
PERFORMANCE MODELS OF TOKEN RING LOCAL AREA NETWORKS

Robert Berry and K. Mani Chandy

Department of Computer Sciences, University of Texas, Austin, TX 78712

1. I n t r o d u c t i o n

This paper presents a simple heuristic analytic
algorithm for predicting the "response times" of
messages in asymmetric token ring local area networks.
A description of the token ring and the model is
presented in section 2 the algorithm is described in
section 3 and the empirical results in section 4. The
analytic results were compared against a detailed
simulation model and the results are extremely close
over a wide range of models.

Local area networks (or LANS) offer a very attractive
solution to the problem of connecting a large number of
devices distributed over a small geographic area. They
are an inexpensive readily expandable and highly
flexible communications media. They are the backbone
of the automated office - a significant component of the
office of the future.

This importance of LANS in the future of applied
computer science has resulted in a tremendous burst of
interest in the study of their behaviour. There are
already many different LAN architectures proposed and
studied in the literature [Tropper 81] [Tannenbaum 81]
[Babic 78] [Metcalfe 76] [Clark 78] One LAN

architecture is significant for several reasons. This
architecture is the token ring [Carsten 77]. It has
at tracted interest because of its simplicity fairness and
efficiency. The interest it has generated has resulted in
the proposal of several different versions. This paper
concentrates on one of these versions - the single token
token ring protocol as described in [Bux 81]. This

* This work was supported by a grant
from IBM.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

particular version is attractive because of its overall
simplicity and reliability. This paper presents an
algorithm for predicting response times in a token ring
with the single token protocol.

1.1. Re la t ed w o r k

In [Bux 81] Bux presents an exact solution for
predicting mean response times in a symmetric token

• ring. This work was derived from work of Konheim and
Meister [Konheim 74]. However the assumption of
identical traffic at all stations on a ring is considered too
restrictive for practical application.

In [Carsten 77], Carsten et al investigated an
asymmetric Newhall Loop with exhaustive service.
They derived expressions for the mean and variance of
scan times (the time it takes for a token to travel
around the loop). This work was continued in [Carsten
78], where means and variances of response times were
derived. The results obtained in that work do not apply
here, as the rings studied in [Carsten.77] and [Carsten
78] are of the exhaustive service type. In an exhaustive
service protocol a station, once given permission to
transmit, may transmit all of its waiting messages. The
token ring studied in this paper is believed to be a more
practical protocol. It is much fairer than exhaustive
service because a station may transmit only one message
before passing permission along to another station.

In [Kuehn 79], Kuehu presents a very accurate
algorithm for nonexhaustive service in cyclical service
queueing systems with overhead. When applied to
token rings, the algorithm works well for small rings
with limited asymmetry of load and high overhead. The
algorithm next presented in this paper is accurate for
large rings with unlimited asymmetry of load and low
overhead. We are interested in rings having these
characteristics because we expect them to be most
frequently enountered in practice.

© 1983 ACM 0-89791-112-1/83/008/0266 $00.75

266

2. The Token Ring
The operation of the token ring is now presented in

more detail. The protocol is described here at the
hardware level. Aspects of higher level protocols, such
as packet assembly/deassembly, are not discussed.

A token ring consists of a communication line (a cable)
configured as a closed loop. Data is transmitted in a
single direction, bit serially, around this ring. There are
N stations (indexed 0,...,N-I) on a token ring (see fig.
2-1). Message packets arrive at each station and a re
enqueued at the station in first come first served (FCFS)
manner. Each packet contains a destination address
(i.e. station index). This address indicates the index of

the station to receive the packet, once successfully
transmitted onto the ring.

¢ /e

F i g u r e 2-1: View of token ring data flow

A station with waiting packets must wait for
permission to transmit onto the ring. This permission
takes the form of a special sequence of bits, called the
token (or, free token). All waiting stations constantly
monitor the ring and watch for this special sequence.
When such a station recognises the token sequence it
alters it by changing the last bit of that sequence. This
action removes the token from the ring, and creates a
new bit sequence called a connector token (or, busy
token). The station seizing the token in this way may
now start to send out the message packet at the head of
its queue.

The connector token sequence is now followed by the
bits of the station's packet. Once the station has
finished sending out all of the bits of its packet it must
give up the token. Giving up the token means
recreating the unique token bit sequence, and ceasing all
subsequent transmission until it again recognises the
token.

