
TAPDance: Architecting Trigger-Action Platforms for Security, Performance and
Functionality

Deepak Sirone Jegan
University of Wisconsin-Madison

dsirone@cs.wisc.edu

Michael Swift
University of Wisconsin-Madison

swift@cs.wisc.edu

Earlence Fernandes
University of California San Diego

efernandes@ucsd.edu

Abstract—A Trigger-action platform (TAP) is a type of
distributed system that allows end-users to create programs
that stitch their web-based services together to achieve useful
automation. For example, a program can be triggered when a
new spreadsheet row is added, it can compute on that data and
invoke an action, such as sending a message on Slack. Current
TAP architectures require users to place complete trust in their
secure operation. Experience has shown that unconditional trust
in cloud services is unwarranted — an attacker who compromises
the TAP cloud service will gain access to sensitive data and
devices for millions of users. In this work, we re-architect TAPs
so that users have to place minimal trust in the cloud. Specifically,
we design and implement TAPDance, a TAP that guarantees
confidentiality and integrity of program execution in the presence
of an untrustworthy TAP service. We utilize RISC-V Keystone
enclaves to enable these security guarantees while minimizing the
trusted software and hardware base. Performance results indicate
that TAPDance outperforms a baseline TAP implementation using
Node.js with 32% lower latency and 33% higher throughput on
average.

I. INTRODUCTION

Trigger-action platforms (TAPs) enable end-users to auto-
mate interactions between a wide variety of third-party online
services and devices [50]. For example, an end-user can create
an applet that is triggered when a new row is added to a
Google spreadsheet; the applet performs some transformation
on that row data and then sends an action to another service,
such as posting a notification on Slack. Popular TAPs include
IFTTT [10], Zapier [65], and Microsoft Power Automate [51].

As TAPs are large-scale systems with millions of
users [50], they become centralized hubs with privileged access
to user data and devices (e.g., the popular IFTTT platform
boasts 20 million users [44]). Their current design requires
users to place full trust in their secure operation. Specifically,
users must trust that (i) the TAPs only access the minimum
necessary data for running applets, (ii) the TAPs faithfully
execute applets without modification, and (iii) the TAPs keep
the access tokens secure from misuse and breaches.

All of this trust is unwarranted, and as we will show,
unnecessary as well. TAPs are essentially cloud services, and
thus, they are vulnerable to all security and privacy issues
that plague cloud services [4], [6], [18], [19]. For example,
an attacker could exploit a bug in the web stack to steal
OAuth tokens and then use them to access sensitive data or an
attacker could compromise parts of the cloud service to violate
integrity of applet execution. Beyond external attackers, TAPs
themselves can access sensitive data and make it available to
unrelated parties [42]. Consequently, some third-party services
(e.g., GMail) have become reluctant to interface with TAPs
citing privacy concerns [43]. At the same time, users are

becoming wary of the insufficient safeguarding of their data by
TAPs [36]. In an ideal world, a TAP would only execute user-
created applets while ensuring that attackers cannot manipulate
them or steal their data.

A growing line of work in TAP security is exploring
alternative designs for trigger-action platforms with the goal of
achieving approximations of this ideal world [19], [23], [28],
[32]–[34], [38], [55]. These works explore different points in
the design space and have various trade-offs among security,
performance and functionality under a threat model that the
TAP itself is untrusted. They provide some subset of the
following security guarantees: (1) applet execution integrity
— an applet executes without tampering; (2) applet data con-
fidentiality or minimization — sensitive user data is either not
accessible to attackers or only accessible in “least privilege”
form; (3) trigger freshness and replay protection — triggers
cannot be delayed without detection and the products of applet
execution cannot be replayed multiple times to the action
service. These works use the threat model of an untrustworthy
TAP because it is a convenient proxy for a variety of real
threats such as leakage of access tokens, vulnerabilities in the
web stack, malicious insiders with privileged access, etc.

We contribute to this line of work by designing, imple-
menting and evaluating TAPDance, an alternative TAP archi-
tecture under the same threat model as prior work (i.e., the
TAP is untrusted and cannot guarantee the security properties
above). TAPDance achieves a better trade-off between security,
performance and functionality compared to prior work (Sec-
tion IX contains a comparative analysis). Specifically, our work
achieves better performance and functionality than eTAP [33]
and Walnut [55] while offering similar security (under dif-
ferent assumptions), and stronger security than minTAP [32],
DTAP [38] and oTAP [34]. We achieve these desirable points
in the design space because of tailored use of trusted execution
environments (TEEs).

The straightforward use of trusted execution environments
would place the entire TAP runtime into an enclave. This
requires running a TypeScript interpreter and any support
libraries, leading to a large trusted software and hardware
computing base. For example, the enclave would have a com-
plex interaction with the untrusted operating system outside,
increasing the probability of various attacks. This situation is
no different from the status quo — any bug or vulnerability
that was present in current TAP systems is simply transported
to the enclave environment. An attacker who exploits these
issues will gain access to the enclave, leading to the same
security problems we have with current TAPs.

Therefore, a key challenge and consequently, primary
contribution of our work is determining how to re-architect



TAPs so that a minimal amount of software runs inside the
attested enclave with a small set of trusted hardware primitives
supporting that isolated execution environment. Our insight
is that we can model applets as pure computations. That is,
an applet is a pure function that receives trigger data (e.g.,
spreadsheet row), transforms that data to compute an action
(e.g., a message for Slack). Thus, the ideal design is to run this
pure computation inside an attested enclave while keeping the
rest of the untrusted TAP infrastructure outside, and therefore,
isolated from the user’s sensitive data and computation. In this
model, the user only trusts their applet code and a hardware
root-of-trust embedded in the datacenter processor. This core
insight leads to a system design that offers a better trade-off
between security, performance and functionality compared to
prior work on TAP security.

TAPDance achieves this ideal design by addressing several
challenges. First, we want TAPDance to support real user
applets written in the TypeScript interpreted language. This
provides better functionality (i.e., the types of support applets)
than systems like eTAP [33] or Walnut [55]. At minimum,
it would require running the TypeScript interpreter inside the
enclave, leading to a large trusted software computing base.
Instead, we run machine code corresponding to applets inside
enclaves. We create a compiler for a restrictive subset of the
TypeScript language that we design based on our decision to
model applets as pure functions. As we show in Section VII-A,
this design yields a smaller TCB relative to the straightforward
approach of running a TypeScript runtime inside an enclave.
We also show that this approach is sufficient to express and
execute a large fraction of real-world applets (643/682 applets
in our evaluation).

The second challenge is that there are a variety of trusted
execution technologies with different security and functionality
trade-offs [21], [39], [46], [48]. Theoretically, TAPDance could
run on any of these technologies. In keeping with our design
principle of minimizing trust, we desire the simplest possible
trusted execution environment that meets our needs. We syn-
thesize a set of TAP-specific security requirements and map
them to various trusted execution technologies (Section IV-B).
We find that RISC-V enclaves (e.g., Keystone [48]) best fit
our needs because they support a simple hardware mechanism
for isolating contiguous and small chunks of private memory
suitable for running small compiled applets (i.e., physical
memory base/bounds protection registers). RISC-V enclaves
also offer customizability — a property that is important in
addressing the next challenge.

The final challenge is to ensure freshness on applet execu-
tion. Freshness of data is not a standard primitive offered by
TEEs. An applet should only execute once in response to fresh
triggering data. The straightforward solution is to implement
nonces inside applets. As explained later, this is problematic
because it would require the trigger service to become aware
of applets and it would also require applets to wait while new
trigger data is being fetched. TAPDance avoids these issues
by offering a centralized nonce management service as part
of the enclave environment. The customizability of Keystone
RISC-V enclaves allows us to integrate this into the security
monitor.

Contributions.

• We re-architect trigger-action platforms to balance
security of user programs, performance at scale and
functionality. Specifically, we co-design the applet
abstraction and trusted execution environments to sup-
port applet data confidentiality, integrity and execution
freshness while supporting real user code with a lower
performance penalty compared to existing approaches.
A core insight is to model user programs as pure com-
putations. This opens up a design space that allows for
tailored and efficient use of enclave technology.

• We implement and evaluate TAPDance, a trigger-
action platform that enforces the above security prop-
erties using RISC-V enclaves. TAPDance has a 5.2x
reduction in the software TCB needed for running
applets. Based on running real user programs, TAP-
Dance outperforms a baseline Node.js TAP system
(which does not run inside an enclave, mimicking
current TAP architectures) with a 32% lower latency
and 33% higher throughput on average. We see a per-
formance improvement because TAPDance enclaves
run machine code of programs instead of interpreted
TypeScript. We also show that our pure computation
abstraction of user applets is expressive enough to
run a majority of real code (643/682 applets from the
minTAP dataset).

Designing least-privileged computer systems requires a
tailored approach that leverages the properties of the appli-
cation domain. We show how trusted execution environments
can be tailored to enforce least-privilege on trigger-action
platforms in the sense that the platform may only execute
user-created programs without doing anything else, such as
reading confidential data and sending it to third-parties or
modifying user programs to perform actions beyond what the
user intended.

II. BACKGROUND

Trigger-Action Platforms (TAPs). A TAP is a cloud service
that connects different web services and enables end-users
to build useful automation through a simple trigger-compute-
action paradigm. The web services range from digital resources
like Dropbox, Gmail, Google Calendar and Slack to physical
resources like IoT devices (e.g., door locks, lights). Web
services expose triggers that notify the TAP about an event
(e.g., “calendar event about to start” or “door unlocked”) and
also expose actions that allow the TAP to issue operations (e.g.,
“send a message” or “turn on the light”). For each trigger and
action, the services host APIs to handle the communication
with the TAP.

Trigger APIs supply trigger data objects to the TAP
that contain various properties, such as Title, Starts,
Ends, and Description in the context of our example
rule in Figure 1. A user creates an applet, a small TypeScript
program that receives trigger data, transforms it and creates an
action object. The TAP uses the action object to invoke an ac-
tion API. Applets can depend on multiple trigger data sources
and can issue multiple actions. Without loss of generality, we
focus on the case of a single trigger and action in the rest of
the paper and point out how our approach extends to multiple
triggers/actions in Section VIII.

2



For interoperability with third-party services, popular TAPs
like IFTTT and Zapier specify a compatibility or shim layer
that the participating services must implement to host TAP-
specific APIs and translate the service’s original authorization
and data APIs into a format that the TAP understands [45],
[66]. We utilize this shim layer in our work and modify its
behavior to support our security guarantees.

In summary, TAPs are large-scale distributed systems.
They support running applets for millions of users interacting
with hundreds of trigger/action services. Their current design
requires users to place complete trust in the correct and
secure operation. Experience with large-scale cloud services
has taught us that this trust is unwarranted because of the lack
of proper privacy controls in companies and the presence of
exploitable bugs in complex software codebases [3], [14], [40].

