can be defined over n variables, and the pro-
cess of finding the optimal structure consistent with

Soumya Ray
School of Electrical Engineering
and Computer Science
Oregon State University
Corvallis, OR 97331

David Page
Computer Sciences Dept.
Biostat. and Med. Informatics Dept.
University of Wisconsin-Madison
Madison, WI 53706

a given data set is NP-complete (Chickering et al.,
1994), so an exhaustive search to find the one that
best matches the data is generally not possible. Tech-
niques to learn BN structure from data must choose a
way to restrict the search space of possible networks
in order to gain tractability.

The most computationally efficient search technique
traditionally employed to discover BN structure is a
greedy search over candidate networks. Given a cur-
rent network, a greedy search scores structures de-
rived using local refinement operators, such as adding
and deleting arcs, according to a score such as pe-
nalized likelihood. The search keeps only the best
such structural modification to refine in the next it-
eration. It is well understood that greedy approaches
are not guaranteed to find global optima. However,
another problem with greedy approaches is that of
“myopia” in the search. This refers to the fact that
such approaches can be confounded when the local
changes they consider do not improve the score, even
though these changes are relevant to the underlying
relationships in the data. In such cases, the search
algorithm may not be able to distinguish relevant re-
finements from irrelevant refinements and may be led
astray. Mpyopic behavior in search can be induced,
for example, when the relationship being learned is
“correlation-immune”. Correlation-immune (CI) func-
tions (Camion et al., 1992) exhibit the property that
when all possible function inputs and outputs are listed
(for example in a truth table), there is zero correlation
between the outputs and all subsets of the inputs of
size at most ¢. Examples include exclusive-OR, par-
ity, and consensus, among others. In BN terminology,
a child node’s probability of taking any particular set-
ting is unchanged when conditioned on at most c of its
parents. CI relationships present a problem for greedy
approaches to BN structure learning.

The traditional solution to discovering relationships
not visible with a greedy search is to consider multiple
actions at each step using lookahead (a greedy search

could be considered 0-step lookahead). In BNs, looka-
head is equivalent to considering multiple changes at
once to the parent set of a node. However, lookahead
has a very high computational cost that becomes in-
tractable for many interesting problems. In prior work,
a technique known as “skewing” has been introduced,
that provides many of the benefits of lookahead at a
reduced computational cost. This technique relies on
the observation that relationships that are CI under
a specific input distribution may not be CI under an-
other, sufficiently different distribution. When used
with greedy decision tree learners, it was empirically
observed that the technique was able to accurately
learn functions that were CI under the uniform dis-
tribution with only modest amounts of training data
(Page & Ray, 2003). Further, the computational cost
is at most a linear factor (in the number of variables)
over standard greedy tree learning algorithms.

In the present work, we extend the commonly used
Sparse Candidate algorithm for BN structure learning
to use the skewing technique. We empirically evaluate
our algorithm on synthetic data sets generated by dif-
ferent network topologies, both with and without CI
relationships. Our results show that, in most cases,
our algorithm recovers the generating network topol-
ogy more accurately than the standard Sparse Can-
didate algorithm. Further, the networks learned by
our approach are significantly more accurate when CI
relationships are present in the data.

2 BACKGROUND

In this section, we review correlation immunity, the
Sparse Candidate (SC) algorithm for learning BN
structure and the “skewing” technique.

2.1 CORRELATION IMMUNITY

Consider a Boolean function f over m Boolean vari-
ables, x1,...,x,. We say that f is correlation-immune
of order ¢ (Camion et al., 1992; Dawson & Wu, 1997)
if f is statistically independent of any subset S. of
variables of size at most ¢: Pr(f =1|S.) = Pr(f =1).
An example of such a function is 2-variable odd par-
ity, shown in Figure 1(a). This function is correlation-
immune of order one (or equivalently, a first order CI
function), because for any subset of variables of size
zero or one, the distribution over the values of f does
not change. CI functions have been studied extensively
in cryptography, where they are used as non-linear ci-
phers that are not subject to correlation attacks, in
which the attacker measures statistics of the output
as a method of gaining information about the key. In
our work, we are interested in learning approximate
CI relationships from data. Figure 1(b) shows a frag-