At this point in the description we now indicate that
there are several slightly different versions of the
protocol. Each of these versions differs in the way that
a station, once finished with the token, decides to put it
back on the ring. The token may be sent out
immediately following the last bit of the packet. This is
called multiple token operation in [Bux 81]. Since a
station follows the last bit of its message with the token,
it is possible for an adjacent station to immediately seize
the token (i.e. change it to a connector token), and start
transmitting its packet. Thus it is possible to have
multiple tokens on the ring at one time. In fact, if
packet sizes are small enough it is possible to have
several complete messages on the ring at a time, with
multiple token operation. Multiple token operation is
interesting because it seems to offer maximal ring
utilisation and minimal delays for seizing the token.

Another alternative, single packet operation requires
that the last bit of the packet sent out by the station be
received by that station (and removed from the ring}
before that token can be recreated. This is the most
conservative protocol, and only allows the bits of one
message, and one token to be on the ring at any one
time. For reliability and recovery this is the most
attractive choice, as only one message is in jeopardy if
the ring should fail. However, in a large ring it might
take a long time for the last bit of the message to get
back to that station. This creates a lot of "dead time"
on the ring - time that stations with waiting packets
could use.

Yet another alternative, single token operation is to
release the token when the connector token is received
back by the sending station. Single token operation is
the intuitive compromise between the other two
alternatives. It has the reliability and recovery
advantages of single packet operation, yet approaches
the ring utilisation .of multiple token operation for large
message packets. For these reasons, single token
operation has received special interest, and so has been
selected for study in this paper.

In addition to looking for the token, stations are also
constantly monitoring the ring for packets addressed to
them. When a station recognises its address in a p a c k e t
it starts to copy the subsequently arriving bits into a
local buffer. On recognition of the end of a packet
sequence the station stops copying from the ring. The
reception of a packet from the ring is non-destructive in
that the packet is still on the ring after the destination
has received it. ' It is the responsibility of the station
sending a packet to purge that packet from the ring
when the station starts to receive the packet itself. This
behaviour facilitates broadcasting of messages - many
stations can listen-in, not just one. It also increases the
ring efficiency and reliability - the receiver of a packet
can change a bit in that packet to indicate to the sender

267

that the packet was received; further, the sender can
compare what it sent out against what it received back,
and look for errors.

In order to recognise bit sequences on the ring every
station buffers st least one bit of information. Thus,
with only limited memory requirements, a station can
recognise passing bit sequences {see fig 2-2).

Bu.f:feg

~'t ~-04 N) i*| m*t N

ON[: Sff (~
~E¢O~NITION
O~FFtR

Figure 2-2: Token Ring Station with 1 Bit Buffer

For example, if the token is 8 bits long and has
sequence 11111111, the token recognition logic need
only count consecutive l's. When 8 consecutive 1 bits
have been counted by a station with a waiting packet,
the station knows it has the token and may change the
last bit of the token (while it still has it in its buffer) to
a 0, thus giving the connector token the sequence
I1111110.

3. T h e A l g o r i t h m

We now present the central contribution of this paper
- an algorithm for predicting mean response times for
stations on a token ring.

3.1. A Hypothesis - The Proport ionate Error
Hypothesis

This algorithm is based on an idea which was used in
a different form in the LINEARIZER algorithm of
Chandy and Neuse [Chandy 82]; we call the idea the
hypothesis of proportionate error- we shall describe the
general idea, and then the specifics of the algorithm.

Most realistic models of computer and communication
systems are intractable because the state space is too
large. Therefore, approximate techniques are used to
estimate performance metrics; due to the approximate
nature of the analysis, these estimates are erroneous.
Our goal is to reduce the amount of error by devising an
algorithm to correct (some of) the error. We
hypothesise that when the same approximate algorithm
is used to estimate several metrics, the error is
consistently in the same direction for all metrics, i.e. the
estimates are all too large, or all too small. We further
hypothesise that the magnitude of error of an estimate
is (roughly) proportionate to the true value of the

metric being estimated. This hypothesis, called the
proportionate error hypothesis, may not hold for all
models, however, we have searched for algorithms to
correct the error assuming that the hypothesis does
hold.