RISC-V Enclaves with Keystone. At a high level, enclaves
provide an attested and isolated execution environment that
guarantees confidentiality of data and integrity of code in the
presence of malicious supervisor-mode software. Intel SGX or
AMD SeV offer fixed enclave designs incorporating memory
encryption. We use RISC-V enclaves in our work, along with
Keystone, which is a framework that uses RISC-V memory
protection primitives to build customizable enclaves [48].
Section IV-B provides further rationale choosing RISC-V.

Keystone manages enclaves using a small trusted machine-
mode software called the Security Monitor (SM). The SM
manipulates the RISC-V physical memory protection registers
defining the base and bounds of isolated memory regions for
enclaves. Each enclave has a code-identity, defined as a hash
of its code signed by the processor’s private key and the hash
of the SM, also signed in the same way. The SM provides in-
enclave services, such as the ability for an enclave to request
a measurement of its code-identity. Enclaves can store data
using keys bound to its code identity. Remote users can verify
attestations of enclave code-identity to gain confidence that the
code running remotely has not been tampered with.

Customizability in software aids our design goal of mini-
mizing the trusted hardware base. We extend the SM’s behavior
to provide additional enclave services necessary for TAPDance
security guarantees. We refer the reader to the Keystone paper
for additional details on its operation [48].

III. DESIGN CONSIDERATIONS

Our goal is to ensure confidentiality and integrity of TAP
applets against a malicious cloud infrastructure while minimiz-
ing the TCB in software and hardware. We discuss the threat
model, security and functionality goals and outline design
challenges, including an analysis of alternative approaches.

if (GoogleCalendar.eventFromSearchStarts.Title
.indexOf('IFTTT') === -1) {
Slack.postToChannel.skip()

} else {
Slack.postToChannel.setMessage('Now: ' +

GoogleCalendar.eventFromSearchStarts.Title)↪→

}

Figure 1: Example applet.

A. Threat Model

The TAP is a single entity that is entrusted with the
privileged OAuth tokens for millions of users, making it a
ripe target for online attackers. Real-world attacks continue to
demonstrate that OAuth tokens can be stolen [15], [17] Each
applet represents a strict, controlled and authorized use of the
user’s OAuth tokens. Violating the integrity and confidentiality
of the applet execution is equivalent to the TAP getting
arbitrary control over the trigger data and action services of
all users. Additionally, prior TAP work has shown that OAuth
tokens are over-privileged [32], [38], amplifying the risks.
A recent line of work studies the security of trigger-action
platforms under the assumption that it is untrustworthy [32],
[33], [38]. We adopt the same threat model because it is
a convenient proxy for real threats such as application-level
security vulnerabilities in the web stack or cloud software
stack on which a TAP runs. This work is concerned with
remote attackers only: we assume that the attacker does not
have physical access to the machines in the datacenter running
the TAP software, ruling out physical attacks on the hardware.
An attacker: (1) can attempt to arbitrarily manipulate applet
binaries; (2) has control over the operating system running
the TAP software; (3) knows API details of trigger and action
services; (4) has access to OAuth tokens for trigger and action
services of the user; (5) can modify, replay or drop messages
between parties.

We also assume that a malicious user can create an account
on the TAP service and submit arbitrary applet binaries with
the goal of compromising the TAP and accessing other user
data and code. An honest user would not intentionally attempt
to leak their own data, but a user-created trigger-action pro-
gram could be buggy. There is mutual distrust between the
applets of different users and the TAP.

A user interacts with the trigger-action platform using
an app on their client device (e.g., smartphone or laptop).
Following prior work, we assume this client device is trusted
and forms a root-of-trust for users of TAPDance [32], [33],
[38].

We assume the trigger and action services are trusted
(i.e., the services on which users have accounts like Google
Calendar, Slack, GMail, Samsung, etc). They follow specified
protocols and do not collude to weaken a user’s security.
Finally, we assume that the processor package running TAP-
Dance is secure and fully trusted.

B. Security Goals

Our primary goal is to ensure the confidentiality and
integrity of applet execution. Concretely, we aim to provide
the following: (1) Trigger data and action data (resulting from
applet execution) should never be revealed to the untrustworthy
TAP or to another malicious user of the system; (2) Applets
should execute without tampering from malicious parties; (3)
Applet execution should only occur in response to a fresh
triggering event.

In addition, the untrusted TAP should not be able to abuse
the OAuth tokens for the trigger and action services even with
access to them.

3



Non-goals. Denial of service, network traffic analysis and
network side channels are out of scope for this work. For
example, an attacker could infer the semantic purpose of an
applet just by inspecting the triggers and actions involved.

C. Functionality Goals

While ensuring the above security goals, we want TAP-
Dance to be practical, and thus, we aim to provide the
following functionality properties: (1) Support existing trigger-
action applets written in TypeScript; (2) Maintain the current
process of programming and deploying applets; (3) Trusted
client device that help users create and deploy applets should
not be required during applet execution; (4) Modifications to
trigger and action services should be minimal and kept local to
the TAP-compatibility layers, thus facilitating easier adoption.
We setup these goals to retain the characteristics of trigger-
action platforms that have made them popular among users
and trigger/action services.

D. Alternative Approaches

Computation at the Edge. The trigger or action service could
directly run the applet. This reduces the TAP’s role to be
a simple connector of services. However, this requires the
trigger or action service to support an execution infrastructure
similar to AWS lambda, significantly increasing the complexity
of REST servers and exposing them to security issues from
running untrusted third-party applets. Our goal is to retain the
original role of the TAP – a cloud service that can run applets
at large scale without changing the semantics of the endpoint
REST services.

Cryptographic Approaches. A recent line of work uses cryp-
tography to protect sensitive user data as it passes through the
TAP. For example, OTAP encrypts data end-to-end but does not
support applets [34]. eTAP also does end-to-end encryption,
but can support applet computation using garbled circuits [33].
However, systems like eTAP incur high overhead, particularly
on the user’s client device because it has to generate a new
garbled circuit for every trigger event.

IV. TAPDANCE DESIGN

Our goal is to minimize the trusted software and hardware
computing base while executing real trigger-action applets
with confidentiality and integrity. We achieve this goal by
using trusted execution environments because they offer the
best trade-off in terms of performance and security compared
to the alternative approaches outlined above. In this section,
we discuss the design challenges in achieving this goal and
then introduce TAPDance’s design that achieves the security
guarantees outlined in the prior section while overcoming the
challenges.

“Big Enclave” Approach. To illustrate the system design
challenges, we outline a simple “big enclave” approach and
point out why its not a good design. In this approach, we
run the entire trigger-action platform inside an enclave. This
requires the enclave to support: (1) TypeScript interpreter
because users write applets in that language, (2) System call
support for that interpreter, (3) TLS and TCP/IP stack to
communicate with trigger/action services, (4) UI stack that
runs from an enclave so that users can safely login to their

trigger/action services to provide OAuth tokens to the TAP, (5)
Paging and memory encryption support (to enable swapping)
because the enclave is large. Every applet execution will
require creating an enclave with all of the above components
(except the UI stack that is only required when a user provides
access tokens to the system or creates a new applet).

The “big enclave” approach illustrates our main challenge
— the trusted computing base in software and hardware is
large, and any bugs in this large stack increase the probability
that an attacker can compromise the enclave. The enclave also
needs extensive untrusted OS support to service system calls,
exposing it to Iago attacks [31]. Theoretically, one could limit
this specific attack surface, but it would require expanding
the enclave trusted code base even more to include a library
operating system [25]. As stated, a core design goal is to
minimize the trusted computing base while supporting real
applets.

However, the “big enclave” approach also highlights a
key security benefit of using TEEs — enclave isolation,
and therefore applet isolation, is hardware-assisted. We note
that isolation has three interpretations: (1) isolation between
enclaves (2) fault isolation of an untrusted enclave from the
OS and (3) inverse sandboxing protecting the enclave from
an untrusted OS. Our design choice of using a TEE enforces
all three interpretations of isolation using hardware assistance
and a small privileged security monitor. This is a stronger
security property than current TAPs that rely on JavaScript
language-based isolation that has a history of bugs [19] and
only provides a weak version of the first two interpretations
of isolation above.

Finally, a major challenge of the TAP environment is that
applets are short - much shorter than serverless functions, for
example - and run infrequently. This requires an incredibly
light-weight runtime environment. Standard use of TEEs with
a full OS environment [11], [25], [30], [53], [57] to support
unmodified POSIX applications would be an order of mag-
nitude larger (several millions of lines of code), preventing
storing them in memory, requiring much longer measurements
(hashing of enclave pages) during startup and a larger interface
with the host OS.

A. Challenges and Solutions

Supporting Real Applets. To execute real-world applets, we
need a way to support TypeScript inside the enclave. However,
as explained in the “big enclave” approach above, running a
full interpreter is not a good idea because it leads to a large
and complex hardware/software TCB. Instead, we observe that
applets are small snippets of code that run on trigger data to
produce action data and they do not need all of the power that
comes with a TypeScript interpreter. Motivated by this, our
insight is that we can model applets as pure computations that
need few supporting libraries and language features to execute.
As we show in Section VII, this model supports the majority
of real world applets from the widely-used IFTTT platform.

To reduce the amount of runtime code inside an enclave,
we choose to compile applet code rather than running a full
interpreter. Thus, the applet executes as a binary with its
minimal support libraries inside the enclave.

4



TAPDance Requirement Hypervisor + TPM SGX AMD SeV-SNP/Intel TDX TrustZone Keystone

Small Contiguous Isolated Memory
Segments without Paging

No No No No Yes

Only Remote Attack Threat Model Yes No No Yes Yes

Small SW TCB No Yes No No (OP-TEE), Yes (Komodo) Yes

Small HW TCB Yes No No Yes Yes

Secure Hardware Time Source Yes No No Yes Yes

Secure Randomness in Hardware Yes Yes Yes Yes Yes

Monitor Support for Freshness Yes No No Yes Yes

Table I: Applet security requirements compared against various TEE-like systems. Keystone TEE based on RISC-V best fits our
design requirements.

Combined with our insight of modeling applets as pure
functions, we derive that TAPDance enclaves need small
contiguous memory segments isolated from supervisor code
— a single segment can contain applet code, a small stack
and heap. Specifically, we do not need privileged code and
hardware support for paging and memory encryption. Because
applets are small and run to completion as pure functions,
allocation is simpler: we can allocate segments of contiguous
memory without suffering from fragmentation, and do not need
to page memory to storage, which requires encryption and
page-based allocation in the untrusted OS.

Compiling TypeScript to machine code is a complex un-
dertaking, made difficult by the lack of type information and
the presence of in-built features like the eval() function [29].
However, when applets are pure functions they only require
a small subset of TypeScript that does not allow I/O, eval(),
monkey patching or other complex TypeScript features.1 Ad-
ditionally, the trigger and action data types representing inputs
and outputs in applets are fully known at compile time,
making type inference simple. Table II captures the subset of
TypeScript that we support in detail.

