
Lattice-Search Runtime Distributions May Be
Heavy-Tailed

Filip Železný1, Ashwin Srinivasan2, David Page3

1 Dept. of Cybernetics
Faculty of Electrical Engineering

Czech Technical University
Karlovo Nám. 13, 121 35 Prague, Czech Republic

zelezny@fel.cvut.cz
2 Oxford University Computing Laboratory

Wolfson Building, Parks Road
Oxford OX1 3QD, UK

ashwin@comlab.ox.ac.uk
3 Dept. of Biostatistics and Medical Informatics and Dept. of Computer Science

University of Wisconsin
1300 University Ave., Rm 5795 Medical Sciences

Madison, WI 53706, USA
page@biostat.wisc.edu

Abstract. Recent empirical studies show that runtime distributions of
backtrack procedures for solving hard combinatorial problems often have
intriguing properties. Unlike standard distributions (such as the nor-
mal), such distributions decay slower than exponentially and have “heavy
tails”. Procedures characterized by heavy-tailed runtime distributions
exhibit large variability in efficiency, but a very straightforward method
called rapid randomized restarts has been designed to essentially improve
their average performance. We show on two experimental domains that
heavy-tailed phenomena can be observed in ILP, namely in the search for
a clause in the subsumption lattice. We also reformulate the technique
of randomized rapid restarts to make it applicable in ILP and show that
it can reduce the average search-time.

1 Introduction

In the recent paper [4], Gomes et al. observe that procedures for solving
propositional satisfiability problems exhibit a remarkable runtime vari-
ability. The runtimes vary greatly depending on the choice of a particular
heuristic, a given problem instance, or - for stochastic methods - on the
choice of different random seeds (initial truth assignments), or on an-
other source of randomness. Often a satisfiability procedure “hangs” on
a given problem instance, while a different stochastic run solves the same
instance quickly. Even for a deterministic procedure and a given problem

instance, small amount of randomization (e.g. in the employed heuristic)
yields again largely varying search-costs, some of which are substantially
lower than that of the deterministic algorithm.

In their empirical study it is shown that distributions of the runtimes
of many search algorithms decay slower than exponentially and asymp-
totically have heavy-tails. Unlike standard probability distributions, such
as the normal distribution, where events that are several standard devi-
ations from the mean are very rare, in heavy-tailed distributions there
is a non-negligible probability that an event with an extremely high cost
occurs. For example, in one of the studied problems, 80% of the runs solve
the problem in 1,000 backtracks or less, however 5% of the runs do not
result in a solution even after 1,000,000 backtracks. Gomes et al. believe
that the heavy-tailedness is a property of many exhaustive backtrack al-
gorithms for solving hard combinatorial problems, and offer a technique
called randomized rapid restarts that exploits this property in order to
reduce the average search-time. The technique was used to find solutions
of previously unsolved instances of hard combinatorial problems.

Although many search problems give rise to a heavy-tailed distri-
bution, others do not [5]. Our aim is to find out whether heavy-tailed
runtime distributions occur in ILP. Namely, we empirically study the
runtimes of the search for a first-order clause with defined desired prop-
erties, in the lattice imposed by the subsumption relation. Furthermore
we reformulate the randomized rapid restarts algorithm to be applica-
ble on the ILP search problem and on two important ILP benchmarks we
evaluate whether it reduces the search-cost with respect to a deterministic
exhaustive search.

The following section defines formally the notion of a heavy-tailed
distribution and describes the method of randomized rapid restarts. Since
the method requires randomization of the exhaustive search, Section 3
describes our way of randomization of the lattice search, based on the
selection of a random starting clause (seed). The core of the study is
Section 4 which will test empirically the hypothesis that heavy-tailed
runtime distributions describe the clause lattice-search using benchmark
ILP problems. In the same section, we shall also apply the technique of
randomized rapid restarts on the same domains, and investigate whether
it improves search efficiency. We summarize our observations in Section
6.

