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ABSTRACT
This paper asks whether susceptibility to early-onset (diag-
nosis before age 40) of a particularly deadly form of cancer,
Multiple Myeloma, can be predicted from single-nucleotide
polymorphism (SNP) profiles with an accuracy greater than
chance. Specifically, given SNP profiles for 80 Multiple My-
eloma patients – of which we believe 40 to have high sus-
ceptibility and 40 to have lower susceptibility – we train a
support vector machine (SVM) to predict age at diagnosis.
We chose SVMs for this task because they are well suited
to deal with interactions among features and redundant fea-
tures. The accuracy of the trained SVM estimated by leave-
one-out cross-validation is 71%, significantly greater than
random guessing. This result is particularly encouraging
since only 3000 SNPs were used in profiling, whereas several
million SNPs are known.
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1. INTRODUCTION
A significant contribution to the genetic variation among

individuals is the cumulative effect of a number of discrete,
single-base changes in the human genome that are relatively
easy to detect. These single positions of variation in DNA
are called single nucleotide polymorphisms, or SNPs. While
it is presently infeasible to obtain the sequence of all the
DNA of a patient, it is feasible to quickly measure that pa-
tient’s SNP pattern – the particular DNA bases present at
a large number of these SNP positions [15].

Our case study employs support vector machines (SVMs)
to analyze this new and promising form of genetic data.
The authors present lessons for machine learning through-
out the paper. Some biological terminology is necessarily
used. Critical terms are defined for general machine learn-
ing (ML) readers; undefined terms are not critical to un-
derstand the ML lessons, but are used as needed to clarify
issues for computational biology readers.

One promise of SNP data is that this data may make
it possible to identify markers for genetic predisposition to
disease. In addition to providing patients with informa-
tion about their risk for disease, such markers may give re-
searchers insight into the genes involved in a disease process
and hence into proteins that may serve as targets for novel
pharmaceutical therapies. In order to find such markers,
the traditional approaches are to use linkage analysis and



association studies [17].
Linkage analysis requires obtaining data on families with

known pedigrees and disease histories. This requirement can
make accurate linkage analysis difficult since many family
members – including previous generations – are unavailable
for genetic testing. Also, since the results of linkage anal-
ysis studies often come from a small number of families,
they may not be generalizable to the rest of the population.
Association studies do not require known family pedigrees.
However, they do require a number of “candidate genes”
that are suspected to be important in the disease process of
interest. Thus, this method relies on the quality of the can-
didate genes, which are chosen based upon prior knowledge
about the disease.

Both of these traditional approaches have been very suc-
cessful when dealing with simple Mendelian or near-Mende-
lian disorders, but fail when attempting to identify disorders
controlled by quantitative trait loci (QTL) [17]. QTL are
genes, each of modest effect, whose combined effects cause
a particular complex, continuous trait [5]. To deal with the
complexities that QTL bring to this task, we will use an ML
algorithm that is well suited to tasks involving interactions
and redundant features.

First, we will divide the data points into two classes. Next,
we will use an ML or statistical modeling algorithm to con-
struct a classifier, or model, based upon all of the SNP
data that were collected. The accuracy of the model at pre-
dicting the class (e.g., susceptible vs. not susceptible) will
then be estimated using cross-validation. If the accuracy
of the model is significantly better than chance, one may
then study this model to gain insight into the disease. We
have chosen not to employ candidate genes, like in an as-
sociation study, because little is known about the genetics
of Myeloma and its epidemiology. The hypothesis is that
if there is an association between Myeloma and a particu-
lar gene, then a SNP in the haplotype block [4] containing
that gene will be discovered in the present study. Given
the general lack of knowledge about the etiology of this dis-
ease, we believe that using a candidate gene approach would
put unreasonable bias on the analysis and, in the end, may
fail and eventually cost more than doing a global search for
associations.

This same general methodology has been employed in nu-
merous cancer studies using microarray data [1, 6, 16, 18,
23]. A major advantage of using SNP data over microarray
data to study genetic predisposition is that, unlike microar-
ray data, a person’s SNP pattern is unlikely to change over
time. Loosely stated, the SNP pattern collected from a per-
son with a disease is likely to be the same pattern that would
have been collected from that person at birth or early in life.
Thus, we can use SNP data from patients at any stage of
their life and at any stage of their disease progression.