We admit this compiler into the TCB, but it is not a runtime
component that the attacker can manipulate. In fact, a mali-
cious applet writer can directly upload hand-coded machine
instructions, but the fault isolation of the TEE will protect the
rest of the system and other applets as well. The compiler could
also generate vulnerable applet code, however, fault isolation
protects the system and other applets. An attacker could send
malformed trigger data in an attempt to compromise an applet,
but, we assume that the trigger service is trustworthy and not
under the attacker’s control (see the threat model). Protecting
trigger services is an orthogonal problem.

Programming Applets, Verifying Attestations and Trust
Model. The user cannot trust the TAP to create applets,
because the entire TAP software is untrusted. Our solution
borrows a trust-reduction idea from prior work [32], [33],
[38]. Specifically, each user trusts their client device (e.g.,
smartphone, browser) and it manages credentials for the user’s
accounts on trigger and action services. We assume this client
device’s hardware and operating system is secure. Users create
and compile their applets on this trusted device, encrypt the

1Popular TAPs like IFTTT place similar restrictions on applets as well that
prevent them from using TypeScript features such as I/O, monkey patching or
the eval() function.

applet and support data and then transfer it to the TAP, where
the applet may only be decrypted inside an attested enclave.
This reduces trust — each user trusts only their device (and
the datacenter processor manufacturer) unlike today where
users have to trust everything. While this solves the primary
challenge, it introduces another — the user’s client is not
online and available every time an applet needs to run. Thus,
what entity will verify the attestation on an enclave in which an
applet is about to run? Our solution relies on a long-running
“manager” enclave that helps the user establish trust in the
applet enclave transitively.

Freshness Guarantees. One of our security goals is to ensure
that applets only execute on fresh trigger data and actions
run in response to fresh applet execution (i.e., replays are
prevented). Freshness of data is not a standard primitive offered
by TEEs. Secure time and a secure source of randomness are
necessary components. A key challenge is that a single trigger
may be consumed by multiple applets. If applets manage
nonces on their own, they each require their own nonce that
the trigger service must echo. In addition, if applets generate
nonces they must start execution before contacting the trigger
service and remain resident in memory during the commu-
nication delay. Our solution is to provide centralized nonce
management in the security monitor that allows the untrusted
operating system to request a fresh nonce and multiple applets
to securely use the same nonce.

Limiting OAuth Token Misuse. To minimize the enclave
TCB, we have to run the OAuth negotiation and token usage
steps outside the enclave while ensuring that the untrusted TAP
may only use those tokens in ways that are consistent with
the user’s applet. Our solution is to encrypt any trigger/action
data using keys only known to the enclave code and service
endpoints. Therefore, if the attacker tries to query the trigger,
they will get an encrypted response that can only be decrypted
inside a valid attested enclave. They could use the action
service OAuth token to initiate an API call, but the action
service will only accept a valid encryption that can only result
from execution of an attested applet.

B. TAPDance Components

The core design principle in TAPDance is to run the pure
computation of an applet inside an attested enclave while
keeping everything else outside. The trigger and action services
only send/receive end-to-end encrypted data using keys only
known to them and to the applet enclave. Only a valid attested

5



Figure 2: The TAPDance Architecture: Based on Keystone
enclaves using RISC-V primitives.

applet enclave will get access to keys that will allow it to
decrypt trigger data, compute on it, and produce a validly
encrypted packet that the action service will accept. Fig. 2
shows a high-level design. We build TAPDance on top of the
Keystone enclave that uses RISC-V primitives [48].

The choice to use RISC-V enclaves. In principle, any TEE
can create an attested and isolated execution environment for
applets. However, from a security perspective, we want to
select a TEE that best fits our design needs while minimizing
the software and hardware TCB. The prior section derived
a set of applet security requirements that we summarize in
Table I. The table also lists the extent to which a particular
TEE technology meets an applet security requirement. Based
on this analysis, we conclude that the Keystone TEE best fits
our needs. In what follows, we will explain how we arrived at
this best fit.

As stated, one of TAPDance’s core insights is to model ap-
plets as pure computations that need minimal support libraries.
Therefore, the TEE should provide the ability to create small
contiguous memory regions that are isolated from privileged
software. The RISC-V instruction set architecture supports
physical memory protection (PMP) registers that provide ex-
actly this service. Keystone is a TEE system built on top of
the PMP mechanism and provides a simple security monitor
that manages isolated memory regions. By contrast, other
TEEs can also create small isolated regions, however, they
depend on paging and optionally, page encryption. This brings
additional complexity in software and hardware, leading to the
potential for security vulnerabilities. Additionally, depending
on the implementation, paging of enclave memory can lead
to controlled-channel attacks [64], a problem that does not
affect TAPDance because it uses PMP registers and does
not need untrusted OS-managed paging. From a threat model
perspective, TEEs like Intel SGX assume a physical attacker
who inspects DRAM or the memory bus. This necessitates a
page encryption scheme that cannot be turned off. By contrast,
Keystone accomodates different threat models, including a
remote-only attacker setting.

Additionally, Keystone offers customizability of the secu-
rity monitor that runs in a special machine-mode privilege
level. This allows us to include nonce management and offer
it as a service to the enclave environment. Other TEEs may
offer similar customizability, but that comes at the cost of
complexity in software and hardware, as discussed above.
Thus, we conclude that the Keystone TEE represents the best
trade-off among all design requirements.

Trusted Client. In current TAP design, the user performs
OAuth token negotiation and applet programming directly on
the TAP. However, this is incompatible with our threat model
where the TAP is untrusted. Therefore, we borrow from prior
work in TAP security and use a trusted client device that serves
as the user’s root of trust — they only trust their device to
interact with the TAP [32], [33], [38]. This device will help
users: (1) negotiate OAuth tokens for the trigger/action services
and provision them on the untrusted TAP cloud service; (2)
create, compile and transmit applet binaries to the TAP; (3)
establish secret keys with the trigger/action endpoint services
and with the TAPDanceManager enclave.

Security Monitor. This is the standard Keystone Security
Monitor that creates enclaves using the PMP registers on a
RISC-V chip. TAPDance extends the monitor to offer four
additional services to enclaves. First, it provides a secure time
source and guarantees that the applet executes without preemp-
tion after fetching time. Second, it provides a secure source
of randomness so applets can generate fresh nonces. Third, it
implements a nonce management service. The untrusted OS
can invoke the SM to generate a new nonce value, and applets
can invoke the SM to verify that a nonce is fresh. Once an
applet has verified a specific nonce, the SM will report the
nonce is stale if it is presented again. Other applets, though, can
still verify the nonce. This ensures at most once semantics for
processing trigger data in an applet. Finally, the SM terminates
applets that have run for too long.

TAPDanceManager Enclave. This is a long-running enclave
whose code-identity is baked into the trusted client. It solves
the challenge of verifying the attestation on an applet enclave
while the user’s trusted device is not online/available. The
user’s trusted client sets up an attested TLS connection to
the TAPDanceManager to transmit the encrypted applet’s
key material. We use attested TLS to simultaneously ver-
ify the attestation on the TAPDanceManager enclave and
setup a TLS connection. The user trusts that this enclave
will correctly verify the attestation on the applet enclave
when the time comes to run user-created code. The code of
TAPDanceManager is assumed to be publicly available with
reproducible builds that match the code-identity in the user’s
trusted client. The TAPDanceManager also securely stores
key material that it needs to decrypt a user’s applet code, using
a key-value store backed using a sealing key tied to its code
identity. Section V will discuss the protocol steps involving
TAPDanceManager in more detail.

Untrusted TAP OS. This component manages OAuth tokens,
receives encrypted triggering data for user applets, launches
applet enclaves, pauses/destroys them, sends out encrypted
action data and provides a networking stack. Our core se-
curity guarantees are designed to tolerate interference by
this untrusted OS. Although the untrusted OS can use the
OAuth tokens to issue API calls on the trigger/action services,

6



the services either send encrypted data or will only act on
encrypted data. Thus, the OS cannot misuse OAuth tokens.
It can also attempt to replay trigger data to violate the
applet execution freshness guarantee. In TAPDance, we let
the untrusted OS/TAP fetch the encrypted trigger data once
(via TLS) and place it in an untrusted buffer corresponding
to all the applet enclaves that require the particular event’s
data before triggering the applets. Although replay from the
trigger service is not a concern, previously fetched data by
the untrusted OS/TAP can be replayed to each of the applet
enclaves. TLS alone does not protect against replay by the
untrusted OS/TAP when delivering data to the applet enclave
in our design. Section V discusses how TAPDance protects
against this using a series of timestamps and nonces with help
from the security monitor.

Applet Enclave. User-created computations run as binary
code inside applet enclaves. The untrusted OS allocates a
new applet enclave and transfers control to its decryption
stub. This stub will report the enclave’s code identity to
the TAPDanceManager enclave, who verifies the attestation
and, if successful, supplies decryption keys over a secure
connection back to the applet enclave. At that point, the applet
enclave decrypts the user-specific code and executes. This
process solves the attestation challenge and does not require
the user’s trusted client to be online or available.

Decrypted applets run pure computations supported by a
tailored runtime that we provide. This minimal runtime offers
services like JSON parsing, math functions, date and time
parsing without requiring system call support. We also include
a minimal TLS library so that applets can exchange data
with the TAPDanceManager enclave over an attested TLS
connection. When the applet completes execution, it gives the
encrypted and integrity protected action data to the untrusted
TAP for delivery to the action service.

Time-keeping. TAPDance runs an attested time-keeping en-
clave that uses NTP for clock synchronization. The security
monitor is in charge of interacting with the time-keeping
enclave and updating the processor’s time registers. The trigger
and action services use NTP as well, leading to a system where
all clocks are loosely synchronized.

Trigger/Action Shims. Commercial trigger-action systems
like IFTTT require endpoint services to implement shims to
make themselves TAP-compatible. TAPDance requires trigger
and action services to add minimal additional functionality to
these shims to support the security guarantees. Specifically,
the trigger shim will encrypt data using a user- and service-
specific key before responding to a data request from the TAP.
It will also manage a set of nonces in an event queue to ensure
freshness of applet execution (Section V-C3 has more details).
The action service uses its user- and service-specific key to
decrypt data it receives from the untrusted TAP.

TypeScript-to-RISC-V Compiler. In TAPDance, the applets
are pure functions that may only be written in a restricted
subset of TypeScript. In addition to the restrictions placed by
popular TAPs such as IFTTT [16], we document our additional
restrictions in Table II. Our compiler supports a TypeScript
variant similar to AssemblyScript [8], a restricted version of
JavaScript that supports static compilation to WebAssembly.
Inspired by this, TAPDance requires that all variables are

Category Restrictions

Types Only primitive types, arrays, TAP-relevant trig-
ger/action objects
No unions, anonymous functions

Functionality No monkey patching, eval(), file/network

Libraries Pre-defined functions for accessing trigger/action
data, secure system time, attested TLS, JSON parsing,
math

Table II: TypeScript subset that we compile in TAPDance. All
variables are statically typed.

statically typed at declaration time. We add support for built-
in TypeScript methods on the supported types. As we show
in Section VII, this subset is sufficient to express a significant
majority of real-world IFTTT applets (643/682 are supported
without any applet modifications). We built our compiler on
top of StaticScript [13]. The support libraries include functions
for accessing trigger and action objects and functions for
running attested TLS so that the applet code can communicate
with the TAPDanceManager.