The particular form that the algorithm takes depends
on the problem at hand. The LINEARIZER algorithm
takes one approach in correcting the error for analysing
product-form queueing networks, and we shall take a
very different approach in this paper for studying token
rings. Both approaches, however, are based on the same
hypothesis. In this paper we argue that if the
proportionate error hypothesis holds true, then the
ratios of the estimates should be almost exact.
Therefore, we search for a normalising constant which,
when multiplied by the (almost exact) ratio, yields an
accurate estimate of the performance metric: this
approach is discussed in detail next.

3.2. Notat ion and Assumptions

• Packets arrive at station i in a Poisson
manner with mean arrival rate of x i.

• Packets at all stations have the same size
distribution. This distribution is described
by random variable X. The mean and
second moment of packet length are denoted
as E[X] and E[X2], respectively.

• The bandwidth of the ring is expressed as p
bits per second. The time to transmit a
packet of length a bits is then a/p seconds.
The time spent by a station transmitting a
packet is a random variable S, with mean
E[S] ~ E[x]/p, and second moment E[S 2] -----
E[X2]/# 2. The coefficient of variation of the
transmitting time is denoted by k, and is
determined as k ---- as/E[S], where a S is the
standard deviation of S.

• We let the queue length of message packets
at each station be described by random
variable Qi" The mean of this variable is

E[Qi].

• Let the waiting time for a packet at station i
be W i. We §hall derive the mean of Wi,

n[wi].

• We define the utilisation of the ring by
station i to be the product of average packet
size and packet arrival rate at station i. We
denote this as Pi" (So, Pi = xi * E[X]/p).
The utilisation of the entire ring, p, is then p
---- Ei Pi, ignoring overhead.

• In this discussion we assume the ring is
reliable and free of physical and logical

268

faults. (The single token protocol was
chosen for study partially because of its
reliability, but the issue of reliability is not
of concern in the remainder of this paper).

The overhead delay is denoted as d, and is
expressed in seconds. This represents the
physical ring propogation delay plus the data
holding time (data buffering time) for a
station (recall that a station must buffer at
least 1 bit to allow for token recognition and
capture). Rings are usually short (e.g: Ikm)
so propogation delay is minor. Station
delays are small when compared with the
mean packet transmission time (E[X]/p
seconds) because stations buffer very few
bits (1 to 4 bits), and hence, station delay~
are of the order of 1/p to 4/p seconds.

3.3. Mot ivat ion for the Algor i thm

3.3.1. The token ring is an M / G / I sys tem
If we consider the token ring just described as a single

server the entire ring satisfies the assumptions of the
Polloczek-Khintchine formula [Kleinrock 75]. This
formula gives the average waiting time in a queueing
system under the assumptions of a single server with
Poisson job arrivals, where arriving jobs request service
times from a general service time distribution; the
service order is independent of service time request,
there is no preemption of service and no overhead.

This type of queueing system is called an M/G/1
queue. The mean queue length for this system, E[Q],
excluding the customer (if any) in service, is given by
the Polloczek-Khintchine formula as

E [Q] = p 2 * (l + k 2) / (2 . (1 - p)) (1)

Where p is the server utilisation, and k is the coefficient
of variation of service time.

We can apply Eqn. 1 to the token ring environment
and derive the overall mean ring queue length, with X =
~i Xr This tells us the total number of message packets,
on average, that are waiting in the ring system,
excluding the packet being transmitted. From Little's
Law [Little 61],

E[W] = E[Q] / × (2)
were E[W] is the overall average wait time (excluding
service) for all packets arriving at the ring, over all
stations. Our goal is to determine E[Wi], for all i, i.e.
the mean waiting time for packets arriving at each
station i. The ring is not symmetric, and the mean
waiting time at each station may be different from the
overall mean waiting time. Our problem is to derive
individual station statistics from the overall ring
statistics.

To derive approximate ring statistics from station
statistics we shall partition the overall mean ring queue
length E[Q] into the individual station components.
Our approach is to derive approximate mean queue

e

lengths at individual stations ql and divide E[Q] in
proportion to these values so that

EIQi] =.(q[' / Ejqj) * E[Q] (3)

3.3.2. Determining individual s tat ion queue
lengths

A packet P arriving at random at station j can expect
certain delays before being transmitted onto the ring
from j to its destination. P 's waiting time is divided
into two components (see fig 3-1) for convenience:

1. waiting for the token to reach station j from
its location on the the ring at the instant at
which P arrives.