2 Heavy-tailed Distributions and Randomized Rapid
Restarts

The cumulative probability distribution Pr(X < x) of a random variable
X is a non-decreasing real function on the real interval −∞ < x < ∞ and
will be denoted F (x), i.e. Pr(X > x) = 1 − F (x). Standard probability
distributions have exponentially decreasing tails, e.g. for the standard
normal distribution Fn it holds that

(1− Fn(x)) ∼ 1
x
√

2π
exp

−x2

2
(1)

where g(x) ∼ h(x) denotes limx→∞ g(x)/h(x) = 1.
Recently, in the area of algorithms for hard combinatorial problems [4]

but also other areas such as statistical physics, economics etc., different
phenomena have been shown to obey heavy-tailed distributions which
often lead to non-intuitive behaviour. For this class of distribution it
holds that

(1− F (x)) ∼ Cx−α, x > 0 (2)

where 0 < α < 2 and C > 0 are constants. It is remarkable [4] that such
distributions have finite mean but no finite variance if 1 < α < 2. If α ≤ 1,
the distribution has even neither a finite mean nor a finite variance.

To determine whether a distribution estimated by a series of mea-
surement has a heavy-tailed nature, i.e. it does not decay exponentially,
we plot the measured distribution values in a diagram with both axis
logarithmically scaled, because an exponentially decreasing distribution
should show a faster-than-linear decay in the log-log scale. For example,
substituting x with exp(x) in the normal distribution decay (see Eq. 1)
and taking log yields

log{1− Fn(exp[x])} ∼ −
(

x +
exp(2x)

2

)
(3)

while the same operation on the heavy-tailed distribution decay (see Eq.
2) yields −αx, i.e. a heavy-tailed distribution should exhibit an approxi-
mately linear decay on the log-log scale as x approaches infinity.

Let us now consider an exhaustive-search algorithm randomized in
such a way, that it starts the search at a randomly chosen point of the
search space (seed). Depending on the particular type of a search problem
and algorithm, the distribution of times required to reach a solution from

0,001

0,01

0,1

1

1,00 2,72 7,40 20,11 54,66 148,58

x (log scale)

1-
F

(x
)

(l
o

g
 s

ca
le

)

Heavy tail Normal decay

Fig. 1. Example of normal and heavy-tailed distributions on a log-log scale. The normal
distribution decays faster than linearly while the heavy-tailed distribution decay shows
an approximately linear decay.

such seeds may or may not be heavy-tailed.1 If a heavy tail is observed, the
runtime variance and mean may be infinite and there is a non-negligible
probability that a chosen seed will start an extremely costly search, al-
though many other seeds may produce a quick path to the solution. A
direct way to reduce the variance and mean in such a case is to run
the exhaustive search up to a certain cutoff point and then restart at
a different seed if a solution is not found. Clearly, this approach called
randomized rapid restarts avoids the algorithm from getting trapped in a
very costly path and exploits the high chance of obtaining an essentially
shorter path in the next trial. It is shown in [4] that the randomized
rapid restarts technique is superior to deterministic exhaustive searches
in many propositional domains.

1 Gomes et al [5] discover the heavy-tailedness of different search problems purely
empirically and report that further studies are needed to determine exactly what
characteristics of combinatorial search problem lead to heavy-tailed behaviour. In
this ILP-focused study we also take an empirical approach.

3 Randomizing the Lattice Search

We consider the normal ILP problem [10], namely we assume the sets
of positive (negative) examples E+ (E−) and background knowledge B.
We also assume that a search lattice of legal clauses has been defined
by the generality (subsumption) relation, a clause mode language L, and
bounded by the most specific element ⊥ (the bottom clause). This is a
usual assumption of ILP systems based on the concept of inverse entail-
ment [9], such as Aleph [6] and Progol [9].

The standard approach of conducting the lattice search is to start with
the most general (most specific, ⊥) clause and then proceed in a top-down
(bottom-up) manner. However, starting the search with a different clause
from the interior of the lattice may lead to a shorter runtime needed to
reach the desired clause. Our plan is to investigate the distribution of such
runtimes when the starting clauses are selected randomly from the lattice.
If this distribution proves to be heavy-tailed, we will be able to utilize the
technique of randomized rapid restarts to avoid the extreme-cost paths
and improve the average performance.