Pr(f=11X,Y)

X
Pr(X=1) =0.5 X
0
0
1
1

Y
Pr(Y=1) =0.5

(a) (b)

L — T] %*

Figure 1: (a) Example of a correlation-immune function.
(b) Example of an approximate correlation-immune rela-
tionship.

ment of a BN, where the conditional probability tables
(CPTs) of X, Y and f encode an approximate CI re-
lationship between these variables.

CI relationships appear in many real-world scenarios.
For example in Drosophila (fruit fly), whether the fly
survives is known to be an exclusive-OR function of
the fly’s gender and the expression of SzL gene (Cline,
1979). Similarly, during brain development in quail
chicks, the Fgf8 gene, which is responsible for organiz-
ing the midbrain, is expressed only in regions where
neither or both of the genes Gbz2 and Otz2 are ex-
pressed (Joyner et al., 2000). This behavior is an in-
stance of antagonistic repressors — Gbx2 and Otx2 are
repressors of Fgf8; however, they are also antagonis-
tic — when they are both expressed, they repress each
other. Such functions also arise in problems outside of
genetics. For example, consider the task of predicting
whether two proteins bind to each other. An impor-
tant predictor of binding is the presence of regions in
the proteins that are oppositely charged. Such a func-
tion is an exclusive-OR of features representing the
charge on regions of the proteins: like charges repel,
and thus hinder binding, while opposite charges at-
tract, and thus facilitate binding.

The presence of (approximate) CI relationships in the
data presents a challenge for machine learning algo-
rithms that rely on greedy search to gain computa-
tional efficiency, such as the SC algorithm described
below. This is because at some point in the search,
no single feature appears to be relevant to the learn-
ing problem. To discover such relationships, depth-c
lookahead can be used (Norton, 1989). This approach
constructs all subsets of ¢ + 1 features, and will find
any target relationship that is correlation-immune of
order at most ¢. However, the computational cost is
exponential in ¢ (O(n?”" ~1) where n is the number
of variables), thus this approach can only be used to
find small CI functions. Further, this procedure can
result in overfitting to the training data, even when
only lookahead of depth 1 is considered, because it ex-
amines so many alternatives during search (Murthy &
Salzberg, 1995; Quinlan & Cameron-Jones, 1995).

2.2 THE SPARSE CANDIDATE
ALGORITHM

In our work, we are interested in learning probabilis-
tic relationships between the attributes describing the
data. To do this, we use the well-known Sparse Candi-
date algorithm (Friedman et al., 1999), which we re-
view here. The algorithm controls the structure search
by limiting the number of parents that will be consid-
ered for each variable. The algorithm begins with an
initial structure, typically one with no edges. It pro-
ceeds by alternating between two phases: a restrict
phase to decide which variables will be considered po-
tential parents (candidates) of each variable, and a
search phase in which greedy structure modifications
are made using the candidates and existing structure.
The entire algorithm terminates when a search phase
fails to make any changes to the structure.

The restrict phase performs a simple test on all pairs
of variables in order to reduce the number of actions
that need to be considered in the next phase. It lim-
its each variable to a maximum of k candidate par-
ents. For example, if node Y is a candidate parent of
node X, the next phase of the algorithm will consider
adding the directed arc Y — X. The measure of the
strength of the correlation between the two variables is
the information theoretic measure conditional mutual
information I(X;Y|Z) as estimated from the data.

x v Z

2.2, i

Pz, 4l2)
) ()
1)

Z is the set of parents of X. If X has no existing
parents, Z = ¢ and the equation becomes mutual in-
formation. p(z,y|z) is the observed joint probability
of x and y given the settings of z.