Single-nucleotide polymorphisms are extremely stable ov-
er evolutionary time [11]. Furthermore, relative to microsa-
tellite polymorphisms, which are susceptible to mutations
during the aging process [20], SNPs are much more sta-
ble and hence are unlikely to change over the lifetime of
an individual [3]. The DNA used to perform our study
is derived from peripheral blood mononuclear cells, which
should be a mixture of cells whose germline DNA has no
over-representation of any given clone containing any spe-
cific mutation. Thus, it is highly unlikely that the SNPs
discovered in this study to be associated with the age of

onset of Multiple Myeloma would be related to a SNP that
tends to be mutated as a person ages. As a result of these
arguments, SNP data has the potential to provide more in-
sight into genetic predisposition to Multiple Myeloma, as
well as many other diseases, than does microarray data.

A second major advantage of using SNP data is that the
data can be collected from any tissue in the body. With
microarray data, the mRNA samples for cancer patients
are taken from tumor tissue (e.g., from the colon), and the
mRNA samples for healthy donors are taken from healthy
tissue of the same type (e.g., colon again). SNP data, on
the other hand, is not taken directly from tumor samples,
but from any tissue in the body. The benefit of this is that,
in addition to being faster to obtain, SNP data is also easier
to obtain since less invasive procedures can be used. On the
other hand, when using SNP data, we do not expect to have
predictors of as high accuracy as we get with microarray
data. This is because microarray data is taken directly from
the tumor tissue. Since gene expression is greatly altered
in cancer, it is possible to obtain highly-accurate predic-
tive models for cancer vs. normal. While such models may
provide insight into the disease itself, they do not provide
information on genetic predisposition. When working with
SNP data, we expect to gain more information about a per-
son’s genetic predisposition to a disease than we would gain
from microarray data; however, we do not expect to have
predictors of as high accuracy as we get with microarray
data.

Despite these advantages, SNP data does present three
major challenges for our approach. The first challenge of
SNP data is that there are now well over 1.8 million SNPs
known [22], but measuring them all is typically cost-prohibi-
tive. Hence, in contrast to microarray data where measure-
ments are recorded for a substantial fraction of the known
genes, SNP data contains measurements for only a small
fraction of the known SNPs – typically a few thousand.
Therefore, it is quite possible that, for a given classifica-
tion task, the features that would allow for highly accurate
prediction will be missing. Second, missing values are more
common in SNP data than in microarray data. This must
be taken into consideration when choosing a learning algo-
rithm, since some methods are more capable of handling
missing data than others. Third, and perhaps most inter-
esting, SNP data is “unphased.” Figure 1 illustrates this
issue. The result of SNP data being unphased is that this
additional, and potentially highly informative, phase infor-
mation is not available for model building. Algorithms for
haplotyping, or determining this phasing information, ex-
ist, but their solutions are not guaranteed to be correct.
Also, these algorithms typically require additional data on
related individuals and a large number of individuals relative
to the number of SNPs [12]. Thus, one may approach this
phasing problem either by estimating the phase information
and accepting the consequences of incorrect estimates, or by
working with the data in its unphased form. Because of the
inaccuracies inherent in haplotyping and lack of additional
data, we have elected to work with the data in its unphased
form. We believe that this decision will not adversely affect
our modeling algorithm since our research uses a relatively
sparse coverage of the genome. Thus, adjacent SNPs are not
linked strongly enough for phasing information to be infor-
mative. In future studies with a denser SNP coverage, this
information would be potentially more useful.



Person 1:

Person 2:

Person 3:

T G C

CGT

C G T

CAC

T A T

CGC

Copy 1
Copy 2

Copy 1
Copy 2

Copy 1
Copy 2

(a) The true phased SNP patterns for
persons 1, 2 and 3.

SNP 1 SNP 2 SNP 3 Class
Person 1 C T A G C T Diseased
Person 2 C C A G C T Healthy
Person 3 T T G G C C Diseased

(b) The unphased SNP data for persons 1, 2 and 3.

Figure 1: In a SNP data file (b), each example, or
data point, corresponds to a single person. The fea-
tures, or variables, used to describe the person are
the SNPs. A SNP position on one copy of a chro-
mosome typically can take one of two values; for
example, SNP 1 can be either C or T. But be-
cause every person has two copies of chromosomes
1 through 22, most SNP features can take one of
three values. For example, the feature labeled SNP
1 can be either heterozygous CT as for Person 1,
homozygous CC as for Person 2, or homozygous TT
as for Person 3. If both SNP 2 and SNP 3 are on
the same chromosome, then they can be arranged ei-
ther as for Person 1 or for Person 2. Although these
2 arrangements are distinct, they lead to the same
SNP pattern. The process of determining which of
these two cases holds is called phasing or haplotyp-

ing. Data for which the haplotypes are not known
is said to be unphased.