The randomized search algorithm proceeds as follows. Some number
of times (maxtries), the algorithm will carry out a short search (bounded
by maxtime, Section 4). Each search begins by stochastic selection of
a starting clause. The search is a deterministic best-first search, with
heuristic function h = pos(C) − neg(C). Here pos(C) is the number of
positive examples deducible from C ∧ B2, and neg(C) is analogous for
negative examples. From a given clause C, the neighbors of C in the
search space are defined by a nontraditional refinement operator ρ. It
differs from usual refinement operators employed in the top-down search
of the mentioned systems in that it produces the set REFS = ρ(C) of all
neighbours of C in the lattice, i.e. also including clauses that subsume C.
Therefore this kind of search can be seen as radial, rather than top-down
or bottom-up (visualized in Fig. 2). With this refinement operator, all
nodes in the lattice can be reached from any starting node.

We shall now address the problem of choosing the seed, i.e. the initial
stochastic clause selection. The principal difficulty of its implementation
lies in devising a procedure for uniform random sampling of clauses from
the search space. Here, we describe a procedure (from [14]) that does not
require prior generation of all elements of the search space. Recall that
these are definite clauses obtained from subsets of literals drawn from a
2 In the case when C is constructed as an extension of an existing partial theory H

in a greedy cover search, we assume that H has been added to B.

Fig. 2. A schematic visualization of the radial lattice search (left) compared to a top-
down search (right). Nodes are explored starting at the encircled point and then fol-
lowing the dashed line. This view is simplified in that the employed heuristic function
h(C) is assumed to be constant for all C and descendants of explored nodes are inserted
in the end of the open list, which in the top-down case corresponds to a breadth-first
search.

most specific (definite) clause ⊥. Additional provisos are that each subset
is of cardinality at most c + 1 (where c is a user-specified maximum
number of negative literals) and is in the language L. Let C denote all
such clauses. Further, let the number of clauses in C with exactly l literals
be nl and N denote the subset of natural numbers {1, . . . , |C|}. Define
a function h : C → N such that h(C) =

∑|C|−1
i=1 ni + j where |C| is

the number of literals in C and 1 ≤ j ≤ n|C|. That is, h provides a
sequential enumeration of clauses by length. While many functions fit
this requirement (depending on the enumeration adopted), it is easy to
show that any such h is both 1−1 and onto. It follows that h is invertible
– that is, given a number in N , it is possible to find a unique clause in
C provided the ni (and c) are known. In principle, it is therefore possible
to achieve the selection required by randomly choosing a number n in
N and returning C = h−1(n). Such an inverse function works as follows.
Given a number n > 0: (a) find the largest number l = 0 . . . c such that
j = n − ∑l

i=0 ni > 0; (b) generate a sequence of clauses in L of length
l+1. C is the jth clause in this sequence. If n is randomly generated, then
the clause generation process does not have to be so, and can be made
more efficient by various devices. Some examples are: (a) take C to be

estimate(⊥,L, l, s) : Given a most specific clause ⊥ and a clause length l > 1, returns
an estimate of the number of definite clauses of length l in L such that each clause
is a subset of ⊥. The estimate is obtained from a sample of size s.
1. Sample s clauses of length l from ⊥. Each such clause consists of the positive

(“head”) literal in ⊥ and a random selection, without replacement, of l − 1
literals from the negative (“body”) literals in ⊥.

2. Determine the proportion pl of the s clauses that are in L.
3. return pl × (|⊥| − 1)× . . .× (|⊥| − l + 1)

Fig. 3. A procedure for estimating the number of “legal” clauses of length l > 1. The
estimate obtained in Step 3 above is unbiased [18]. The value of the sample size s needs
to be decided. An option is to be guided by statistical estimation theory. This states
that if values of pl are not too close to 0 or 1, then we can be at least 100× (1− α)%
confident that the error will be less than a specified amount e when s = z2

α/2/(4e2)
[18]. Here z represents the standard normal variable as usual.

the first clause of that length (and in L) that has not been drawn before;
(b) a once-off generation of the appropriate number of clauses in L at
each length (“appropriate” here means that the proportion of clauses of
length i in the sample is ni/|N |); and (c) using a dependency graph over
literals in ⊥ to ensure that the random clause construction always results
in clauses within the language L.