I(X:Y|Z) =

Mutual information (or its conditional variant) is cal-
culated for each pair of variables. For each variable,
the current parents are added to the candidate set.
Then the candidates with the highest (conditional)
mutual information are added until the candidate set
the contains k variables. The restrict phase outputs
the list of k candidates for each variable.

The search phase consists of a loop to greedily build
the best network given the current candidate sets.
There are three search operators: add an arc to a
variable from one of its candidate parents, remove an
existing arc, or reverse the direction of an arc. Each
addition or reversal is checked to ensure that directed
cycles are not created in the network. All remain-
ing actions are scored, and the best action is taken.
Common scoring metrics, including Bayesian-Dirichlet

metric (BD) (Heckerman et al., 1995) and Bayesian
Information Criterion (BIC) (Schwarz, 1978) include
some way of trading off data likelihood with model
simplicity. The important criterion of the metric for
computational efficiency is that it be decomposable —
the contribution of a variable to the score is dependent
only on itself and its parents. When an action is con-
sidered, the score needs to be recalculated only for the
variables whose parents have changed.

The search phase continues until the score is not im-
proved by any available action. If changes have been
made to the network during this phase, the algorithm
then returns to the restrict phase and chooses new can-
didate sets based on the current network dependencies.
If no changes were made, the algorithm terminates.

The SC algorithm has two greedy components. The
restrict phase looks only at pairwise relationships be-
tween variables when choosing candidates, and the
search phase chooses actions based on their local ef-
fect on the score. Both of these are limiting factors
in learning approximate correlation immune relation-
ships. For example, if we have data generated by the
network fragment in Figure 1(b), the restrict phase of
Sparse Candidate is unlikely to select X (or Y) as a
candidate parent of f (unless there are no other vari-
ables in the model) because the mutual information
score will be close to zero. Even if X is a candidate
parent, the search phase will not add X as a parent
of f, because doing so will not improve the score of
the structure under any of the previously mentioned
scoring functions unless Y is already a parent of f.

2.3 SKEWING

In this section, we review prior work on a technique
called “skewing” that has been proposed to learn CI
functions in the context of decision tree induction. In
the following section, we describe how this approach
can be applied to learning structure for BNs.

The motivation for the skewing technique (Page &
Ray, 2003) lies in the following observation. Consider
a data set over a hundred features, =1, ..., x99, Where
the target function is two variable exclusive-OR, say
Tgg D x100. This task is clearly very difficult for a
greedy tree learning algorithm. Now, suppose the data
are distributed differently from uniform. For example,
we might suppose all variables are independent as in
the uniform distribution, but every variable has prob-
ability only i of taking the value 0. In this case, with
a large enough sample we expect that the class distri-
bution among examples with x99 = 0 will differ sig-
nificantly from the class distribution among examples
with zg9 = 1. On the other hand, every variable other
than x99 or x1gg is likely to have nearly zero correla-

tion with the target. Hence unless a highly unlikely
sample is drawn, a greedy tree learning algorithm will
choose either zgg9 or x19¢ as the split variable, at which
point the remainder of the learning task is trivial.

The desired effect of the skewing procedure is that the
skewed data set should exhibit significantly different
frequencies from the original data set. To achieve this,
the frequency distributions for variables are changed
by attaching various weights to the examples as dis-
cussed below. In previous work, it was observed that
in contrast to skewing, other methods of reweighting
(such as boosting or data perturbation (Elidan et al.,
2002)) or resampling (such as bagging) did not make
CI functions easier to learn (Page & Ray, 2003).