V. CREATING AND RUNNING APPLETS WITH TAPDANCE

We will discuss the various protocols involved in creating
and running TAPDance applets. We structure the discussion
around the applet lifecycle phases: (1) user bootstrapping, (2)
applet creation, (3) applet execution. First, we discuss two
primitives in the design for communication between various
parties.

OCalls. Keystone enclaves provide an OCall as a mechanism
to pass data to the untrusted OS, requesting a particular service.
The enclave requests the SM to copy the function identifier of
the requested service as well as the data for the particular
function into an untrusted buffer shared between the untrusted
OS and the enclave. The SM then notifies the untrusted OS of
the pending OCall in the untrusted buffer. The untrusted OS
executes the OCall corresponding to the function id, copies
the return value to the untrusted buffer and notifies the SM,
which notifies the enclave of the returned data. In TAPDance,
the applet enclave and the TAPDance Manager enclave use the
various OCalls listed in Table III.

Attested TLS. All communication between trusted parties
occurs over attested TLS [61]. This is an extension to the
TLS protocol so that it embeds verification of enclave reports
during TLS connection setup. The TLS server certificate
includes a custom extension which contains evidence that the
certificate was generated at runtime inside an enclave with a
particular code identity on a trusted processor. In TAPDance,
this evidence is the server enclave’s report with the additional
data being the public key on the certificate. Recall that the
additional data along with the enclave’s hash is signed using
the SM’s private key to generate the signature on the enclave’s
report. As the SM’s private key is derived using the processor’s
secret key and also because only the server enclave can request
its own report, the evidence proves that the server enclave
has a particular code identity and it is running in a RISC-
V processor with a particular secret key. The client verifies
the enclave report on the certificate extension by (i) verifying
the enclave and SM hashes (ii) verifying the signature on the

7



Figure 3: The TAPDance Execution Protocol. Sensitive data and results are encrypted everywhere except inside an attested applet
enclave and the trusted endpoint services. Steps 3.1 and 3.2 occur in parallel, where the alphabetic identifiers indicate serial
steps within those parallel events. The shaded region represents the additional steps that take place on a cold-start.

enclave report that includes the public key on the certificate
and (iii) verifying the signature on the SM’s report using the
processor’s public key.2

A. User Bootstrapping

The user interacts with TAPDance through their trusted
client. This smartphone app or browser extension embeds the
code-identity of the TAPDanceManager enclave and the
public key of the RISC-V processor package on which the
TAPDanceManager is running. When the user signs up to
a trigger or action service, the trusted client will generate
and transmit user-specific symmetric encryption keys to these
endpoint services (kuTS , kuAS). The user will also create a
username and password on the TAP by interacting with the
TAPDanceManager enclave over an attested TLS connec-
tion [61]. The TAPDanceManager stores the user’s creden-
tials in untrusted storage encrypted using a sealing key that is
bound to its code identity. The appendix shows protocol details
for user registration and login to the TAPDanceManager.

B. Creating an Applet

Using the trusted client, the user programs an applet by
selecting a trigger event, optionally writing TypeScript code
that transforms the trigger data and then selects an action. The
client program compiles this applet to RISC-V assembly using
our LLVM-based compiler. The trusted client then encrypts the
applet binary using an AES GCM key kuApp. It also attaches a

2The manufacturer issues a certificate of the processor’s public key.

decryption stub to the applet binary that is not encrypted. This
decryption stub will help run the applet binary (discussed in
the next section). The trusted client transmits the assembled
applet package to the untrusted TAP over a standard TLS
connection. It will also transmit kuApp, kuTS , kuAS and the
applet code-identity over an attested TLS connection to the
TAPDanceManager, that stores this information using sealed
storage.

The trusted client also negotiates OAuth tokens for the
endpoint services and transmits them to the untrusted TAP.
These tokens help the TAP execute applets by contacting the
trigger service for data and sending the action service the
results of applet execution. Recall that the untrusted TAP
cannot misuse these tokens because the trigger service only
responds with encrypted data under kuTS and the action service
will only accept an API call if the data is encrypted under kuAS .

C. Running an Applet

Figure 3 shows the applet execution protocol. The untrusted
TAP operating system is in charge of creating and running
applets in RISC-V enclaves. Each applet is associated with
a trigger identity, a string that is unique to the user, trigger
service and the trigger event attributes. The untrusted TAP
operating system listens for event notifications on a generic
API endpoint. When the trigger event occurs (Step 1 in
Figure 3), the trigger service will send an HTTP(S) callback
message to the untrusted TAP with this trigger identity. The
trigger identity will help the TAP to efficiently lookup all
applets listening on this event and then launch them (Step 2;

8



trigger identity does not have a security purpose).

1) Applet Launch: The untrusted TAP launches an applet
by first allocating a set of contiguous pages, loading the
applet and runtime binaries in memory, setting up the page
tables for the virtual address space inside the enclave and
then calling the Keystone Security Monitor (SM) to initialize
the enclave. The SM sets the permission bits on the PMP
registers so that the memory region is not accessible to the
untrusted OS. The SM then hashes all the pages in the enclave
address space (including page table permissions) to compute
the enclave identity. The SM then invokes the applet entry
point, which is the decryption stub. The stub first requests
an enclave report from the SM. The stub then delivers the
report to the TAPDanceManager over an attested TLS
connection (Step 3.1.b), which verifies the report matches the
expected code-identity of the applet (Step 3.1.c). Recall that
the TAPDanceManager obtained the expected applet code-
identity over an attested TLS connection with the trusted client
when the user created the applet. This solves our challenge of
verifying the enclave report without needing the user to be
online at the moment the applet runs.

If the enclave report is correct, the TAPDanceManager
retrieves the keys for this applet and returns them to the applet
enclave over an attested TLS connection (Step 3.1.d). These
keys are kuApp, kuTS , kuAS . Using kuApp, the decryption stub will
decrypt applet code, while the other two keys will allow that
code to decrypt trigger data and later on, encrypt action data.

Cold vs. Warm Start. The process we have described is a cold
applet enclave start. As our applet enclaves are small (about
2.2 MB of RAM), the untrusted TAP can keep them in memory
so that when an event comes in, steps 3.1.a – e are skipped
(shaded bar in Figure 3).

2) Trigger Data Retrieval: While the applet is launching,
in parallel, the untrusted TAP obtains a new random nonce
from the Security Monitor (SM; Step 3.2.a) and then sends
out a request for data (Step 3.2.b) using the trigger OAuth
token, nonce and trigger identity blob. The trigger service saves
that nonce (Step 3.2.c) and return encrypted trigger data (Step
3.2.d) under key kuTS . The encrypted response also includes a
timestamp and the nonce that was just received.

As discussed in Section II, trigger services run a shim layer
to make themselves compatible with the TAP. Concretely, the
shim stores an event queue containing the latest N trigger data
events. We modify this event queue to include a slot for the
last-seen nonce from the TAP for each event. If the slot is
empty for a particular event (e.g., when new trigger data has
been pushed in to the queue), the trigger shim stores the nonce
from a data request for that event. If the slot is occupied for
a particular event, the trigger shim ignores the nonce present
in request. The current contents of the queue along with the
respective nonce values are encrypted and returned to the TAP.
Trigger services drop events and their nonce values from the
end of the queue when it overflows.

3) Applet Execution: When the untrusted TAP receives
encrypted trigger data, it places the data in a memory buffer
accessible to the applet enclave and then requests the SM to
jump to the enclave. The enclave decrypts using kuTS . If the
decryption fails, the enclave returns an error. If decryption
succeeds, it the applet extracts the nonce and asks the SM to

verify it (Step 4). If nonce verification is successful, the applet
verifies that the timestamp is within a time-to-live range using
secure time from the monitor.

Once it has verified that the trigger data is fresh, the applet
executes its rule on the trigger data to produce action data
encrypted using kuAS . It includes an action-nonce inside this
data, generated with secure randomness from the monitor, and
another timestamp (Step 5). Finally, the applet enclave returns
this encrypted action data to the untrusted TAP (Step 6) which
forwards it to the action service (Step 7).

The action service will attempt to decrypt the action data
using kuAS . If decryption is successful, it verifies that the
timestamp in the message is within a time-to-live range and
the action-nonce is not in its history of nonces. If true, it finally
runs the action (Step 8). The action service automatically
updates the history of last-seen nonces depending on its own
timekeeping.

VI. SECURITY ANALYSIS

Confidentiality of Trigger and Action Data. The trigger shim
only sends encrypted trigger data (using kuTS). Therefore, the
untrusted TAP cannot misuse the OAuth token to steal trigger
data. However, it does learn that a specific trigger event has
occurred, and depending on the semantics of the trigger, this
can leak information (e.g., a 1-bit event such as the WiFi being
turned off). Investigating whether such leaks can be prevented
in the TAP paradigm is potentially future work. The untrusted
TAP could use its action OAuth token to misuse the action
service. However, that service only performs actions if the
payload is encrypted under a valid key (kuAS). The attacker
does not have access to these keys are they are accessible
only in the following components: (1) user’s trusted client;
(2) trigger/action shims; (3) TAPDanceManager. The applet
enclave will get access to these keys after successfully passing
an attestation check. The TAPDanceManager returns keys
to applets based on the code identity, and thus, an attacker’s
applet would never get access to keys of another user/applet.

The service provider gives out OAuth tokens to the TAP
and internally maintains a map between unique token strings
and the identity of the TAP service. When anyone in possession
of those unique tokens makes a request, the service provider
looks up the map to determine the real identity. If an attacker
uses stolen TAP OAuth tokens, the service provider will always
know that the token was given out for TAP purposes and will
subject the request to encryption checks.

Integrity of Applet Execution. As discussed in Section IV,
relative to current TAP design, TAPDance provides: (1) iso-
lation between enclaves (2) fault isolation of an untrusted
enclave from the OS and (3) inverse sandboxing protecting
the enclave from an untrusted OS, all using RISC-V physical
memory protection primitives. This guarantees applet code
integrity.

The untrusted TAP can manipulate trigger API call param-
eters. TAPDance requires that the trigger shim also encrypt
the API call parameters it received in its response. This
way, the applet enclave will decrypt the response and verify
that the API call parameters are the expected ones, and not

9



something else. TAPDance adds these safety checks to applet
code automatically as part of the compilation process.

The TAPDanceManager provides the keys to an enclave
only after verifying its code-identity, obtained by applet from
the SM and transmitted over an attested TLS connection. In
Keystone, the enclave can only request its own report so an
untrusted TAP cannot impersonate an enclave. Bugs could be
present in the OCall wrappers that, if exploited, could allow the
attacker to manipulate an enclave. We used defensive coding
techniques to minimize this risk, such as checking bounds and
return values.