Phasing, or haplotypes, are potentially informative be-
cause within a haplotype block there is very little, if any,
meiotic recombination. Thus, the linkage of SNPs within
a given haplotype block will remain unchanged over time.
Once the haplotype map is established, it will be feasible
to use a single SNP to define a haplotype block just as
well as if one used all the SNPs within that block. It is
estimated that there are approximately 600,000 haplotype
blocks (there are currently some 300,000 defined) represent-
ing the millions of SNPs in the human genome [21]. These
haplotype blocks may eventually be used to define the en-
tire human genotype. When this occurs, haplotypes (defined
by a single SNP) that are found to be linked to a disease
could be searched for candidate genes and mutations within

candidate genes. This will eliminate the guesswork that is
inherent in the current candidate-based approaches which
rely on an investigator’s best guess or hunch.

This paper discusses the application of SVMs to SNP
data in order to study genetic predisposition to Multiple
Myeloma. Multiple Myeloma is a cancer of antibody secret-
ing plasma cells that grow and expand in the bone mar-
row. Although Multiple Myeloma is hypoproliferative (the
cancer cells replicate at a relatively low rate), the disease
is incurable and usually progresses rapidly after diagnosis
– with bone demineralization, renal failure, anemia, and
secondary infections resulting from immunosuppression as
common causes of mortality [19].

Multiple Myeloma occurs with relatively high frequency
in adults over 70 (0.035% of the US population aged 70+)
compared with younger adults (0.002% of the US population
aged 30–54)1. We hypothesize that those who are diagnosed
with Multiple Myeloma at a young age (under 40) have a
genetic predisposition to the disease. If this is the case, then
it may be possible to see differences in SNP patterns between
Multiple Myeloma patients diagnosed before the age of 40
(predisposed) and those diagnosed after the age of 70 (not
predisposed), and we can use these differences to gain insight
into the disease. If this hypothesis is false, then it should not
be possible to predict “predisposed” vs. “not predisposed”
with accuracy significantly better than chance.

2. METHODOLOGY
Our data set2 consists of unphased SNP data for 80 pa-

tients, based on 3000 SNPs, taking the form shown in Fig-
ure 1(b). The class values are “predisposed” and “not pre-
disposed” as described at the end of Section 1. The 40 “pre-
disposed” patients were diagnosed with Multiple Myeloma
before age 40, while the 40 “not predisposed” patients were
diagnosed after age 70. High molecular weight DNA was
produced from peripheral blood lymphocytes from patients
with Multiple Myeloma using conventional methods. DNA
was subsequently sent to Orchid BiosciencesTM . SNP geno-
typing was performed using a proprietary SNP-ITTMprimer-
extension technology. SNP-IT primer extension is a method
of isolating the precise location of the site of a suspected SNP
and utilizing the inherent accuracy of DNA polymerase to
determine the allele type or the absence of that SNP. In
order to conduct SNP-IT primer extension, a DNA primer
(SNP-IT Primer) is hybridized to the sample DNA one base
position short of the suspected SNP site. DNA polymerase
is then added and it inserts the appropriate complementary
terminating base at the suspected SNP location. Detection
of the single base extension is accomplished by conventional
methods. The result is a direct read-out method of detecting
SNPs that creates a simple binary “bit” of genetic informa-
tion. The SNPcode system couples SNP-IT genotyping tech-
nology with the Affymetrix GenFlexTMplatform to create a
versatile, high-density SNP scoring system. In the assay,
multiplex PCR is followed by solution phase SNP-IT primer
extension. The SNP-IT products are then hybridized to the
GenFlex chip – the sorting mechanism for the multiplexed
reactions [14]. In the present study, 3000 SNPs were investi-
gated on 80 patients. The SNPs were not selected based on

1Source: http://seer.cancer.gov
2The new SNP data set is available online from the authors
at http://lambertlab.uams.edu/publicdata.htm.



prior knowledge of genetic disposition to Multiple Myeloma;
rather, the SNPs were selected to give good overall coverage
of the human genome. SNPs were chosen so that they would
be evenly spaced at approximately every 1 megabase across
the human genome. A denser coverage would be desirable
but was cost-prohibitive.