The skewing procedure initializes the weight of every
example to 1. For the j'* variable, 1 < j < n, a “fa-
vored setting” v;, either 0 or 1, is selected randomly,
uniformly and independently of other variables. The
weight w; of each example in which the j'* feature
takes the value v; is changed by multiplying it by a
constant % < s < 1, while the weight of each exam-
ple in which the feature does not take the value v; is
changed by multiplying it with 1 — s:
n
wi = [[7(Dij,v;) - s+ (1= T(Dij,05)) - (1= 5), (2)

j=1

where D;; denotes the jth feature of example i in the
data set and J(z,y) is an indicator function that re-
turns one if x = y and zero otherwise. Notice that
this reweighting process requires no knowledge of the
variables relevant to the target. At the end of this pro-
cess, it is likely that each variable has a significantly
different weighted frequency distribution than previ-
ously. But this is not guaranteed, because an unfortu-
nate choice of settings could lead to the new frequency
distribution being similar to the old one. A second dif-
ficulty is that this process can magnify idiosyncrasies
in the original data by assigning some data point with
an extremely high weight.

The difficulties in the preceding paragraph occur with
some data sets combined with some choices of favored
settings. Therefore, instead of using skewing to create
only a second distribution, T' additional distributions,
for small values of T', are created. The T different dis-
tributions come about from randomly independently
selecting T different combinations of favored settings
for the n variables according to a uniform distribution.

Each of the n variables is scored for each of the T+ 1
weightings of the data (the original data set plus T'
reweighted versions of this data set). The variable that
has the largest average score across all skews for the
greatest number of weightings is selected as the split
variable. The selected variable is highly likely to be

correct in the sense that it is actually a part of the
target function. Yet, in contrast to lookahead, the
run-time has been increased only by a constant.

In prior work, it was proven that, given a full truth
table of an arbitrary Boolean function, skewing identi-
fies variables relevant to the function with probability
1 (Rosell et al., 2005). Further, empirical evalua-
tion with decision trees has shown that the approach
is at least as accurate as standard tree induction algo-
rithms over a large, randomly sampled set of Boolean
functions, and shows significantly improved accuracy
when the sample is drawn from CI Boolean functions.
In our current work, we extend the SC algorithm with
this technique to learn BN structure from CI data.

3 SKEWING IN SPARSE
CANDIDATE

As discussed in section 2.2, the Sparse Candidate algo-
rithm has two greedy steps. The restrict step chooses
the k variables most highly correlated with each vari-
able. This step is greedy in the sense that only direct
dependence is considered. As we have seen, CI func-
tions show no dependence, so this step will fail to dis-
cover relationships. A skewed distribution is created
by randomly selecting % < s < 1 and a preferred set-
ting v; for all variables. From this, a vector of weights
w can be calculated for all examples in the training set
by equation 2. We can then define the probability of
a variable X taking on a certain value z.

Zi wi|DiX =
> Wi

ﬁskew(X = LC) = (3)

This reduces to standard frequency counts when all
weights are set to 1. We score the correlation between
two variables by averaging the skewed conditional mu-
tual information (equation 1) over 77 — 1 skews plus
the original distribution, for a total of T distributions.

T .
) I(X;Y|Z
el Y12) = 2 AC BT gy

Where I(X;Y|Z,w,) is computed by substituting the
Pskew 1N equation 3 into p in equation 1. Similarly,
the search step evaluates each of its possible actions
(adding an arc from a variable to one of its candi-
date parents, removing an arc, or reversing an arc)
and chooses the best one according to a decomposable
scoring function. Even if a relevant parent is chosen
as a candidate in the restrict step, the scoring func-
tion — which looks at statistics of the original distri-
bution — will still score the action poorly. So skewing

is also needed when evaluating each action. We gen-
erate To — 1 additional skewed distributions and apply
a modified scoring function that takes into account .
The BD metric calculates the number of times that
variables X and Y are found in the training set taking
on each combination of their settings. By definition,
this equals), (1|D;x = z, D;y = y), which becomes
> (wi|Dix = x, Dy = y) with skewing. As in the re-
strict step, we take the average of the structure scores
over all skews before choosing the next action.

The phases of the SC algorithm are shown in Algo-
rithms 1 and 2, with changes due to skewing shown in
bold. The first “skewed” distribution in both phases is
the original distribution, represented by using a vector
of ones for the weight. In both phases, the calculations
are affected by the vector W produced in creating the
skewed distribution. Taking the average result over all
skewed distributions serves to preserve the signal from
strong relationships, but mitigate the effect of spurious
relationships which achieve high scores as the result of
a particular skew.