2. waiting for the packets ahead of P in station
j's queue to be sent, given that the token is
now at station j.

For instance, consider a packet P arriving at random
at station 10 (say). Suppose that when P arrives the
token is at station 1, and there are already 2 packets
ahead of P in station 10's queue. We partition the
waiting time for P into a) the time required for the
token to get to station 10 from its current location at

o $ e

P

Figure 3-1: Waiting time components for a random
arrival in a token ring

station 1, and b) the time remaining for the token to
return to station 10 after making 2 more complete
revolutions. (On the revolution in progress when P
arrived, the packet at the head of station 10's queue will
be transmitted when station 10 gets the token. On the
next revolution the packet immediately ahead of packet
P will be transmitted. Then at the end of the second
revolution, packet P will be transmitted.) Our goal is to
divide the number of revolutions a token must make

269

before P is transmitted into an initial partial revolution,
followed by a number (0 or more) of whole revolutions.

These component delays are now discussed from the
point of view of a randomly arrived packet at station j.

W a i t i n g for the token to reach stat ion j
- the initial partial revolut ion

When a random packet arrives at station j, the token
could be at any of the N stations {including j). The
time for the token to reach station j will depend on

• the time for the present user of the token

(say, station i) to complete transmission and
release the token.

• the probability that any station between i
and j will seize the token while on its way to
j.

These considerations result in the definition of a
random variable Tij which describes the time for the
token to reach station j given that it is held by station
i. We are interested in the value of E[Tij}, and compute
it as follows (see explanation below):

E[Tij] ---~ E[S2]/2*E[S] + d , if i~pred(j) (4)

E[Tipred(j)] + Ppred(j)*E[S] + d , if i=f~pred(j)

where pred(j) is the id of the station
immediately preceding j on the ring.

Explanat ion for Eqn. 4, ease 1: i ~ p r e d (j)

That is, if station i is immediately adjacent to j on the
ring, then as soon as i's transmission completes it will
give the token straight to j. (E[S2]/2*E[S] is called the
mean residual life of the service time and represents
the average remaining service time after a random
"glance" at an active server. For more information
about the theory of residual life, consult [Kleinrock 75]).

Explanat ion for Eqn. 4, ease 2: i=f~pred(j)
The time for the token to travel from station i to

station j is the sum of the time taken for the token to
travel from station i to station pred(j), and the time
taken by station pred(j) to pass the token to station
j. The probability that station pred(j) will have a
packet for the ring is assumed to be Ppred(j) ° the
utilisation of that station. If station pred(j) does have a
packet, then this will delay the time for j to get the
token by E[S] - a complete mean packet service time.

Using PK for the probability that station k has a
packet for the ring is a simplification. An early version

of the algorithm used 1 - e "~K(TKK'E[S2]/2*E[s]) for this
probability. This value is the probability of at least one
arrival in the time for the token to reach status k, after

k releases it. We found, however, that this made little
difference to the results, and in fact that using PK
provided slightly better results. We suspect that
proportional error contributes to the accuracy of the
more simple approximation.

It is possible for the token to be in transit between
stations when P arrives. This possibility was considered
in our initial models, but was later discarded because it
did not make the model more accurate for the
parameter ranges of interest.

Now that we know the time for the token to reach j,
given that it is at i, we can derive the mean time for the
token to reach station j, regardless of where the token
is. We describe this time with random variable K 3,
The token will be at station i with probability Pi (station
i's utilisation), so we may compute E[Kj] as:

E[Kj] ----- ,U i pi*E[Tij] (5)

Wait ing for packets ahead of P to leave
- the succeeding whole revolut ions

When the token has arrived at station j (the initial
partial revolution is over), packet P must still wait until
all packets ahead of it in j 's queue have been sent. In
this token ring protocol, a station may only send one
packet before passing the token, so after each of the
packets in j 's queue is sent, the token will have to be
released.