In practice, without prior generation of the set C, the ni are not known
for i > 1 and we adopt the procedure in Fig. 33 for estimating them.

Having constructed a method for stochastic selection of the starting
clause and its subsequent deterministic refinement, we are in a position
to implement the technique of randomized rapid restarts. An implemen-
tation for the clause lattice search is described in Fig. 4. The underlying
principle that makes the technique applicable to the clause search is that,
unlike in usual ILP approaches, we do not search through a specified
number of nodes, returning the best clause found, but rather we stop
the search once a clause is found meeting a pre-specified condition of
‘goodness’ as follows.

pos(C) > 1 (4)

pos(C)
pos(C) + neg(C)

> Acc (5)

where pos(C) (neg(C)) is the number of positives (negative) examples
3 This method is implemented in the ILP system Aleph [6] and can serve as well for

other methods of randomized local search, such as GSAT or WSAT

rrr(Lat, Acc, B, E+, E−, maxtime, maxtries) : Given background knowledge B, pos-
itive and negative examples E+, E−, return a clause from the given subsumption
lattice Lat, that satisfies the conditions in Eqs. 4 and 5 for the given constant Acc.

1. tries := 1
2. Select a random starting clause C0 using the procedure described in Section 3.
3. searchtime := 0, start timing.
4. Starting at C0, perform an exhaustive radial search described in Section 3, until

searchtime > maxtime or a clause C satisfying Eqs. 4, 5 is found.
5. If C was found, STOP, return C.
6. If tries < maxtries, tries := tries + 1, Go to 2. Otherwise return “failure”.

Fig. 4. An implementation of randomized rapid restarts for the clause lattice search.
The maximum time for one exhaustive search is limited by the constant maxtime. The
maximum number of repeated searches is maxtries.

covered by C. The first condition avoids the trivial solution C = e, e ∈ E+

and the second condition is parameterized by a constant Acc.
We set the maximum number of allowed restarts maxtries, which

should theoretically be infinite, to a finite number (maxtries = 10)
because we cannot guarantee exclude that a clause satisfying the pre-
specified condition exists in the lattice. In the case of reaching the limit
maxtries (“failure” in Fig. 4), the positive example used to construct the
current bottom clause ⊥ is returned as the resulting clause. The setting
of maxtime will be discussed in connection with the experimental setting
in Section 4.

Finally, to cover all of the positive examples in the training sets of
the experiments, we use the greedy covering approach as usual in ILP
systems, i.e. the procedure in Fig. 4 is run repeatedly with a bottom
clause constructed using one selected positive, until all positives are cov-
ered, each time adding the newly constructed clause to the background
knowledge and deleting the covered positives from the training set.

4 Experiments

4.1 The Aim

We shall investigate (a) if the heavy-tailed phenomenon manifests itself
when searching the subsumption lattice; and (b) if utilizing RRR will
help improve search efficiency for problems exhibiting the heavy-tailed
phenomenon.

4.2 Materials

Our experimental material consists of two sets of pre-classified data,
namely the data on the mutagenic and carcinogenic properties of some
chemicals. These data are publicly available (anonymous ftp to ftp.comlab
.ox.ac.uk in the directories pub/Packages/ILP/Datasets/mutagenesis
/aleph and pub/Packages/ILP/Datasets/carcinogenesis/aleph).
We refer the reader to [16, 17] for detailed descriptions of background
knowledge available for the mutagenesis task. The background informa-
tion is encoded in approximately 13,000 facts. The background knowledge
for the carcinogenesis problem is conceptually of a similar nature. The en-
coding requires approximately 24,500 facts – see [15] for more details.