Single Execution Per Trigger Event and Freshness of Data.
The untrusted TAP can attempt to replay the encrypted data
in TAPDance with the goal of (1) Executing the same applet
multiple times with the same trigger event data; (2) Executing
an applet with stale data; and (3) Executing actions multiple
times even though there was only a single trigger event.

The untrusted TAP can request multiple copies of the same
event data from the trigger service. However, the trigger shim
associates the first nonce it sees from the TAP with the newly-
available trigger data. If the TAP creates its own nonce or
reuses a valid nonce from the SM, the SM will fail verification.
Unless new event data is available, additional data requests
from the TAP with new nonces (even from the SM) result in
the shim returning event data with the original nonce, which
prevents replay of existing events because the SM ensures that
a particular nonce is verified only once by a specific enclave.

The untrusted TAP could delay the delivery of trigger data
to the enclave. To counter this, the encrypted trigger data
includes a timestamp which is checked by the applet enclave
to fall within a freshness time window using the secure time
provided by the SM. If the check fails, then the applet enclave
ignores the trigger event without processing it and requests the
untrusted OS for fresh trigger data.

TAPDance Interfaces to Untrusted OS. Table III shows
all the interfaces that are available to enclave applications
in TAPDance. The sendBufferFD and recvBufferFD
OCalls are used by WolfSSL to send and receive data over
a socket connection. We use defensive coding practices on the
runtime-side to ensure that the OS is not returning nonsensical
values for these calls. The SM calls provide secure random-
ness, secure time and nonce verification to the enclaves.

TEE Side Channels. The Keystone [48] framework con-
siders three types of side channels: (i) Controlled channel
(ii) Timing based and (iii) Cache based. Controlled channel
attacks induce page faults in the enclave to learn about page
access patterns. Keystone enclaves do not share page table
state with the untrusted OS, thus eliminating this threat by
design. To mitigate timing attacks against the cryptographic
code inside an applet enclave, we enable timing resistance in
WolfSSL during compilation. This only leaves timing attacks
against applet code as a possibility. To mitigate cache attacks,
Keystone recommends using cache partitioning [48] — we
leave implementing this to future work.

VII. PERFORMANCE EVALUATION

var season = Meta.currentUserTime.month();
var sunrises: Array<number> =
[9, 8, 7, 7, 6, 5, 5, 6, 7, 8, 8, 9];
var sunsets: Array<number> =
[15, 16, 17, 19, 20, 21, 21, 20, 19, 18, 16, 15];
var hour = Meta.currentUserTime.hour();
if (hour >= sunrises[season] &&

hour <= sunsets[season]) {
Hue.turnOnAllHue.skip();

}

Figure 4: Example Benchmarking Applet

We measure the performance of TAPDance across four
dimensions: (1) Number of applets supported (2) Reduction
in software TCB; (3) Latency experienced by end-users while
programming applets; (4) The Execution Protocol in terms of
the end-to-end Applet Execution latency and throughput on
the TAPDance server; (5) The Warm Execution Latency of an
enclave after applet code and the required encrypted trigger
data has been loaded into it.

Testbed. TAPDance relies on the RISC-V Keystone enclave
mechanism, so we run TAPDance on the StarFive VisionFive
single board computer. This machine is similar in power to a
Raspberry Pi, so it is much slower than a server-class machine
typically hosting internet services. There are recent plans
for server-class RISC-V hardware, but nothing is currently
available for purchase [49]. The VisionFive consists of 2 RISC-
V U74 cores running at 1.5 GHz with 8 GB of RAM. Each
U74 core from SiFive has support for 8 PMP regions [12]. The
VisionFive runs Linux v5.19. To get Keystone running on the
VisionFive, we ported the Security Monitor (SM) and compiled
the Keystone Linux driver. We run the TAPDanceManager
and applet enclaves on this VisionFive board. We use Cloud-
Lab to simulate trigger and action services [7]. The CloudLab
machines have a 32 core Intel Xeon E5-2630 processor running
at 2.4 GHz with 128 GB RAM. The VisionFive board is
connected to the CloudLab machines through a Gigabit internet
connection. For comparison, we run a baseline TAP system on
the VisionFive using a Node.js v14.8.0 server that runs applets
written in TypeScript.

Implementation Notes. We implement the TypeScript-to-
assembly compiler on top of the StaticScript project on
GitHub [13]. The compiler converts TypeScript to LLVM-IR
which is then processed using the LLVM llc tool to generate a
library containing the applet binary code. This applet library is
linked with the enclave startup code to build the final enclave
executable. We use the WolfSSL TLS library inside the applet
enclave and the TAPDance Manager enclave [1], and configure
it to use secure randomness and secure time from the SM.
We configure WolfSSL to send TLS data using Ocalls to
the untrusted OS. TAPDance uses the RapidJSON library [5]
for parsing JSON data in the applet enclave. The trigger
API and action API are thin wrappers over RapidJSON for
accessing and modifying the various fields of the trigger data
and action data, respectively. The functionality needed from the
Moment.js library and the Date modules are implemented in
C++ as a part of the applet API shim library. The host process
that backs an enclave in Keystone forms the untrusted TAP in
our setup. The host process uses the Crow HTTP server library

10



OCalls Accessible to Enclaves

int initConnection(char *hostname, int port) Initiates a TCP connection to hostname:port returning the socket descriptor
int initServerConnection(char *hostname, int port) Sets up a bound, listening socket returning the socket descriptor
int sendBufferFD(int fd, char *buffer, uint64_t size) Write at most size bytes from the buffer to file descriptor fd and return the number

of bytes written
int recvBufferFD(int fd, char *buffer, uint64_t size) Read at most size bytes from the file descriptor fd to the buffer and return the number

of bytes read
char *getTriggerData(char *triggerParams, uint32_t *size) Gets Encrypted Trigger Data using triggerParams and returns the size of the trigger

data
char *sendActionData(char *actionParams, struct e_data
*data)

Sends encrypted and integrity protected action data

int termConnection(int fd) Terminate the network connection referred to by fd

SM calls Accessible to Enclaves

int verifyNonce(uint64_t nonce) Verify the nonce is generated by the SM and has not been verified by another enclave
with the same identity

uint64_t getUnixTime() Returns the UNIX epoch time in seconds
int getRandomBytes(char *buffer, size_t size) Fill a buffer with hardware provided randomness

Table III: Interfaces in TAPDance.

to spawn a double threaded HTTP server on port 80 that listens
for trigger event notifications from the trigger service [9].

Dataset. We obtained a dataset of real user applets from the
authors of minTAP [32]. Each applet has an attached JSON
schema that describes the input format the applet expects.
This is the largest known dataset of TAP applet code. An
example applet in the evaluation is shown in Figure 4 and in
the Appendix(Figure 6). To run our performance experiments,
we randomly chose 10 applets from the dataset.

Functionality Evaluation. Our TypeScript compiler success-
fully compiled 643 out of 682 applets from the minTAP
dataset. The 39 applets that did not compile make use of user-
defined objects, parameterized strings, union types and anony-
mous functions. Out of the 39, 37 can readily be re-written
using our subset of TypeScript without loss in functionality.
The remaining 2 applets make extensive use of user-defined
objects and classes as well as indexing into the trigger data
object that we do not support.

To verify correctness of the compiled code, we compiled
and ran the 10 applets that were chosen for the performance
evaluation. For each applet we generate a fixed input by ad-
hering to the JSON schema and the typical response generated
by the particular trigger service for the event. We verified that
their outputs with TAPDance matched that from the NodeJS
interpreter.

A. TCB Size of Enclave Components

We compare the TCB size of all the components in an
enclave in TAPDance against a TAP system where TypeScript
applets are using the Node.js interpreter inside a Keystone
enclave (i.e., the “big enclave” approach is our baseline in
this specific case). Table IV shows the LoC for TAPDance.
WolfSSL is 183 KLoC for the default compilation, however,
this is an upper bound as many of the cipher suites can be
omitted from compilation using appropriate compilation flags.
Similarly, RapidJSON is a feature rich JSON parsing library
that is 18 KLoC in size.

In contrast to the TAPDance TCB, the baseline TAP
contains a Node.js frontend (109 KLoC) and a V8 backend
(935 KLoC) of C++ code. Additionally, the baseline approach

Figure 5: Latency and Throughput Comparison of TAPDance
with the Baseline TAP that does not use enclaves. TAPDance
performs better than the interpreted baseline, and identical to
a version without enclaves.

Component Lines of Code

RapidJSON 18496
Applet API Shim 378
Applet Enclave Init 1277
Eyrie Runtime 3365
WolfSSL 183000
Keystone LibEdge 384
Keystone LibApp 633
Ed25519 Verify 3119
Keystone SM 3040

Total 213692

Node.js Frontend 109 KLoC
V8 Backend 935 KLoC

Table IV: Code Sizes of Applet Enclave Components and in
TAPDance and the Node.js Interpreter

delegates all system calls to the untrusted TAP operating
system. Overall, TAPDance reduces the TCB compared to
baseline by 5.2x and further optimizations are possible by
trimming the TLS and JSON libraries.

B. Performance

1) Trusted Client Latency: We measure the time it takes
for the compiler to compile a TypeScript applet to a binary
and also the time taken by the trusted client application, a C
program, to register the applet with the TAPDance server and
register the user if this is their first applet registered. Both

11



System Average Applet Execution Time

TAPDance 0.58 ms (SD = 0.19 ms)
TAPDance w/o enclave 0.57 ms (SD = 0.10 ms)
Interpreted Baseline 0.62 ms (SD = 0.18 ms)

System Resident Set Size

TAPDance Applet Enclave 2.1 MB
TAPDance Manager Enclave 3.1 MB
Baseline 39.3 MB

Table V: Performance Metrics of TAPDance.

the compiler and the trusted client run on a laptop having an
8 core Intel Core i7-7700HQ processor running at 2.80 GHz
with 16 GB RAM and connected to the same Gigabit local
network as the VisionFive board. The client app connects to
TAPDanceManager over an attested TLS connection. All
numbers are averaged over 5 trials for 10 applets chosen
randomly from the dataset of real user-created applets. To
register a user, the latency is 11 ms (SD = 0.34 ms) and to
register the compiled applet, the latency is 11 ms (SD = 0.041
ms). The average time to compile the applet is 398 ms (SD =
25 ms).

When an applet is not in memory when trigger data arrives,
the cold-start cost of memory allocation, communication with
the TAPDanceManager and enclave creation takes 200ms,
and measuring the enclave in the SM takes 3s on our prototype
board. This reduces to 1ms with hardware hashing support
present in modern Intel processors.