So, when one of the packets in j 's queue is sent, and
the token released, the remaining stations on the ring
will get an opportunity to send a packet. Station j will
send a packet, then station j + l rood N may send one,
j+2 rood N may send one, and so on, until station j gets
the token back again. Then j sends another packet and
the other stations get a similar chance. This behaviour
continues until all of the packets originally ahead of
packet P in j 's queue are sent. This packet's wait is
now over, and so it may begin transmission.

This situation is best illustrated by an example.
Consult figure 3-2. Station 1 has just received packet
P. The token has reached station 1, and now packet P

finds itself waiting at station 1 for the three packets
ahead to be sent. After packet A is sent, station 2 will
send packet D, followed by station 3 sending packet
F. The sequence continues, G-B-E-H-C-I, and then
station 1 can send packet P. So, from P's point of view,
it had to wait for 9 packets to be sent before it could be
sent. Had any arrivals into stations 2 or 3 occured
before packet C could have been sent this would have
lengthened the sequence, and so the delay to packet
P. Notice that packet J, and all subsequent arrivals at
station 4 will not affect in any way the time for packet
P to get onto the ring.

270

M

M

N
Figu re 3-2: Example of packet waiting

We will call the time spent by a packet waiting for
complete token revolutions (due to packets it finds
ahead of it station j 's queue), work. Let this work time
spent by a packet be described by a random variable Zj,
with mean E[Zj]. When a random packet, P, arrives at
station j, each of the stations m (m c 1..N) will contain
E[Qm] packets in their queues, on the average. By the
time that this packet at station j starts transmission
(after E[Wi]) there will be, on average, ~m*E[Wi] new

arrivals at each queue m. The E[Qj] packets at station j
will have to compete for the ring with E[Qm]+Xm*E[Wj]
other packets at each station m. If j 's queue is emptied
first, it doesn't matter how big the other queues are
because the waiting packet at j will now be at the head
of the queue. Thus the maximum number of packets
that any station i can send before P enters the ring is
E[Qj]. Hence we estimate the number of packets that
enter at station i before P enters the ring as
min(E[Qj],E[Qm]+X~*E[Wj]). These considerations
result i , the following definition of expected work:

E[Zj] = E[S] * (E[Qj] + (6)

Em~i MIN(E[Qjl,E[Qm]+×m*E[Wi]))

T h e t o t a l m e a n w a i t t i m e

The goal of the algorithm is to determine E[Wi] , the
mean wait time at each station j. The last two sections
discussed the determination of each of the two
components of total wait time. The overall wait time
for a packet is the sum of the two components described
above. That is, the expected wait time for a packet at
station j, is estimated as:

t
w j = E[Ki] + E[Zj] (7)

The result of these computations is a set of
approximate mean wait times and queue lengths. We
know,, however, that the total queue length must sum to

E[Q], and so use Eqn. 3 to arrive at the final estimates
for wait times and queue lengths.

We now present the algorithm in stepwise form.

3.4. T h e A l g o r i t h m
The algorithm is iterative. New values for the queue

lengths of message packets at individual stations, E[Qi],
are computed in each iteration from the old values,
LAST_E[Qi] , taken from the last iteration. At the end
of each iteration, these two values are compared to
check for iteration convergence.

Inputs: Message packet distribution moments
- SIX], EFX ~]

Ring bandwidth -

Number of stations - N

The arrival rates, for all i - x i

Initialisation: Initialise for all i
E[WI] = 0.0
E[Q i] = 0.0
LAST_E[QI] = 0.0

w i' = 0 . 0

q1' = 0 . 0

Compute utilisations
Pt = Xi * E[S]
P = Ei Pi

Compute coefficient of variation of
service

k = a s / EiS]

Step 1:

Step 2:

Step 3:

Step 4:

Step 5:

Step 6:

Compute E[Q], the overall queue
length using Eqn. I

Compute E[Tii], for all i and j using

Eqn. 4

Compute E[Ki], for all i using Eqn. 5

Compute work, E[Zi], for all i using
Eqn. 6

Compute w i , the approximate wait
times, for all i using Eqn. 7

and qi, the approximate queue
lengths, using Little's Law.

Save former values of E[Qi] in
LAST_E[Qi], for all i.

Compute E[Qi], the predicted queue
length using Eqn. 3

and E[Wi], the predicted wait times,
using Eqn. 2

271

Step 7: Compare E[Qi] and LAST_E[Qi]. If
the convergence criterion is met,
terminate. If the convergence criteria
is not met, go to step 4.