All of our subsequent experiments use an Athlon 1500MHz CPU –
based computer with 512KB of RAM and the ILP program Aleph (Version
3). Aleph is available at: http://www.comlab.ox.ac.uk/oucl/research/
areas/machlearn/Aleph/aleph.pl.

The language L will be limited to clauses of maximum number of 4
negative literals and maximum variable depth [9] 2.

4.3 Methods and Results

We shall observe the stochastic behaviour of the randomized search-
algorithm described in the previous section, namely the distribution of
search-times required to find a clause C which satisfies the conditions in
Eqs. 4,5, where we set Acc = 0.7.

Figure 5 shows the cumulative distribution F (x) of runtimes for the
mutagenesis task, Figure 6 an analogous distribution for the carcinogene-
sis task. Both of the distributions are collected from about 35,000 searches
starting in random seeds. In the mutagenesis task, for example, almost
20% of runs arrive at a solution in less then 0.1s, however almost 30% of
runs do not find a solution in 20s.

Figures 7 and 8 clearly show that both of the experimentally measured
distributions exhibit a heavy-tail (c.f. Section 2). According to the study
[4], our findings justify the application of the method of randomized rapid
restarts. To use the algorithm described in Section 3, we need to set the
cutoff value maxtime. There is no analytic way of determining the optimal
value maxtimeopt of the cutoff value, but it is reported [4] to lie below
the median point of the runtime distribution F (x), i.e. maxtimeopt << 1s
for both our experimental domains. As it may be infeasible in the general
case to construct the runtime distributions F (x) for a given problem prior
to the learning process, we shall disregard the information provided by

0

0,2

0,4

0,6

0,8

1

0 1 2 3 4 5

time [s]

F
(x

)

Fig. 5. The cumulative distribution F (x) of runtimes of the randomized algorithm
searching for a ‘good’ clause in the mutagenesis problem.

�

��
�
�

��
�

�

��
	

��
�

��
�

�

��
�

�

��
�

�

��
�

�

� � � � � � � � � � � �

� � ! "$# %

& '
()

Fig. 6. The cumulative distribution F (x) of runtimes of the randomized algorithm
searching for a ‘good’ clause in the carcinogenesis problem.

0,01

0,1

1
0,00 0,00 0,02 0,14 0,79 4,63

time [s] (log scale)

1-
F

(x
)

(l
o

g
 s

ca
le

)

Fig. 7. A log-log plot of the distribution decay 1 − F (x) concerning the same data as
in Figure 5.

0,1

1

0,01 0,02 0,09 0,32 1,20 4,46 16,57

Time [s] (log scale)

1-
F

(x
)

(l
o

g
 s

ca
le

)

Fig. 8. A log-log plot of the distribution decay 1 − F (x) concerning the same data as
in Figure 6.

the already generated distributions, and we choose a small ad hoc value
maxtime = 1s for both of the domains in the comparative experiments.

Table 1 summarizes the predictive accuracies and learning times of the
randomized rapid restarts technique vs. the standard exhaustive breadth-
first top-down search algorithm. The former method was tested with the
Acc parameter set to the values 0.7 and 0.9. Similarly, the latter method
was tested with two values 0.7 and 0.9 of the minimum accuracy require-
ment on a clause to be accepted for the constructed theory.

The results suggest that by using randomized rapid restarts we achieved
a drastic reduction of the search times for the price of only a small loss
in predictive accuracy.

Algorithm MUT CANC
A (%) T (s) A (%) T (s)

DTD 0.7 88.76 1589 57.91 24092
(5.99) (461) (9.75) (11915)

DTD 0.9 88.23 1541 56.22 22101
(5.63) (459) (8.98) (9811)

RRR 0.7 87.71 9 54.84 74
(7.62) (4) (8.97) (10)

RRR 0.9 86.31 24 57.57 126
(8.67) (10) (6.39) (71)