We employed the approach of linear SVMs as our cho-
sen modeling algorithm. We chose SVMs for this task be-
cause they are well suited to deal with interactions among
features and redundant features. In particular, we used the
algorithm SVMlight [9]3. Because SVMs assume that all fea-
tures are numerical, we needed to convert the discrete fea-
tures from Figure 1(b) into continuous features. We will now
present a brief review of SVM technology to help our readers
understand the motivation behind our particular method of
converting SNP features into numerical values.

In its simplest form, a support vector machine is an algo-
rithm that attempts to find a linear separator between the
data points of two classes, as Figure 2 illustrates. SVMs
seek to maximize the margin, or the separation between the
two classes, in order to improve the chance of making accu-
rate predictions on future data. Maximizing the margin can
be viewed as an optimization task solvable using linear or
quadratic programming techniques. Of course, in practice
there may be no good linear separator of the data. Support
vector machines based on kernel functions can efficiently
produce separators that are non-linear [2]. Nevertheless, the
output of a linear SVM is easier to understand and glean in-
sights from; effectively, features that get large coefficients in
the function of the linear separator are more important than
those that get small coefficients. In addition, linear SVMs
have given better results than other kernel-based SVMs in
several studies of microarray data, including our prior work
with Multiple Myeloma. Therefore, for the present work we
use linear SVMs. Experimenting with SNP data using other
kernel functions is a direction for future work.

Each SNP feature in our data set takes one of three pos-
sible non-numerical values – either heterozygous or one of
two homozygous settings (see Figure 1) – but SVMs require
numerical features. Therefore we convert the three possible
values for a SNP feature to the values -1, 0 and +1, where 0
represents heterozygous. We arbitrarily choose one homozy-
gous case to set to -1 and the other to set to +1. As we see in
Figure 3, when using this method with a linear SVM, it will
be impossible to model the case where heterozygosity for a
particular SNP is indicative of one class while homozygosity
is indicative of the other, since it is not possible to separate
0 from both -1 and 1 with a single line. For example, it
is not possible to say that either CC or TT is indicative of
“predisposed” while CT is indicative of “not predisposed.”
Nevertheless, it is possible to distinguish having no copies
of C from having at least one copy, or to distinguish having
two copies of C from having zero or one copies (Figure 3).

Discriminating based upon the presence or absence of a
single base appears to be more biologically relevant than
discriminating solely based upon the presence or absence of
homozygosity. In order for a heterozygous feature to not
predispose cancer, whereas either of the two homozygous
states do, the gene products of either allelic variant would
be deleterious in sufficient quantities, but in the case of het-
erozygosity, neither would be present in sufficient quantities

3Publicly available at http://svmlight.joachims.org.
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Figure 2: A support vector machine for differentiat-
ing between two classes by maximizing the margin,
W . This is done in the N-dimensional space de-
fined by N numerical-valued features. In this sim-
ple example, there are only two features, X and Y ,
so N = 2. Normally, however, N would be much
greater. In a higher-dimensional space, the linear
separator is a hyperplane rather than a line.

Divide from andTT CT CCDivide from andCC CT TT

0 +1−1
CC TTTC

Figure 3: Divisions between feature values that are
possible with the -1, 0, +1 encoding of SNP features.
Notice that it is not possible to divide both CC (-1)
and TT (+1) from CT (0) with a linear SVM.

to cause a negative effect. In this case, regardless of the
relative abundance of the two variants, a very large percent-
age of the population would be homozygous for one allelic
variant or the other. Thus this feature would not be very
informative and would not be incorporated into our model.
In order for a heterozygous feature to predispose cancer,
whereas either of the two homozygous states of that fea-
ture do not, the gene products of both alleles would need to
be present to cause a negative effect. If both allelic variants
were common in the general population, then heterozygosity
of this feature would be relatively common and would thus
not be very informative. If one allelic variant is relatively
rare, then a homozygote in this feature will be very rare
indeed. If such a rare person were to be found in our non-
predisposed group, they would not likely affect our model
significantly. Thus, it is very unlikely that the presence or
absence of homozygosity would play a significant role in de-
termining predisposition to a specific cancer. This supports
our decision to use the absence or presence of a particular



allele when building our model instead. This conclusion is
further evidenced by the fact that most known mechanisms
of inherited predisposition to cancers are dominant [10].