2) Applet Execution Time: We measured the warm execu-
tion latency, when an applet is already loaded into an enclave,
as the time it takes to run the applet enclave after the untrusted
TAP fetches the encrypted trigger data. This time, shown in
Table V, averages 0.58 ms (SD = 0.19 ms) for the 10 test
applets. In comparison, the time taken to run an applet in the
baseline Node.js server averages 0.62 ms (SD = 0.18 ms).
TAPDance is faster than the baseline because we compile
applet code to assembly and, thus, remove interpreter overhead
present in the baseline. The enclave overhead is very low; if we
run the compiled applet without an enclave the average latency
is nearly identical to TAPDance at 0.57 ms (SD = 0.10 ms).
We attribute this to the fact that there are at most 3 enclave-
to-host context switches per applet execution and each enclave
switch takes 3 microseconds.

3) End-to-End Performance: To measure the execution
protocol performance, i.e., throughput and latency of TAP-
Dance, the baseline TAP server and running TAPDance with-
out enclaves, we generate trigger events using the wrk [2]
HTTP benchmarking tool. We vary the rate of trigger events
by varying the number of threads and connections used for
generating trigger events. We run each system for 10 seconds
with varying loads. The wrk tool is run from a machine on
CloudLab. We executed the TAPDance execution protocol to
the point before sending the action data and send a notification
back to the trigger event generator (wrk). We varied the event
generation rates to find the highest degree of parallelism that
both systems support before performance degrads. We average
the results over the same 10 chosen applets for each system.

Figure 5 summarizes the latency and throughput for TAP-
Dance and the interpreted baseline by varying the number of

connections and threads. TAPDance has 32% lower latency
than the baseline on average and has a 33% higher throughput
than the baseline. As stated earlier, this difference is because
TAPDance runs compiled applets whereas the baseline runs
interpreted applets. This shows that secure execution is not
necessarily higher overhead than non-secure execution.

4) Memory Usage: We measure the amount of mem-
ory that is needed to run the applet enclave and the
TAPDanceManager. Enclaves have constant size and cannot
be expanded or shrunk dynamically in TAPDance.

The applet enclave takes 2.1 MB (533–537 pages) and the
TAPDanceManager enclave takes 3.2 MB (816 pages). In
contrast, the Node.js interpreter has a resident set size of 39
MB. With a much lower memory footprint, TAPDance can
keep many more applets warm in memory and avoid paying
the cold start cost. For example, with 128 GB of memory a
server could keep about 62,000 applets warm. With contiguous
allocation, a single PMP register can protect warm applet
enclaves from access by the untrusted OS.

VIII. DISCUSSION AND LIMITATIONS

Supporting Multiple Triggers, Actions and Queries. Cur-
rently, TAPDance supports a single trigger service and multiple
action services for a particular applet. It is possible for applets
to trigger on multiple data sources. Our design naturally
extends to this scenario by creating separate trigger symmetric
keys for each service and then storing those keys in the
TAPDanceManager, just like we do for multiple actions.
We would need to modify the applet enclave stub to wait
for multiple trigger data requests to return before running the
computation. We leave implementing this to future work.

Scalability of TAPDance. TAPDance currently supports run-
ning applet enclaves in any machine with Keystone enclave
support, provided that the TAPDance Manager is loaded with
the device public keys of all the machines involved. A central
challenge in the replication of the TAPDance Manager is
reaching consensus on a set of keys that are used for encrypting
and integrity protecting data in untrusted storage. Sealing keys
provide a way for a single enclave to derive a key, but these
keys are tied to the processor package that the enclave is
currently running on, and they cannot be re-derived by the
same enclave code running in a different processor package
in the data center. We design a protocol for TAPDance Man-
ager replication by noting the separation between untrusted
storage and the TAPDance Manager enclave and describe it in
Appendix B.

Key Update Protocol. TAPDance relies on long-term keys for
the trigger and action services and for encrypting the applet
code. If the keys need to be replaced, the user will have
to re-register the applet with the TAPDanceManager with
different keys and then update the endpoint services with those
new keys.

Re-ordering of Messages in the Action Service. TAPDance
does not protect against reordering of messages to the action
service as it uses nonces for replay detection and has no se-
quence numbers for ordering. We leave implementing message
ordering guarantees as future work.

12



Publicly Influenced Triggers. Applets can consume publicly
influenced trigger data. For example, an applet that triggers
on an email is publicly influenced because anyone can send
an email to a user with such an applet. An attacker could
send a specially crafted email that exploits an applet with
vulnerable code generated by our TypeScript compiler. Due
to the mutual-distrust property of TAPDance, the other users’
enclaves remain protected. However, the vulnerable applet
can leak its trigger and action keys to the attacker. We
acknowledge this limitation of TAPDance and observe that it
is mitigated to some degree because the applet enclave runs a
minimal trusted computing base. As future work, we anticipate
verifying that the compiled code does not introduce exploitable
vulnerabilities [47], [52].

Availability of server-grade RISC-V. We evaluate TAPDance
on an under-powered RISC-V development board because no
server-class chips are currently available. This does not affect
the results because we report performance data relative to a
baseline that also runs on the under-powered board. This also
does not affect the technical contributions as we only rely on
PMP registers, a standard element of the RISC-V instruction
set architecture that will be available on all chips. Vendors
have recently announced server-grade RISC-V chips [49].

IX. RELATED WORK

Trigger-Action Platform Security. We contribute to a line
of work on re-imagining the security properties of TAPs [19],
[24], [32]–[34], [38], [63]. Table VI compares of TAPDance
with previous work. TAPDance occupies the best trade-off
among the design parameters of security, functionality and
performance compared to existing approaches, when the at-
tacker is the TAP environment itself. It offers confidentiality
and integrity of real user applets with lower performance
overhead than eTAP and Walnut, the closest related systems.
The performance gain comes primarily from using TEEs,
as opposed to techniques for computing on encrypted data.
Furthermore, TAPDance supports a restricted TypeScript lan-
guage for programming applets. We find that this language is
sufficient to express 643/682 applets in the minTAP dataset
and is amenable to static compilation. Whereas, eTAP/Walnut
only supports applets that can efficiently be expressed as
garbled circuits with fixed input sizes and unrolled loops.
Executing garbled circuits requires several thousand symmetric
key operations (depending on circuit size), making it much less
efficient compared to native code. Finally, the action service
in eTAP needs to maintain state about expected circuit IDs of
all applets for all users as opposed to TAPDance that stores a
nonce for only a freshness window. We note that the security
of TAPDance is conditioned on a different set of primitives.
eTAP/Walnut rely on cryptography (garbled circuits), whereas
TAPDance relies on the correct operation of the physical
memory isolation of RISC-V.

The primary goal of TAPDance is to provide the confi-
dentiality of trigger and action data, as well as the integrity
of action data computation. TAPDance offers stronger security
than minTAP because plaintext data is never accessible to the
untrusted TAP. Although minTAP releases sanitized trigger
data to the untrusted TAP, it is still sensitive user data that is re-
leased. Additionally, minTAP does not provide integrity guar-
antees on applet execution. OTAP end-to-end encrypts trigger

data, but it does not support computing on that data [34].
DTAP only supports action integrity without computation on
trigger data and does not provide data confidentiality [38].
These systems have better performance than TAPDance, but
have strictly lower security guarantees and support lesser TAP
program functionality.

A common theme in prior work is the concept of decen-
tralizing trust by introducing a trusted client device [32], [33],
[38]. We borrow this idea because it helps minimize the TCB
inside the enclave. The alternative solution would be to have
an enclave host code for programming applets, which increases
the complexity of enclave code.

An orthogonal line of work investigates the security and
privacy properties of applet logic [35], [59], [63]. For example,
applets can unintentionally leak private user data to a public
source. We do not rely on applet logic for security guarantees;
our goal is to protect an applet, independently of its semantics,
from a malicious TAP environment and from other possibly
malicious applets.

TAPs suffer from overprivilege primarily because OAuth
makes it difficult to enforce the principle of least privilege.
Protocol improvements like macaroons can help [26], but they
provide a weaker security guarantee than what we are aiming
for in this work. By contrast, TAPDance enforces that the
trigger only transmits encrypted data and the action service
only accepts encrypted payloads, a higher level of security
because sensitive data is not accessible to the TAP in plaintext,
except inside an attested enclave.

Enclave-based Systems. VC3 [56] demonstrates how Intel
SGX enclaves can be used to secure MapReduce computations.
Similar to TAPDance, it uses a model where a verifier attests
all the worker nodes in the MapReduce computation. However,
the verifier needs to be maintained by the user running the
MapReduce job unlike TAPDance where the verification is
delegated to the TAPDanceManager, letting a user be offline
when a trigger event fires.

Clemmys [60] provides a framework for running serverless
functions in SGX enclaves. The functions are run inside a
SCONE-based environment [22], that supports unmodified
POSIX binaries. Similar to TAPDance, Clemmys relies on an
attestation service like the TAPDanceManager. Serverless
functions are short-lived and are similar to the applets executed
in Trigger-Action Platforms. However, TAP applets are pure
computations and do not require the extensive system call
support provided by SCONE. This allows TAPDance to keep a
relatively low software trusted computing base involving a TLS
library and a customized userspace runtime to service applet
library functionality needs. In general, serverless frameworks
that use TEEs have large runtimes relative to TAPDance
because they are designed to support general computations
instead of pure computations [20], [27], [54], [60]

Komodo [39] decouples the enclave memory management
from the hardware, in contrast to SGX. The memory man-
agement is delegated to a formally verified software monitor
that runs in the ARM secure mode. In Keystone, enclaves are
in charge of managing their own memory using the runtime
within the enclave. We did not use Komodo in TAPDance
mainly because applets do not require dynamic memory man-

13



Criterion IFTTT eTAP [33], Walnut [55] MinTAP [32] DTAP [38] OTAP [34] TAPDance (our work)

Confidentiality of Trigger Data No Yes Minimized Access No Yes Yes

Integrity of Action Computation No Yes No Partial No Yes

Performance Overhead Baseline High Medium Low Low Outperforms Baseline

Support for Applets All Restricted to Circuits All None None Restricted TypeScript

Freshness Guarantees on Trigger No Yes No Yes No Yes

Action Replay Protection No Yes No No No Yes

Table VI: Comparison of TAPDance with prior TAP security systems. TAPDance offers the best trade-off among all design
criteria.

agement. The S-Mode runtime in TAPDance aids in handling
in-enclave faults from within the enclave, without leaking
information to the untrusted OS.

Ryoan [41] provides a way to define dependencies for a
particular computation as a DAG between multiple third party
services which are mutually untrusted. Unlike TAPDance, the
attestation of each instance of the sandbox is done by the
user. Ryoan does not attempt to reduce the TCB inside the
enclave, unlike TAPDance that, uses the specific properties of
TAP computing to reduce the TCB.

Panoply [58] is a framework that lets users run modified
programs inside SGX enclaves with a minimal TCB. The user
has to run an analysis that annotates the entry and exit points of
enclave code, and only the shielding code for the POSIX APIs
needed by the enclave code is included in the enclave. This
TCB reduction approach is similar to TAPDance. However,
TAPDance does not require the syscall, I/O and concurrency
support provided by Panoply.