Table 1. Estimated predictive accuracies (A) and theory construction times (T). The
entries are from a 10-fold cross-validation design with time entries rounded up to
the nearest second. The numbers in parentheses are estimates of standard deviation.
These are obtained by a simple binomial formula that ignores the dependencies across
cross-validation runs. Exact calculation of standard deviations for results from cross-
validation designs is confounded by these dependencies but the approximation used here
has been found to be adequate (see [1], pg 307). The algorithms result from two search
techniques employed by Aleph, namely: deterministic top-down (DTD) (with minimum
clause accuracy setting 0.7 and 0.9, respectively) and randomized rapid restarts (with
clause threshold 0.7 and 0.9, respectively). MUT refers to the mutagenesis problem,
CANC to carcinogenesis. The search space is limited by the maximum clause-length of
5 literals and maximum variable depth 2.

5 Related Work

Besides the direct inspiration by the findings due to Gomes et al., this
work is also related to the research of the phase transition effect. Phase
transition has been observed in algorithms for solving difficult computa-

tional problems, namely NP-complete ones such as the constraint satis-
faction problem (CSP) [13]. A constraint tightness parameter p ∈< 0; 1 >
can be calculated for any CSP instance. According to empirical studies
[13], the expected time to solve a CSP is small for values of p close to
0 (phase of ‘many solutions available’) or 1 (phase of ‘inspecting a small
search tree’) and grows dramatically for p close to a critical value pcr

(transition between the two phases). In the surrounding of pcr, the costs
of solving CSP instances not only show a high mean, but also a large
variability. Frost el al. [2] approximate the cost distributions of instances
with p close to pcr with various closed-form distributions. They point
out (independently of Gomes el al.) the long tails of these distributions
and report that “problems that are not solved early are likely to take
a long time”. The fundamental bridge between such findings and ILP is
the fact that the first-order subsumption problem can be mapped onto a
CSP [7]. Botta et al. then show [8] that a typical ILP program (FOIL)
tends to “induce hypotheses generating matching problems located inside
the phase transition region”; Giordana and Saitta report a similar obser-
vation [3] in real-world domains, including mutagenesis. Combining the
referred results, the heavy-tailed effect had been expectable before our
study, which can thus be seen as an empirical verification of this implicit
expectation. Unlike the previous studies where statistics were measured
for a collection of the proving (subsumption check) problem instances, we
measured distributions on a collection of complete hypothesis-searching
cycles, each containing a number of subsumption tests.

The way statistical observations are exploited towards efficiency im-
provements also distinguishes our approach from the mentioned related
work. Sebag and Rouveirol [11] apply a stochastic algorithm in order to
accelerate the subsumption-test and Giordana and Saitta [3] develop an
on-line complexity estimator which can potentially be used for the same
purpose. Our approach, on the other hand, allows to adopt the RRR tech-
nique to reduce the complexity of the hypothesis search in its entirety.

As far as the randomized technique of traversing through the sub-
sumption lattice is concerned, to our best knowledge, there is only indi-
rectly related work to our study. Serra et al [12] show that starting the
search for a hypothesis from random seed formulas, instead than top-
down, can be beneficial. Randomized search in an ILP system has been
assessed in [14].4

4 We are also aware of the talk of Stephen Muggleton at the Machine Intelligence
workshop in 2001 about randomization techniques in Progol but as we gather, there
is no written account on that talk.

6 Conclusions

Our study has shown that the phenomenon of heavy-tailed runtime dis-
tributions occurs in two important experimental domains of ILP and we
believe that it is typical to many other domains. Testing this hypothesis
is a part of our future work.

This observation lead to the utilization of the technique of random-
ized rapid restarts which we reformulated for sakes of ILP. To apply this
method, the exhaustive lattice search was randomized in such a way that
we selected randomly the clause where the search was started. Random-
ized rapid restarts may then be used to reduce the average time required
to find a clause with desired properties. A natural question is whether
reducing the average runtime of the search procedure randomized in this
way may lead to outperforming the deterministic top-down or bottom-up
search. But clearly, if we do not impose a prior probability distribution
on clauses (or e.g. on clause-lengths), there is no reason to expect that a
search starting from the most general (most specific) element will be sys-
tematically faster than the average search starting in a random element
of the lattice.