Convergence Criterion
The convergence criterion used is based on queue

length. At the end of one iteration new values of E[Qi]
are compared with old values (LAST_E[Qi]). Define
MAXDIF to be the largest relative difference between
the corresponding values of E[Qi] and LAST E[Qi].
MAXDIF is compared with a small number (e.g..0001).
If MAXDIF is larger then .0001, we must continue. If
MAXDIF is smaller than .0001, we may terminate the
iteration.

4. R e s u l t s , Val idat ion and Discussion

A token ring was not available for instrumentation, so
testing of the algorithm was done against simulation. A
very efficient simulation model of the token was
constructed in Fortran. This model included confidence
interval estimates to facilitate simulation convergence
determination, as well as to aid in the evaluation of the
results of the algorithm.

The experiments were sequenced in increasing order of
variability of model parameters. That is, initial
experiments considered only symmetric rings. From
these, a large range of models were considered where
the packet size was identically distributed over all
stations, but the arrival rates were different. We now
present a discussion of the results.

4.1. Symmetric Rings
The Konheim Meister [Konheim 74] result reported in

[Bux 81] indicates that the expected wait time at a
node in a symmetric exhaustive service token ring is

W = ~*E[S 2] / (1-~)'2'E[S] (8)
+ E[S]
+ N*d*(1-p/N) / 2*(l-p)
+ N*d / 2

Numerous simulation experiments were conducted
with symmetric rings of various sizes. The results
obtained from the simulation experiments were all in
agreement with Eqn. 8. The analytic algorithm
presented in this paper gives results identical with Eqn.
8, except for the last two terms, which we consider
insignificant. Notice that the first term of Eqn. 8 is
exactly the Polloezek-Khintchine formula (see Eqn. 1).

The last two terms in Eqn. 8 are, under the
assumptions considered in this paper, very s~nall. For
instance, on a 100 station, 4 Mbps ring, where each
station imparts a 1 hit delay to the ring traffic, even if
the ring utilisation is 90% the last two terms are less

than .0002 seconds. Of far more significance are the
first two terms.

4.2. Asymmetric Rings
We conducted experiments with rings of various sizes

and degrees of asymmetry. The state space of possible
token ring configurations and arriving packet
characteristics is enormous, so we attempted to cover a
manageable, but useful portion of it.

Ring sizes were partitioned into three groups - small
(up to 5 stations), medium - (6 to 11 stations), and large
(12 to 21 stations). Larger ring configurations are
certainly possible, but we expect that because of
performance, reliability and cost, very large ring
systems will be partitioned into rings of rings, and so on.

Within each of the three ring sizes different asymmtric
topologies were considered. Type I asymmetry
considered rings where one of the stations had an arrival
rate greater than all the other stations. Each of the
other stations had the same arrival rate. Type II
asymmetry considered rings where there were stations
having larger arriva rates than the rest of the stations.
These two stations each had the same arrival rate and
were adjacent on the ring. Type HI asymmetry was the
same as Type II except the two stations with high
arrival rates were on opposite sides of the ring. With
rings exhibiting Type I, II and HI asymmetry we were
also interested in studying the effect of position on the
ring on individual station response times.

Two packet size distributions were considered for the
tests. A few of the tests used exponentially distributed
packet sizes. Most of the experiments considered only
constant packet size distributions because it was more
realistic.

A further parameter of concern was the ring
utilisation. Earlier studies [Tropper 81]resulted in
models that were accurate only for low utilisations. We
felt that , in order to be useful, our algorithm should
work for high utilisations as well. Our experiments
allowed the ring utilisation to range over 20%-90%.

A sample of the results of the study is shown in figure
4-1.

4.3. Accuracy

The validation metric used in the study was the
relative deviation of the wait time predicted by the
algorithm from that produced by the simulation. The
predicted mean response time for station i is the sum of
the mean wait time at station i (E[Wi]) and the mean
packet transmit time (E[S]). In all configurations
studied, including

272

• overall utilisations ranging from 20%-90%

• asymmetry Types I, II, and HI

, rings with 5, 11, and 21 stations

• constant message packet size distribution

the algorithm has consitently predicted individual
station response times within 10% of times produced by
the detailed simulation model. Over 270 such individual
station response times were so predicted during this
study. It is worthy of note that the algorithm is
consistently accurate for the entire range of utilisations,
from low to high.