An alternative encoding that would permit all three possi-
ble distinctions between values would be to use two numeri-
cal features for each SNP. However, this leads to a doubling
of the number of features, and the performance of ML al-
gorithms tends to degrade as the number of features grows
relative to the number of examples. Another option, us-
ing SVMs based on kernel functions, can efficiently produce
separators that are non-linear [2]. Nevertheless, the output
of a linear SVM is easier to understand and glean insights
from; effectively, features that get large coefficients in the
function of the linear separator are more important than
those that get small coefficients. In addition, linear SVMs
have given better results than other kernel-based SVMs in
several studies of microarray data, including our prior work
with Multiple Myeloma. Our preliminary studies using ker-
nel functions to create a non-linear separator that can sepa-
rate between the absence and presence of homozygosity have
resulted in poorer performance than the simple linear sepa-
rator. Further experimentation with SNP data using kernel
functions is a direction for future work.

A major problem in ML applications is the “curse of di-
mensionality” – having many more features than examples.
SVMs are more robust than some other ML algorithms when
faced with high-dimensional data. Nevertheless, as with
other ML algorithms, SVMs typically benefit from feature
selection. Therefore, before training an SVM on our SNP
data, we eliminate 90% of the features. Specifically, we se-
lect the top 10% (300) of the features according to infor-
mation gain as described in the following paragraph. But
before discussing the details of this approach, an important
methodological point must be made. It is relatively com-
mon, though incorrect, to perform feature selection once
by looking at the entire data set, and then to run cross-
validation to estimate the accuracy of the learning algo-
rithm. The resulting accuracy estimate is typically higher
than will be achieved on new data, because the test data for
each fold of cross-validation played a role in the initial fea-
ture selection process; hence information has “leaked” from
the test cases into the training process. To avoid such an
over-optimistic accuracy estimate, we repeated the following
feature selection process on every fold of cross-validation,
using only the training data for that fold. We chose to use
cross-validation to assess the accuracy of our model since it
is robust to high-dimensional data.

For each SNP feature we compute the information gain of
the optimal split point, either between -1 and 0 or between
0 and 1. Information gain is defined as follows. The entropy
of a data set is −p log

2
p − (1 − p) log

2
(1 − p) where p is

the fraction of examples that belong to class “predisposed”
(either class could have been used). A split takes one data
set and divides it into two data sets: the set of examples for
which the SNP feature has a value below the split-point and
the set of data points for which the SNP feature has a value
above the split-point. The information gain of the split is the
entropy of the original data set minus the weighted sum of
entropies of the two data sets resulting from the split, where
these entropies are weighted by the fraction of data points in
each set. The SNP features are then ranked by information
gain, and the top-scoring 10% of the features are selected.
A natural variant to the preceding procedure would involve

making both splits, the split between -1 and 0 as well as
the split between 0 and +1, dividing the original data set
into three instead of two. The entropy and information gain
equations extend naturally to this case as well. We chose to
use binary splits to rank features because the linear SVM
that will use these features will effectively make binary splits
for each feature.

3. RESULTS AND DISCUSSION
We tested the approach described in the previous section

using leave-one-out cross-validation. The confusion matrix
is shown in Table 1. This yields an accuracy estimate of
71%, which is significantly better than random guessing.
While this accuracy is not nearly as high as the accuracies
we have grown accustomed to seeing for prediction of cancer
vs. normal from microarray data, it is nevertheless exciting
given that this prediction is based only on SNP data, which
does not change once the disease occurs, and given that we
had a relatively sparse covering of the genome with only
3000 SNPs.

Table 1: Confusion Matrix. This table shows how
the class values predicted by the SVM on the test
cases relate to the actual class values. This yields
an accuracy estimate of 71%.

Predicted

Not predisposed Predisposed

A
c
t
u
a
l Not predisposed 31 9

Predisposed 14 26

To assess the significance of this result, we performed a
permutation test. Permutation testing assesses the depen-
dency of a classifier to the specific data set that is was de-
signed for. This method is commonly used in situations
where data is limited to give an estimate on the error of a
classifier [8]. We performed the permutation test by ran-
domly permuting the labels – “predisposed” and “not pre-
disposed” – among the patients and running the entire cross-
validated learning process on this new dataset. This entire
procedure was repeated 10,000 times. The accuracy of these
10,000 classifiers very closely fits a normal distribution. The
results of this test can be seen in Figure 4 and illustrate that
our result of 71% is significant at the p < 0.05 level using a
two-tailed test of significance. A standard binomial test was
also performed and also established significance of the 71%
result at the p < 0.05 level (two-tailed).