Graphene [30] and Haven [25] are library OSes whose goal
is to run unmodified binaries inside an SGX enclave. They are
orthogonal to the goals of TAPDance, in that they include
as much functionality as required to run unmodified binaries
inside the enclave, amounting to several million lines of code.

X. CONCLUSION

Trigger-action platforms are increasingly critical as an
automation tool for coordinating multiple web-based services.
Current TAP architectures are fundamentally insecure as they
expose trigger and action data to untrustworthy TAP service
code. Our key insight is that TAP applets are pure functions,
and in this work we show how to leverage this property
to build a secure scalable TAP. Our design uses the unique
protection hardware on RISC-V and its Keystone security
monitor, along with novel protocols, to provide data privacy
and applet execution integrity. Our evaluation demonstrates
that the TAPDance design offers substantial security benefits
at almost no runtime performance loss.

REFERENCES

[1] “WolfSSL Embedded TLS Library,” https://www.wolfssl.com/, 2012.
[2] “wrk HTTP Benchmarking Tool,” https://github.com/wg/wrk, 2012.
[3] “Xsa-108: Improper msr range used for x2apic emulation,” http://

xenbits.xen.org/xsa/advisory-108.html, Oct. 2014.
[4] “Database of 191 million u.s. voters exposed on internet.” https://www.

reuters.com/article/us-usa-voters-breach-idUSKBN0UB1E020151229,
Oct. 2015.

[5] “RapidJSON: A fast JSON parser/generator for C++ with both
SAX/DOM style API,” https://rapidjson.org/, 2016.

[6] “Uber employees ’spied on ex-partners, politicians and
beyoncé’,” https://www.theguardian.com/technology/2016/dec/13/
uber-employees-spying-ex-partners-politicians-beyonce, Oct. 2016.

[7] “CloudLab,” https://www.cloudlab.us/, 2017.

[8] “AssemblyScript: A TypeScript-like language for WebAssembly,” https:
//www.assemblyscript.org/, 2020.

[9] “Crow: A Fast and Easy to use microframework for the web,” https:
//crowcpp.org/master/, 2020.

[10] “IFTTT: If This Then That,” https://ifttt.com, 2020.

[11] “OP-TEE: Open Portable Trusted Execution Environment,” https://
www.trustedfirmware.org/projects/op-tee/, 2020.

[12] “SiFive U74 Core,” https://www.starfivetech.com/uploads/u74 core
complex manual 21G1.pdf, 2020.

[13] “StaticScript TypeScript Compiler,” https://github.com/ovr/StaticScript,
2020.

[14] “Cve-2021-44228 detail (log4shell),” https://nvd.nist.gov/vuln/detail/
CVE-2021-44228, Dec. 2021.

[15] “Github breach 2022,” https://github.blog/
2022-04-15-security-alert-stolen-oauth-user-tokens/, Apr. 2022.

[16] “IFTTT Documentation,” https://ifttt.com/docs/api reference, 2022.

[17] “Circleci breach 2023,” https://circleci.com/blog/
january-4-2023-security-alert/, Jan. 2023.

[18] “Report: Activision failed to tell employees of 2022
data breach,” https://www.gamedeveloper.com/culture/
report-activision-blizzard-failed-to-tell-employees-of-2022-data-breach,
Feb. 2023.

[19] M. M. Ahmadpanah, D. Hedin, M. Balliu, L. E. Olsson, and
A. Sabelfeld, “SandTrap: Securing JavaScript-driven Trigger-Action
Platforms,” in USENIX Security Symposium, 2021.

[20] F. Alder, N. Asokan, A. Kurnikov, A. Paverd, and M. Steiner, “S-faas:
Trustworthy and accountable function-as-a-service using intel sgx,” in
Proceedings of the 2019 ACM SIGSAC Conference on Cloud Computing
Security Workshop, ser. CCSW’19, 2019, p. 185–199.

[21] AMD, “Amd secure encrypted virtualization (sev),” 2017, accessed on
April 18, 2023.

[22] S. Arnautov, B. Trach, F. Gregor, T. Knauth, A. Martin, C. Priebe,
J. Lind, D. Muthukumaran, D. O’Keeffe, M. L. Stillwell, D. Goltzsche,
D. Eyers, R. Kapitza, P. Pietzuch, and C. Fetzer, “SCONE: Secure
linux containers with intel SGX,” in 12th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 16), Nov. 2016,
pp. 689–703. [Online]. Available: https://www.usenix.org/conference/
osdi16/technical-sessions/presentation/arnautov

[23] M. Balliu, I. Bastys, and A. Sabelfeld, “Securing IoT Apps,” IEEE
Security & Privacy Magazine, 2019.

[24] I. Bastys, M. Balliu, and A. Sabelfeld, “If This Then What? Controlling
Flows in IoT Apps,” in ACM Conference on Computer and Communi-
cations Security, 2018.

[25] A. Baumann, M. Peinado, and G. Hunt, “Shielding applications from
an untrusted cloud with haven,” in 11th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 14), Oct. 2014,

14



pp. 267–283. [Online]. Available: https://www.usenix.org/conference/
osdi14/technical-sessions/presentation/baumann

[26] A. Birgisson, J. G. Politz, Úlfar Erlingsson, A. Taly, M. Vrable,
and M. Lentczner, “Macaroons: Cookies with contextual caveats for
decentralized authorization in the cloud,” in Network and Distributed
System Security Symposium, 2014.

[27] S. Brenner and R. Kapitza, “Trust more, serverless,” in Proceedings
of the 12th ACM International Conference on Systems and
Storage, ser. SYSTOR ’19. New York, NY, USA: Association
for Computing Machinery, 2019, p. 33–43. [Online]. Available:
https://doi.org/10.1145/3319647.3325825

[28] Z. B. Celik, E. Fernandes, E. Pauley, G. Tan, and P. D. McDaniel,
“Program Analysis of Commodity IoT Applications for Security and
Privacy: Challenges and Opportunities,” ACM Computing Surveys,
2019.

[29] S. Chandra, C. S. Gordon, J.-B. Jeannin, C. Schlesinger, M. Sridharan,
F. Tip, and Y. Choi, “Type inference for static compilation of
javascript,” SIGPLAN Not., vol. 51, no. 10, p. 410–429, oct 2016.
[Online]. Available: https://doi.org/10.1145/3022671.2984017

[30] C. che Tsai, D. E. Porter, and M. Vij, “Graphene-SGX: A
practical library OS for unmodified applications on SGX,” in 2017
USENIX Annual Technical Conference (USENIX ATC 17), Jul. 2017,
pp. 645–658. [Online]. Available: https://www.usenix.org/conference/
atc17/technical-sessions/presentation/tsai

[31] S. Checkoway and H. Shacham, “Iago attacks: Why the system call
api is a bad untrusted rpc interface,” in Proceedings of the Eighteenth
International Conference on Architectural Support for Programming
Languages and Operating Systems, ser. ASPLOS ’13. New York,
NY, USA: Association for Computing Machinery, 2013, p. 253–264.
[Online]. Available: https://doi.org/10.1145/2451116.2451145

[32] Y. Chen, M. Alhanahnah, A. Sabelfeld, R. Chatterjee, and E. Fernandes,
“Practical data access minimization in Trigger-Action platforms,” in
31st USENIX Security Symposium (USENIX Security 22), Aug.
2022, pp. 2929–2945. [Online]. Available: https://www.usenix.org/
conference/usenixsecurity22/presentation/chen-yunang-practical

[33] Y. Chen, A. R. Chowdhury, R. Wang, A. Sabelfeld, R. Chatterjee, and
E. Fernandes, “Data privacy in trigger-action systems,” in 2021 IEEE
Symposium on Security and Privacy (SP), 2021, pp. 501–518.

[34] Y.-H. Chiang, H.-C. Hsiao, C.-M. Yu, and T. H.-J. Kim, “On the privacy
risks of compromised trigger-action platforms,” in Computer Security
– ESORICS 2020, L. Chen, N. Li, K. Liang, and S. Schneider, Eds.,
2020.

[35] C. Cobb, M. Surbatovich, A. Kawakami, M. Sharif, L. Bauer, A. Das,
and L. Jia, “How risky are real users’ IFTTT applets?” in Sixteenth
Symposium on Usable Privacy and Security (SOUPS 2020), 2020, pp.
505–529.

[36] djblend777, “Private links and photos from https://locker.ifttt.com -
how to clear history?” https://www.reddit.com/r/ifttt/comments/ao3sfr/
private links and photos from httpslockeriftttcom/, 2019.

[37] S. Duan, H. Meling, S. Peisert, and H. Zhang, “Bchain: Byzantine
replication with high throughput and embedded reconfiguration,” in
International Conference on Principles of Distributed Systems, 2014.

[38] E. Fernandes, A. Rahmati, J. Jung, and A. Prakash, “Decentralized
action integrity for trigger-action iot platforms,” in Proceedings 2018
Network and Distributed System Security Symposium, 2018.

[39] A. Ferraiuolo, A. Baumann, C. Hawblitzel, and B. Parno, “Komodo:
Using verification to disentangle secure-enclave hardware from
software,” in Proceedings of the 26th Symposium on Operating
Systems Principles, ser. SOSP ’17, 2017, p. 287–305. [Online].
Available: https://doi.org/10.1145/3132747.3132782

[40] H. S. Gunawi, M. Hao, T. Leesatapornwongsa, T. Patana-anake,
T. Do, J. Adityatama, K. J. Eliazar, A. Laksono, J. F. Lukman,
V. Martin, and A. D. Satria, “What bugs live in the cloud? a study
of 3000+ issues in cloud systems,” in Proceedings of the ACM
Symposium on Cloud Computing, 2014, p. 1–14. [Online]. Available:
https://doi.org/10.1145/2670979.2670986

[41] T. Hunt, Z. Zhu, Y. Xu, S. Peter, and E. Witchel, “Ryoan: A
distributed sandbox for untrusted computation on secret data,” ACM
Trans. Comput. Syst., vol. 35, no. 4, dec 2018. [Online]. Available:
https://doi.org/10.1145/3231594

[42] IFTTT, “Terms of Use,” https://ifttt.com/terms, 2018.
[43] IFTTT, “Important update about the Gmail

service,” https://help.ifttt.com/hc/en-us/articles/
360020249393-Important-update-about-the-Gmail-service, 2019.

[44] IFTTT, “IFTTT: Number of Users and Online Services,” https://
platform.ifttt.com/plans, 2020.

[45] ——, “IFTTT: Service API requirements,” https://platform.ifttt.com/
docs/api reference, 2020.

[46] Intel, “Intel software guard extensions (intel sgx),” 2015, accessed on
April 18, 2023.

[47] E. Johnson, D. Thien, Y. Alhessi, S. Narayan, F. Brown, S. Lerner,
T. McMullen, S. Savage, and D. Stefan, “Доверя́й, но проверя́й:
SFI safety for native-compiled Wasm,” in NDSS. Internet Society,
2021.

[48] D. Lee, D. Kohlbrenner, S. Shinde, K. Asanovic, and D. Song,
“Keystone: An open framework for architecting trusted execution en-
vironments,” in Proceedings of the Fifteenth European Conference on
Computer Systems, ser. EuroSys ’20, 2020.