Since we are using multiple distributions, it is not
clear how to determine the end condition of the search
phase. If we score the modified structure against the
original distribution within the search phase (as in nor-
mal SC), the search may terminate prematurely be-
cause the modification may result in a worse scoring
structure if it was part of a CI relationship. Contin-
uing as long as the score improves on the skewed dis-
tributions is also problematic, as skewing may cause
arcs to be added to the network that are irrelevant to
the original distribution. We chose to terminate the
search phase when the best move has less than half of
the improvement of the first move. This puts bounds
on the search and requires strong signals for network
modification.

The restrict and search phases alternate, just as they
do in normal SC, until the score of the network on the
original distribution does not improve with a search
phase. Throughout this process, the skewing proce-
dure has used a variety of distributions in order to
identify relevant parents. Nevertheless, we want to
model the true distribution, not the skewed distri-
butions. Therefore the algorithm closes by running
normal SC on the original distribution, but using the
structure built from skewing as the initial structure.
This step could have the effect of removing extra arcs,
or it could serve to find the remaining parents of a
CI relationship. Our experiments (data not shown)
illustrate that this step greatly improves precision by
removing unnecessary arcs that poorly model the orig-
inal distribution.

Algorithm 1: Sparse Candidate Restrict Phase
Adapted from Figure 2 in Friedman et al. (1999).
Changes due to skewing shown in bold.

Input: A matrix D of m data points over n variables,
number of candidates k, initial network B,
Output: For each variable x; a set of candidate
_ parents ¢; of size k

1 V\71 — 1

2 for t — 2 to T; do Wy — Skew(D)

3 for i 1tondo

4 fort — 1 to T; do

5 Calculate I(x;, ;| Pa(x;), wy) for all z; # x;

and z; € Pa(x;)

6 end

7 Choose the k — [variables with the highest Iskeqw
over all skews, where | = |Pa(x;)|
Set ¢; = Pa(x;) U {k — I chosen variables }

9 end

10 return {¢;}

[B N N VN

~

10

Algorithm 2: Sparse Candidate Search Phase
Changes due to skewing shown in bold.

Input: A matrix D of m data points over n variables,
initial network B, candidate parents {c;}
Output: Network B, 41
V§71 — I
for t — 2 to T2 do w; «— Skew(D)
repeat
BT+1 — BT
fort — 1 to T5 do
Calculate Score(B;,action|D,wy) for all
possible actions
end
Apply action with highest average score over
all skews to B,
until Score improvement threshold not met (see text)
return By

Since the CPT of a node representing an exact CI func-
tion is simply a truth table, we can apply the theory
from previous work (Rosell et al., 2005) that skew-
ing is always able to identify a relevant variable (vari-
able involved in the CI relationship) if given complete
data. With only a sample of the data the outcome is
no longer certain, but has previously been shown to
occur consistently.

It is difficult to compute computational complexity of
the SC algorithm or its skewed variant, due to the
unknown number of iterations. However, we can say
something about the effect of skewing on the complex-
ity of each phase. The restrict phase of SC is O(n?),
where n is the number of variables, due to the cal-
culation of pairwise (conditional) mutual information
scores. With skewing, it becomes O(Tyn?). The search

phase will undergo an unknown number of iterations,
but the process of choosing the action is O(kn). Skew-
ing raises that to O(T5(kn)). Thus the effect of skew-
ing on the computational complexity is linear in the
number of skews used in each phase.

4 EXPERIMENTS

In this section, we discuss the evaluation of the effec-
tiveness of skewing in the context of two types of graph
structures, with or without CI relationships. We ex-
pect skewing to have a strong advantage over normal
SC when CI relationships are present in the generat-
ing network, and that advantage will also be present
with approximate CI relationships. Additionally, we
expect skewing to not decrease the effectiveness of SC
in networks which do not contain CI relationships.