Although SNPs are highly unlikely to change within a
single person as that person ages, it is true that certain SNPs
will be underrepresented in certain age populations. For
instance, a SNP that is associated with a gene responsible
for causing a massive heart attack at age 50 will be present in
a much higher proportion of 40-year-old patients than of 70-
year-old patients. This emphasizes the need for the model
that we build to be interpretable so that we can examine
the SNPs that the model uses for prediction and determine
their potential role in the disease mechanism.

In order to show that our learning algorithm is not bas-
ing its model on the age of the patients, we obtained SNP



 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

N
um

be
r 

of
 T

ria
ls

Cross−Validation Accuracy
 0%  25%  50%  100% 75%

 71%

Figure 4: Results of a permutation test to estimate
error of the classifier. We performed the permuta-
tion test by randomly permuting the labels – “pre-
disposed” and “not predisposed” – among the pa-
tients and running the entire cross-validated learn-
ing process on this new dataset. This entire pro-
cedure was repeated 10,000 times. The accuracy
of these 10,000 classifiers very closely fits a normal
distribution. The 71% classifier is significant at the
p < 0.05 level (two-tailed).

data on 28 unrelated persons without Myeloma from the
SNP consortium4. 14 persons were older than 70 years-of-
age and 14 were younger than 40 years-of-age at the time
of SNP analysis. For each person, 2911 SNPs were cho-
sen to provide broad genome coverage [13], just as the 3000
SNPs used with our “predisposed” and “not predisposed”
patients were. Using the exact same procedure as we used
for the “predisposed” and “not predisposed” data, we built
a model using SVMlight after feature selecting the top 10%
of features and using leave-one-out cross validation. The re-
sulting accuracy was 46% and the confusion matrix can be
seen in Table 2. Although the 2911 SNPs chosen were a dif-
ferent set of SNPs than the 3000 used with our patients, we
believe that this result does provide evidence that the 71%
accuracy we are obtaining with our model is unlikely to be
from merely predicting age well. Our future work will in-
clude obtaining SNP data on persons such as these 28 using
the same set of SNPs to further validate this conclusion.

Table 2: Confusion Matrix for Control Data. This
table shows how the class values predicted by the
SVM on the test cases relate to the actual class val-
ues. This yields an accuracy estimate of 46%.

Predicted

Over 70 Under 40

A
c
t
u
a
l Over 70 6 8

Under 40 7 7

From the data in Table 1, we can compute the true pos-
itive and false positive rates for our model. The true pos-
itive rate is calculated as the fraction of the “predisposed”

4http://snp.cshl.org

patients who are correctly classified as “predisposed.” The
false positive rate is calculated as the fraction of the “not
predisposed” patients who are incorrectly classified as “pre-
disposed.” Using this method, we see that our model has a
true positive rate of 65% and a false positive rate of 22.5%.
However, because Myeloma is relatively rare in the general
population, a false positive rate of 22.5% would result in
a large number of patients being misdiagnosed as “predis-
posed.” This is because our model was built with the näıve
assumption that both types of misclassification errors (clas-
sifying “predisposed” as “not predisposed” and classifying
“not predisposed” as “predisposed”) are equally bad. In or-
der to have the freedom to vary the relative misclassification
costs of these two types of errors, we have plotted a Receiver
Operator Characteristic (ROC) curve. An ROC curve is a
standard way of assessing the accuracy of a model at vary-
ing degrees of conservativeness. As we see in Figure 5, if
we choose a more conservative model that bounds our false
positive rate to 5%, we are still able to achieve a true posi-
tive rate of 42.5%. This is very encouraging considering the
limited data on which this model was based.
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Figure 5: The ROC curve shows that linear SVMs
(solid line) perform significantly better than random
guessing (dotted line). It also shows the accuracy if
we tune the SVM model to bound the false positive
rate (since Myeloma is relatively rare in the general
population). The point (5%, 42.5%) is noted with
an O. The point without tuning (22.5%, 65%) is
noted with an X. The true positive rate is calculated
as the fraction of the “predisposed” patients who
are correctly classified as “predisposed.” The false
positive rate is calculated as the fraction of the “not
predisposed” patients who are incorrectly classified
as “predisposed.”