[49] S. Leibson, “SiFive Unveils 64-Bit RISC-V Server Core,” https://www.
eetimes.com/sifive-unveils-64-bit-risc-v-server-core/, 2021.

[50] J. A. Martin and M. Finnegan, “What is IFTTT? How to use If This,
Then That services,” Computerworld. https://www.computerworld.com/
article/3239304/what-is-ifttt-how-to-use-if-this-then-that-services.
html, 2019.

[51] “Microsoft Power Automate,” https://flow.microsoft.com/, 2020.
[52] M. Patrignani, A. Ahmed, and D. Clarke, “Formal approaches to secure

compilation: A survey of fully abstract compilation and related work,”
ACM Computing Surveys (CSUR), vol. 51, no. 6, pp. 1–36, 2019.

[53] C. Priebe, D. Muthukumaran, J. Lind, H. Zhu, S. Cui, V. A. Sartakov,
and P. Pietzuch, “Sgx-lkl: Securing the host os interface for trusted
execution,” 2020.

[54] W. Qiang, Z. Dong, and H. Jin, “Se-lambda: Securing privacy-sensitive
serverless applications using sgx enclave,” in Security and Privacy in
Communication Networks, R. Beyah, B. Chang, Y. Li, and S. Zhu, Eds.
Cham: Springer International Publishing, 2018, pp. 451–470.

[55] S. Schoettler, A. Thompson, R. Gopalakrishna, and T. Gupta, “Walnut:
A low-trust trigger-action platform,” 2020, https://arxiv.org/pdf/2009.
12447.pdf.

[56] F. Schuster, M. Costa, C. Fournet, C. Gkantsidis, M. Peinado,
G. Mainar-Ruiz, and M. Russinovich, “Vc3: Trustworthy data analytics
in the cloud using sgx,” in 2015 IEEE Symposium on Security and
Privacy, 2015, pp. 38–54.

[57] Y. Shen, H. Tian, Y. Chen, K. Chen, R. Wang, Y. Xu, Y. Xia, and
S. Yan, “Occlum,” in Proceedings of the Twenty-Fifth International
Conference on Architectural Support for Programming Languages
and Operating Systems. ACM, mar 2020. [Online]. Available:
https://doi.org/10.1145%2F3373376.3378469

[58] S. Shinde, D. L. Tien, S. Tople, and P. Saxena, “Panoply:
Low-tcb linux applications with SGX enclaves,” in 24th
Annual Network and Distributed System Security Symposium,
NDSS. The Internet Society, Mar. 2017. [Online]. Available:
https://www.ndss-symposium.org/ndss2017/ndss-2017-programme/
panoply-low-tcb-linux-applications-sgx-enclaves/

[59] M. Surbatovich, J. Aljuraidan, L. Bauer, A. Das, and L. Jia, “Some
recipes can do more than spoil your appetite: Analyzing the security and
privacy risks of ifttt recipes,” in Proceedings of the 26th International
Conference on World Wide Web, 2017, pp. 1501–1510.

[60] B. Trach, O. Oleksenko, F. Gregor, P. Bhatotia, and C. Fetzer,
“Clemmys: Towards secure remote execution in faas,” in Proceedings
of the 12th ACM International Conference on Systems and
Storage, ser. SYSTOR ’19, 2019, p. 44–54. [Online]. Available:
https://doi.org/10.1145/3319647.3325835

[61] H. Tschofenig, T. Fossati, P. Howard, I. Mihalcea, and
Y. Deshpande, “Using Attestation in Transport Layer Security
(TLS) and Datagram Transport Layer Security (DTLS),”
Internet Engineering Task Force, Internet-Draft draft-fossati-tls-
attestation-02, Oct. 2022, work in Progress. [Online]. Available:
https://datatracker.ietf.org/doc/draft-fossati-tls-attestation/02/

[62] R. Van Renesse and F. Schneider, “Chain replication for supporting high
throughput and availability.” 01 2004, pp. 91–104.

15



[63] Q. Wang, P. Datta, W. Yang, S. Liu, A. Bates, and C. A. Gunter,
“Charting the attack surface of trigger-action iot platforms,” in
Proceedings of the 2019 ACM SIGSAC Conference on Computer and
Communications Security, ser. CCS ’19, 2019. [Online]. Available:
https://doi.org/10.1145/3319535.3345662

[64] Y. Xu, W. Cui, and M. Peinado, “Controlled-channel attacks: Deter-
ministic side channels for untrusted operating systems,” in 2015 IEEE
Symposium on Security and Privacy, 2015, pp. 640–656.

[65] “Zapier,” https://zapier.com, 2020.
[66] Zapier, “Zapier Platform CLI Docs,” https://platform.zapier.com/cli

docs/docs, 2020.

APPENDIX

A. User Registration and Authentication to TAPDanceMan-
ager

The Algorithms 1 and 2 describe the process of a user reg-
istering and then authenticating to the TAPDanceManager.

Algorithm 1 Keystore.UserRegistration()

Input: usernameuser, passworduser
Trusted Inputs: usernameuser, passworduser
Connection Channel: Attested TLS to Keystore

1: y ← UntrustedDataStore.GetUser(usernameuser)
2: if y exists then
3: return ”User Exists”
4: end if
5: iduser ← GetUID(usernameuser, passworduser)
6: kseal ← SM.DeriveSealingKey(passworduser)
7: IV ← SM.GetRandomBytes(16)
8: (Cuser, Tuser)← AES Encrypt(kseal, IV, nil,
{iduser, usernameuser})

9: UntrustedDataStore.Store(<
usernameuser, (Cuser, Tuser, IV ) >)

10: return iduser

Algorithm 2 Keystore.UserAuthentication()

Input: usernameuser, passworduser
Trusted Inputs: usernameuser, passworduser
Connection Channel: Attested TLS to Keystore

1: y ← UntrustedDataStore.GetUser(usernameuser)
2: if y does not exist then
3: return ”User Does Not Exist”
4: end if
5: (Cuser, Tuser, IV )← y
6: kseal ← SM.DeriveSealingKey(passworduser)
7: dec← AES Decrypt(kseal, IV, Cuser, Tuser, nil)
8: if dec is not valid then
9: return (”Unsuccessful”, nil)

10: end if
11: (iduser, usernameuser)← dec
12: return (”Successful”, iduser)

B. Replication of TAPDanceManager

The ability to dynamically provision and run multi-
ple instances of TAPDanceManager is crucial for scal-
ing TAPDance with an increasing number of deployed ap-
plets. Recall that each applet enclave needs to contact the
TAPDanceManager at startup for obtaining the keys for

successful operation. Further, the TAPDanceManager may
fail and we also want high availability of TAPDance.

A TAPDanceManager instance can be visualized as
the TAPDanceManager enclave coupled with an untrusted
storage node. As the TAPDanceManager enclave is attested
and the code is available publicly, it is assumed to not exhibit
Byzantine behavior. However, the untrusted storage node does
exhibit Byzantine behavior.

We use chain replication [62] to achieve replication of
a TAPDanceManager instance. Each TAPDanceManager
instance is part of a chain. Failures of chain elements are
detected by a service provided by the untrusted cloud infras-
tructure. This failure information is used by the chain elements
to reconfigure themselves. The client contacts the failure
detection service to locate the head of the chain. The head of
the chain processes update requests (applet registration) and
passes the updates to its successor. Once the tail processes the
propagated updates, a reply is sent to the client. Queries for
data are sent to the tail. Each instance connects to its successor
using attested TLS. Prior to operation, the head of the chain
generates a shared key kstorage that is propagated to all the
instances in the chain. kstorage is used to encrypt and integrity
protect the (i) user credentials and (ii) the applet credentials
before storing it in the attached storage node.

BChain [37] has explored the setting where nodes in chain
replication exhibit Byzantine behavior. In BChain, a certain
fraction of the nodes are assumed to be faulty and uses a
timeout based faulty node detection mechanism to move faulty
nodes out of the chain. In TAPDance, the key difference from
BChain is that the TAPDanceManager enclaves that form
the logical elements of the chain do not exhibit Byzantine
faults. However, the TAPDanceManager enclave maybe be
induced to produce Byzantine faults either if (i) the attached
storage node produces Byzantine faults or (ii) if the failure
detection service produces Byzantine faults and lies to the
replicas about the chain configuration.

Our key observation is that even in the presence of Byzan-
tine faults, data corruption leads to a denial of service condition
as opposed to an attack on TAPDance.

If the storage node corrupts the stored ciphertext for
an applet, then it does not decrypt correctly in the
TAPDanceManager enclave. The only case where the stor-
age node can return data that decrypts correctly is if it either
returns the expected ciphertext or if it returns ciphertext that
was generated using kstorage. The returned value could be (i)
the ciphertext corresponding to a different applet, in which
case the hashes of the applet enclave do not match with the
decrypted value in the applet information or (ii) the ciphertext
corresponding to a stale version of the applet description,
meaning that atleast one of kuApp, kuTS or kuAS is different
from the present version. If kuApp is different, then the applet
enclave will not decrypt correctly. Recall that a single set of
trigger and action keys are in use at a time for a particular
user. Hence, if either of kuTS or kuAS is different it would lead
to an inability to decrypt the trigger data blob by the applet
enclave or the inability to decrypt the encrypted action blob
by the action service.

Similarly, the storage node could try and replay a stale
ciphertext encrypting the credentials of a different user or

16



var s_length = parseInt(AndroidPhone
.placeAPhoneCall.CallLength);

var endTime = moment(moment(AndroidPhone
.placeAPhoneCall.OccurredAt,
'MMMM dd, YYYY at hh:mmA')
.add(moment(AndroidPhone
.placeAPhoneCall.CallLength, 'seconds')),
'MMMM dd, YYYY at hh:mmA').toString();

var min = moment(moment(AndroidPhone
.placeAPhoneCall.OccurredAt,
'MMMM dd, YYYY at hh:mmA')
.add(1,'minutes'),
'MMMM dd, YYYY at hh:mmA').toString();

if (s_length > 120) {
GoogleCalendar.addDetailedEvent
.setEndTime(endTime);

} else {
GoogleCalendar.addDetailedEvent
.setEndTime(min);

}

Figure 6: Benchmarking Applet

the previously used (but changed) credentials of the user,
during authentication. In the first case, the user will not be
authenticated, and it results in a denial of service condition.
In the second case, if the untrusted TAP has knowledge
of the previous password, then it can authenticate itself as
the user. Impersonating as the user, the untrusted TAP can
only delete applets deployed by the user. Deploying a new
applet needs knowledge of the trigger and action keys for the
particular applet, and the untrusted TAP is assumed to not have
knowledge of the same.

Lastly, the failure detection service can cause different
instances to diverge in what they store in the untrusted store
by lying about the state of the chain to the instances. However,
this case results in exactly the same situation as if the untrusted
storage node of the tail instance is misbehaving as described
above.

17