For all experiments, we constructed Bayesian networks
of Boolean variables. Training data and test data were
sampled uniformly from the network. We set T7 =
30, To = 30, kK = 6, and the test sets contained 1000
samples. The skewing weight factor, s, was randomly
chosen in each skew. To account for the randomness
implicit in the algorithm, skewed SC was run 5 times
on each network. The scoring metric used in the search
was K2 (Cooper & Herskovits, 1992), a version the BD
metric, with a structure term that penalized based on
the number of parameters in the network and the size
of the training set (3, 2!P*®liog|D|/2).

We used two measures to evaluate the effectiveness of
our algorithm on synthetic data. The first is the log
likelihood of the model given the test data, which de-
scribes how well the data appears to have been gener-
ated by the model. We also wanted to look at whether
the correct arcs of the generating structure were being
discovered by the algorithm. Unfortunately, most CI
functions are statistically invariant as to which vari-
able is the “output”. For example, Figure 1(a) could
represent f = X®Y, X =Y@f,orY = f®X, and the
difference is impossible to determine solely from data.
So instead of looking for the exact directed arcs, we
compare the Markov blankets of the generating struc-
ture and learned structure. The Markov blanket of a
variable X consists of X’s parents, X’s children, and
the other parents of X’s children. The Markov blan-
kets for all variables will be the same in all output
variations of CI functions. In order to penalize both
missing and superfluous arcs, we calculate the F'1 score
of the Markov blanket of all variables. Precision is the
fraction of Markov blanket variables returned by the
algorithm that are present in the generating structure.
Recall is the fraction of Markov blanket variables in
the generating structure that are returned by the al-
gorithm.

Pl 2 - precision - recall

()

precision + recall

The first synthetic network type consisted of 30 vari-
ables, with one variable having 5 parents and all oth-
ers having no parents. For all parents P(X=1) = 0.5,
whereas the probabilities of other variables were ran-
domly assigned. The CPT of the child variable repre-
sented either a CI function or a function constructed
by randomly selecting the output for each row of the
truth table. The function representation could be ex-
act (probability of 1 for the function value and 0 oth-
erwise) or approximate (function value having a prob-
ability of 0.9 or 0.8).

Figure 2 shows learning curves for these experiments
as a function of the number of examples in the train-
ing set. In terms of both likelihood and Markov blan-
ket F'1 score, skewing greatly outperforms normal SC
on CI data sets. The difference between the two algo-
rithms on the exact functions is statistically significant
at the 99.9% confidence level by a two-tailed t-test un-
der both measures when the training set size > 400.
Normal SC fails to improve despite more training data
being available. Interestingly, skewed SC also outper-
forms normal SC for randomly generated functions.
This can be explained by noting that randomly gener-
ated functions could contain CI subproblems (of 2, 3,
or 4 variables) or be CI functions themselves. The
difference between the two algorithms on the exact
functions is significant at 95% confidence for training
set size > 1600. Skewing shows some robustness to
approximate CI relationships, particularly when mea-
sured by Markov blanket F1 score. However, for every
10% reduction in the probability of the CPT return-
ing the function value, scores fall by more than half as
compared to the baseline in all cases.

Another synthetic network type was inspired by the
Quick Medical Reference (QMR) network structure
(Shwe et al., 1991) as a representation of disease di-
agnosis. The structure consists of a layered bipartite
graph, with directed arcs only from the top layer to
the bottom layer. The bottom layer nodes represent
symptoms. The nodes in the top layer represent dis-
eases or conditions, with arcs towards the symptoms
they influence. It is possible to imagine conditional
probability tables for the nodes in the lower level that
are CI functions like exclusive-OR or 3 variable parity.
The generating networks contained 20 top layer vari-
ables and 20 bottom layer variables, with bottom layer
nodes having 2 or 3 parents. We examined how well
normal and skewed SC could reconstruct the struc-
tures with varying probability that a given bottom
layer node would have a CPT that represented a CI
function. Figure 3(a) shows that skewing outperforms