Using the technique of randomized rapid restarts, we were able to
significantly reduce the search times in large hypothesis spaces of both of
the tested domains.

7 Acknowledgements

We thank the ILP’02 referees for pointing us to some very relevant ar-
ticles. Also, the ILP’02 audience contributed much to the paper by mo-
tivating us to relate our study to the phase transition research. Filip
Zelezny greatly acknowledges the support from the EU project INCO
977102 ILPnet2 and the Czech Technical University grant CTU 0209013.
David Page was supported by the U.S. National Science Foundation grant
9987841 and a U.S. DARPA EELD grant.

References

1. L. Breiman, J. Friedman, R. Olshen, and C. Stone. Classification and Regression
Trees. Wadsworth, Belmont, 1984.

2. Daniel Frost, Irina Rish, and Lluis Vila. Summarizing CSP hardness with contin-
uous probability distributions. In AAAI/IAAI, pages 327–333, 1997.

3. A. Giordana and L. Saitta. Phase transitions in relational learning. Machine
Learning, 2000.

4. C. P. Gomes, B. Selman, N. Crato, and H. A. Kautz. Heavy-tailed phenomena in
satisfiability and constraint satisfaction problems. Journal of Automated Reason-
ing, 24(1/2):67–100, 2000.

5. C. P. Gomes, B. Selman, and H. A. Kautz. Boosting combinatorial search through
randomization. In AAAI/IAAI, pages 431–437, 1998.

6. http://web.comlab.ox.ac.uk/oucl/research/areas/machlearn/Aleph/aleph.html.
7. J. Maloberti and M. Sebag. Theta-subsumption in a constraint satisfaction per-

spective. volume 2157 of Lecture Notes in Artificial Intelligence, pages 164–178.
Springer-Verlag, September 2001.

8. M.Botta, A.Giordana, L.Saitta, and M.Sebag. Relational learning: hard problems
and phase transitions. In 6th Congress of the Italian Association for Artificial
Intelligence. Springer-Verlag, 1999.

9. S. Muggleton. Inverse entailment and Progol. New Generation Computing, Special
issue on Inductive Logic Programming, 13(3-4):245–286, 1995.

10. S. Muggleton and L. De Raedt. Inductive logic programming: Theory and methods.
Journal of Logic Programming, 19/20:629–679, 1994.

11. Michele Sebag and Celine Rouveirol. Resource-bounded relational reason-
ing: Induction and deduction through stochastic matching. Machine Learning,
38(1/2):41–62, January 2000.

12. A. Serra, A. Giordana, and L. Saitta. Learning on the phase transition edge. In
Proceedings of the 17th International Joint Conference on Artificial Intelligence,
pages 921–926. Morgan Kaufmann, 2001.

13. Barbara M. Smith and Martin E. Dyer. Locating the phase transition in binary
constraint satisfaction problems. Artificial Intelligence, 81(1-2):155–181, 1996.

14. A. Srinivasan. A study of two probabilistic methods for searching large spaces with
ILP. Technical Report PRG-TR-16-00, Oxford University Computing Laboratory,
Oxford, 2000.

15. A. Srinivasan and R. King. Carcinogenesis predictions using ilp. In S. Džeroski
and N. Lavrač, editors, Proceedings of the 7th International Workshop on Inductive
Logic Programming, volume 1297 of Lecture Notes in Artificial Intelligence, pages
3–16. Springer-Verlag, 1997.

16. A. Srinivasan and R.D. King. Feature construction with Inductive Logic Program-
ming: a study of quantitative predictions of biological activity aided by structural
attributes. Data Mining and Knowledge Discovery, 3(1):37–57, 1999.

17. A. Srinivasan, S. Muggleton, M.J.E. Sternberg, and R.D. King. Theories for muta-
genicity: A study in first-order and feature-based induction. Artificial Intelligence,
85(1,2), 1996.

18. R. Walpole and R. Myers. Probability and Statistics for Engineers and Scientists.
Collier Macmillan, New York, 1978.