From these results we conclude that SNP data does indeed
provide predictive ability for cancer susceptibility. That is
the primary conclusion of this paper. The next question is
whether the resulting SVM model can provide any insight
into the disease. Ideally the SVM model would be based
on only one or a few SNPs; that is to say, all but a few
SNPs would have coefficients of zero in the equation for the
separating hyperplane. Unfortunately, the model gives over
150 SNPs with non-zero coefficients. The maximum cross-
validation accuracy that can be obtained for this data-set
using a single SNP alone (using this SNP as a single vot-
ing attribute instead of using an SVM) is 61%, which is
obtained using SNP 739514; a SNP on chromosome 4 at a



location of 150,853,009 bp from the telomere of the p arm.
If we instead use the top 3 SNPs (as determined by infor-
mation gain) in unweighted majority-voting, we can achieve
72.5% accuracy (using SNPs 739514, 521522, 994532). In-
vestigation of the full list of 150 SNPs is under way, but
at this point we cannot claim that the model has provided
useful insight into the disease. Although SVMs can accu-
rately model the relative significance of features and their
interactions, compared to some other algorithms such as de-
cision trees and näıve Bayesian networks, their models are
not easily interpretable.

After finishing analysis of the linear SVM results, we re-
ran our experiments using a few other standard ML al-
gorithms. None of the algorithms that we tried – poly-
nomial SVMs, decision trees (with and without boosting)
and näıve Bayesian networks – performed significantly bet-
ter than chance. Thus, we see that our choice of linear
SVMs was a good one for this dataset and that the choice of
algorithm can be very important when modeling biological
datasets.

The only difference between linear and polynomial SVMs
in this model is that polynomial SVMs are able to sepa-
rate between the absence and presence of homozygosity (see
Figure 3) which, as we discussed in Section 2, is not biologi-
cally relevant. Thus, it is likely that polynomial SVMs were
led astray by irrelevant correlations whereas linear SVMs
were not able to be similarly led astray. Like polynomial
SVMs, näıve Bayesian networks and decision trees are not
well suited to this dataset. Because it appears likely that
susceptibility to Myeloma is controlled by QTL and is not
a simple Mendelian or near-Mendelian disorder, the feature
independence assumption of näıve Bayes is strongly violated
in our dataset. Decision trees are not robust with high-
dimensional data and may have been led astray like polyno-
mial SVMs since they too can separate absence and presence
of homozygosity.

4. ONGOING AND FUTURE RESEARCH
Ongoing and future work is focused in three directions.

First, we are cross-tabulating the SNP results with gene ex-
pression microarray results for Multiple Myeloma [7]. We
are interested in whether any SNPs appear in or near genes
that are differentially expressed in Myeloma vs. normal mR-
NA samples. We have found 11 SNPs that appear within
1Mbp of one of the top 1% informative (by information gain)
genes for predicting Myeloma vs. normal from mRNA. We
are also interested in whether any SNPs appear in or near
genes that are differentially expressed in Myeloma vs. MGUS
(a benign form of Myeloma) mRNA samples. We have found
7 SNPs that appear within 1Mbp of one of the top 1% infor-
mative (by information gain) genes for predicting Myeloma
vs. MGUS from mRNA. We use a tolerance of ±1Mbp
for two reasons. First, we see this breadth of deviation
in SNP locations when using different information sources,
e.g. NCBI and GeneCards. Second, research into haplotype
blocks has revealed that large regions of DNA see very little
recombination and tend to remain conserved, while recom-
bination is largely isolated to certain “hot spots.” Hence a
SNP allele could be informative of a gene allele even if the
SNP does not occur within the gene but only near it.

The second direction for ongoing and future work is to
further tune the linear SVM algorithm as well as experi-
menting with other types of SVMs, such as Gaussian kernel

SVMs (also available with SVMlight, for example), and with
other types of modeling algorithms from ML and statistics.
The goal of this work is to find a model for predicting pre-
disposition for Myeloma that uses a smaller set of features
for classification. This will allow us to gain a better insight
into those regions that are important for conferring suscep-
tibility.

Our final direction for future work is to repeat these exper-
iments on a larger pool of participants, and using a denser
coverage of SNPs, in order to further validate all of the find-
ings of this study. We plan to do this in the next year or
two when a sufficient number of the “predisposed” popula-
tion (relatively rare) are referred to our center. In addition,
we will look at the allele frequencies of the highly predictive
SNPs in another similarly aged matched cohort.
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