—
8
—_—

-21.6 ® 09
Qo o
[=] u 0.8
S 218 507
. 'S
3 ¢ 06
s 22 < 05
= 2 04
T 222 a b
= E 0.3
g 224 : : L 02
-)t — o, —, 2 01
226 | 0
100 200 400 800 1600 3200 6400
c) d) 1
(-21.6 — (.,)
= -
r=1 o
S a
-~ s
3 %
-] -
-= [
= =
=7 3
-
o 2
3 H
2

400

800 1600 3200 6400

Training Set Size

e ot » = = u

800 1600 3200 6400

800

1600 3200 6400

Training Set Size

Normal Sparse Candidate eefie=1.0/0.0 CPTs ==m= 0.9/0.1 CPTs = @= 0.8/0.2 CPTs

Skewed Sparse Candidate

~—1.0/0.0 CPTs —<-

0.9/0.1CPTs 0.8/0.2 CPTs

Figure 2: Learning curves on 30-variable data sets. Each data point is the average of 100 generated data sets. (a-b)
Performance of normal and skewed SC on CI 5 variable functions as measured by log likelihood (a) and Markov blanket
F1 (b). (c-d) Performance on random 5 variable functions by log likelihood (c) and Markov blanket F1 (d).

normal SC as measured by Markov blanket F1 score,
and while both algorithms suffer as more CI CPTs are
present in the generating structure, skewing continues
to be more accurate. When all bottom layer nodes
have CI function CPTs, normal SC is unable to dis-
cover any true arcs.

Additionally, we considered the effect of adding prior
knowledge to the structure learner in the form of label-
ing the nodes as belonging in the top or bottom layer,
and allowing arcs only from top layer to the bottom
layer. Since the algorithms are prevented from making
certain types of errors, we would expect this to improve
scores. Figure 3(b) shows that the Markov blanket F1
scores are indeed improved for both versions of SC, but
the performance of skewing now improves as more of
the nodes are CI functions, and the Markov blanket F1
(which is very close to the F1 of the returned struc-
ture due to the limitations on allowed arcs) reaches
0.975. In both graphs, skewed SC outperforms normal
SC even when there are no CI relationships present.

5 CONCLUSIONS

The commonly used SC algorithm employs greedy
heuristics to learn BN structure. While efficient, the
search is myopic and can be led astray if variables de-
scribing the data have CI relationships. We have pre-
sented an approach that integrates skewing with the
SC algorithm. Our experiments demonstrate that this

extension enables SC to learn accurate network struc-
tures from CI data, at a lower computational cost than
considering multiple parents for each variable during
the search. The skewing approach can outperform nor-
mal SC on different graph types and in cases where
there are no CI relationships.

In current work, we are using our approach to learn
regulatory networks from gene expression data sets.
As we noted in Section 2.1, examples of CI relation-
ships often appear in genetics. We expect that our ap-
proach will be useful in learning relationships between
genes in such cases. However, analyzing gene expres-
sion data is difficult for several reasons. First, the data
tends to be very sparse and high-dimensional, since
the expression levels of thousands of genes are mea-
sured for each experiment and there are typically few
experiments. High-dimensional sparse data tends to
be problematic for the skewing approach, because the
reweighting process tends to magnify idiosyncrasies of
the sample. Further, gene-expression data tends to be
noisy. In our experiments, we observed that our ap-
proach can handle only small amounts of noise. Mak-
ing our approach more robust is an important direc-
tion for future work. Finally, gene-expression data,
like many other real-world data sets, has variables that
are continuous-valued. We can only apply our current
approach to this data by discretizing it. Prior work
has investigated approaches that use the skewing tech-
nique with continuous and nominal variables. Inte-

;o
09
a8
07
0.6 4
0.5
04
]
0.z
01
a .
a 25 50 75 100
o)
0.9
08
07 1
06
0.5
0.4
03
0.z
01
a o d

=}

25 50 75 100
Percentage of CPTs with correlation immune functions

—4#— Normal 5C SkewedSC

Figure 3: Markov blanket F1 scores on synthetic QMR-
like data as function of percentage of CPTs with CI func-
tions. (a) Unconstrained learning. (b) Constrained to only
allow arcs from top layer to bottom layer.

grating such approaches into the BN structure learning
framework is an important direction for future work.