M e d i u m R i n g

N = 11 stations
. = 1 Mbps
E[X] = I0000 bits; E[X 2] = I00000000 blts 2

(c o n s t a n t d i s t r i b u t i o n)
Type I asymmetry: Xi.l~ i = l / s ;

x 1 = lO/s. 30/s and 80/s
Note: 90~ c o n f i d e n c e i n t e r v a l s a r e shown
where wlde"',enou~h t o b_!e vlslbi_____~e o__nn
~h__~e r~x~p3

. ~:£--_ __: :_~ =:

.

============================= : : .~_~ . ? : : :

Figure 4-1: Example plot of respone time

5. C o n c l u s i o n

We have presented a heuristic based on the hypothesis
of proportionate error to analyse token ring local area
networks. The heuristic is rapid and accurate. We
were fortunate in that the M/G/1 formula gave us an
accurate estimate of the overall behaviour of the system;
the M/G/1 estimate of overall queue length multiplied
with accurate estimates (based on the proportional error
hypothesis) of the ratios of individual station queue

lengths to the overall queue lengths, gave accurate
estimates of performance metrics. Applying the
proportionate error hypothesis to other problems may
not be equally straight-forward.

The arguments used in developing this heuristic apply
to rings using multiple token and single packet
protocols. However, validation has been carried out
only with the single token protocol. We plan to carry
out validation studies with the other protocols.

Models of local area networks which incorporate
higher-level station-to-station protocols, such as HDLC,
have not appeared in the literature. We feel that the
proportionate error hypothesis applies to such models as
well.

6. A c k n o w l e d g e m e n t

We would like to thank Fred May of IBM Austin, for
his advice and support. We also want to thank Bill
McCallum, Rick Gimarc, Charlie Sauer and Jim Markov
of IBM for their help.

[Babie 78]

[Bux 81]

[Carsten 77]

[Carsten 78]

[Chandy 82]

R e f e r e n c e s

Babic, Gojko A.
Performance Analysis of the

Distributed Loop Computer
Network.

PhD thesis, Ohio State University,
1978.

Bux, Werner.
Local-Area Subnetworks: A

Performance Comparison.
IEEE Trans. on Comm

(10):1465-1473, October, 1981.

Carsten, Ralph T., et. al.
A Simplified Analysis of Scan Times In

an Asymmetrical Newhall Loop
with Exhaustive Service.

IEEE Trans. on Comm (9.):951-957,
September, 1977.

Carsten, Ralph T. and Posner, M.J.
Simplified Statistical Models of Single

and Multiple Newhall Loops.
Proceedings of the National

Telecomm. Conf. :44.5.1-44.5.7,
1978.

Chandy, K.M. and Neuse, D.M.
Linearizer: A Heuristic Algorithm for

Queueing Network Models of
Computing Systems.

CACM 25(2):126-134, February, 1982.

273

[Clark 78]

[Kleinrock 75]

Clark, David D., et. al.
An Introduction to Local Area

Networks.
Proceedings of the IEEE

66(11):1497-1517, November, 1978.

Kleinrock, Leonard.
Queueing Systems, Volume 1: Theory.
Wiley-Interseienee, New York, New

York, 1975.

[Konheim 74] Konheim, Alan G. and Meister, Bernd.
Waiting Lines and Times in a system

with Polling.
JACM 21(3):470-490, July, 1974.

[Kuehn 79] Kuehn, P.J.
Multiqueue Systems with

Nonexhaustive Cyclic Service.
Bell Systems Technical Journal

58(3):671-698, March, 1979.

[Little 61] Little, J. D. C.
A Proof of the Queueing Formula

L=xW.
Operations Research 9:383-387, 1961.

[Metealfe 76] Metealfe, Robert M. and Boggs, David
R.
Ethernet: Distributed Packet Switching

for Local Computer Networks.
CACM 19(7):395-404, July, 1976.

[Tannenbaum 81]
Tannenbaum, Andrew S.
Computer Networks.
Prentice-Hall, Englewood Cliffs, New

Jersey, 1981.

[Tropper 81] Tropper, Carl.
Local Computer Network

Technologies.
Academic Press, New York, New York,

1981.

274