Acknowledgments

This research was supported by NSF 11S0534908. EL was
also supported by NLM 5T15LM007359. Thanks to Eric
Bach for his help with correlation immunity.

References

Camion, P., Carlet, C., Charpin, P., & Sendrier, N. (1992).
On correlation-immune functions. Proceedings of the
Eleventh Annual International Cryptology Conference
on Advances in Cryptology (pp. 86-100).

Chickering, D. M., Geiger, D., & Heckerman, D. (1994).
Learning Bayesian networks is NP-Hard (Technical Re-
port MSR-TR-94-17). Microsoft Research.

Cline, T. W. (1979). A male-specific lethal mutation in
Drosophila melanogaster that transforms sex. Develop-
mental Biology, 72, 266-275.

Cooper, G. F., & Herskovits, E. (1992). A Bayesian method
for the induction of probabilistic networks from data.
Machine Learning, 9, 309-347.

Dawson, E., & Wu, C.-K. (1997). Construction of correla-
tion immune Boolean functions. Proceedings of the First
International Conference on Information and Commu-
nication Security (pp. 170-180).

Elidan, G., Ninio, M., Friedman, N., & Schuurmans, D.
(2002). Data perturbation for escaping local maxima in

learning. Proceedings of the Eighteenth AAAI Confer-
ence on Artificial Intelligence (pp. 132-139).

Friedman, N., Nachman, I., & Pe’er, D. (1999). Learning
Bayesian network structure from massive datasets: The
“Sparse Candidate” algorithm. Proceedings of the Fif-
teenth International Conference on Uncertainty in Arti-
ficial Intelligence (pp. 206-215).

Heckerman, D., Geiger, D., & Chickering, D. M. (1995).
Learning Bayesian networks: The combination of knowl-
edge and statistical data. Machine Learning, 20, 197—
243.

Joyner, A. L., Liu, A., & Millet, S. (2000). Otx2, Gbx2 and
Fgf8 interact to position and maintain a mid-hindbrain
organizer. Current Opinion in Cell Biology, 12, 736-741.

Murthy, S. K., & Salzberg, S. (1995). Lookahead and
pathology in decision tree induction. Proceedings of the
Fourteenth International Joint Conference on Artificial
Intelligence (pp. 1025-1033).

Norton, S. (1989). Generating better decision trees. Pro-
ceedings of the Eleventh International Joint Conference
on Artificial Intelligence (pp. 800-805).

Page, D., & Ray, S. (2003). Skewing: An efficient alterna-
tive to lookahead for decision tree induction. Proceed-
ings of the Seventeenth International Joint Conference
on Artificial Intelligence (pp. 601-607).

Quinlan, J. R., & Cameron-Jones, R. M. (1995). Over-
searching and layered search in empirical learning. Pro-
ceedings of the Fourteenth International Joint Confer-
ence on Artificial Intelligence (pp. 1019-1024).

Rosell, B., Hellerstein, L., Ray, S., & Page, D. (2005).
Why skewing works: learning difficult Boolean functions
with greedy tree learners. Proceedings of the Twenty-
Second International Conference on Machine Learning
(pp. 728-735).

Schwarz, G. (1978). Estimating the dimension of a model.
Annals of Statistics, 6, 461-464.

Shwe, M. A., Middleton, B., Heckerman, D. E., Henrion,
M., Horvitz, E. J., & Lehmann, H. P. (1991). Probabilis-
tic diagnosis using a reformulation of the INTERNIST-
1/QMR knowledge base. Methods of Information in
Medicine, 30, 241-255.

