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1. I n t r o d u c t i o n  

This paper presents a simple heuristic analytic 
algorithm for predicting the "response times" of 
messages in asymmetric token ring local area networks. 
A description of the token ring and the model is 
presented in section 2 the algorithm is described in 
section 3 and the empirical results in section 4. The 
analytic results were compared against a detailed 
simulation model and the results are extremely close 
over a wide range of models. 

Local area networks (or LANS) offer a very attractive 
solution to the problem of connecting a large number of 
devices distributed over a small geographic area. They 
are an inexpensive readily expandable and highly 
flexible communications media. They are the backbone 
of the automated office - a significant component of the 
office of the future. 

This importance of LANS in the future of applied 
computer science has resulted in a tremendous burst of 
interest in the study of their behaviour. There are 
already many different LAN architectures proposed and 
studied in the literature [Tropper 81] [Tannenbaum 81] 
[Babic 78] [Metcalfe 76] [Clark 78] One LAN 

architecture is significant for several reasons. This 
architecture is the token ring [Carsten 77]. It has 
at tracted interest because of its simplicity fairness and 
efficiency. The interest it has generated has resulted in 
the proposal of several different versions. This paper 
concentrates on one of these versions - the single token 
token ring protocol as described in [Bux 81]. This 
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particular version is attractive because of its overall 
simplicity and reliability. This paper presents an 
algorithm for predicting response times in a token ring 
with the single token protocol. 

1.1.  Re la t ed  w o r k  

In [Bux 81] Bux presents an exact solution for 
predicting mean response times in a symmetric token 

• ring. This work was derived from work of Konheim and 
Meister [Konheim 74]. However the assumption of 
identical traffic at all stations on a ring is considered too 
restrictive for practical application. 

In [Carsten 77], Carsten et al investigated an 
asymmetric Newhall Loop with exhaustive service. 
They derived expressions for the mean and variance of 
scan times (the time it takes for a token to travel 
around the loop). This work was continued in [Carsten 
78], where means and variances of response times were 
derived. The results obtained in that  work do not apply 
here, as the rings studied in [Carsten.77] and [Carsten 
78] are of the exhaustive service type. In an exhaustive 
service protocol a station, once given permission to 
transmit, may transmit all of its waiting messages. The 
token ring studied in this paper is believed to be a more 
practical protocol. It is much fairer than exhaustive 
service because a station may transmit only one message 
before passing permission along to another station. 

In [Kuehn 79], Kuehu presents a very accurate 
algorithm for nonexhaustive service in cyclical service 
queueing systems with overhead. When applied to 
token rings, the algorithm works well for small rings 
with limited asymmetry of load and high overhead. The 
algorithm next presented in this paper is accurate for 
large rings with unlimited asymmetry of load and low 
overhead. We are interested in rings having these 
characteristics because we expect them to be most 
frequently enountered in practice. 

© 1983 ACM 0-89791-112-1/83/008/0266 $00.75 

266 



2. The Token Ring 
The operation of the token ring is now presented in 

more detail. The protocol is described here at the 
hardware level. Aspects of higher level protocols, such 
as packet assembly/deassembly, are not discussed. 

A token ring consists of a communication line (a cable) 
configured as a closed loop. Data is transmitted in a 
single direction, bit serially, around this ring. There are 
N stations (indexed 0,...,N-I) on a token ring (see fig. 
2-1). Message packets arrive at each station and a re  
enqueued at the station in first come first served (FCFS) 
manner. Each packet contains a destination address 
(i.e. station index). This address indicates the index of 

the station to receive the packet, once successfully 
transmitted onto the ring. 

¢ /e 

F i g u r e  2-1: View of token ring data flow 

A station with waiting packets must wait for 
permission to transmit onto the ring. This permission 
takes the form of a special sequence of bits, called the 
token (or, free token). All waiting stations constantly 
monitor the ring and watch for this special sequence. 
When such a station recognises the token sequence it 
alters it by changing the last bit of that  sequence. This 
action removes the token from the ring, and creates a 
new bit sequence called a connector token (or, busy 
token). The station seizing the token in this way may 
now start  to send out the message packet at the head of 
its queue. 

The connector token sequence is now followed by the 
bits of the station's packet. Once the station has 
finished sending out all of the bits of its packet it must 
give up the token. Giving up the token means 
recreating the unique token bit sequence, and ceasing all 
subsequent transmission until it again recognises the 
token. 

At  this point in the description we now indicate that  
there are several slightly different versions of the 
protocol. Each of these versions differs in the way that  
a station, once finished with the token, decides to put it 
back on the ring. The token may be sent out 
immediately following the last bit of the packet. This is 
called multiple token operation in [Bux 81]. Since a 
station follows the last bit of its message with the token, 
it is possible for an adjacent station to immediately seize 
the token (i.e. change it to a connector token), and start  
transmitting its packet. Thus it is possible to have 
multiple tokens on the ring at one time. In fact, if 
packet sizes are small enough it is possible to have 
several complete messages on the ring at a time, with 
multiple token operation. Multiple token operation is 
interesting because it seems to offer maximal ring 
utilisation and minimal delays for seizing the token. 

Another alternative, single packet operation requires 
that the last bit of the packet sent out by the station be 
received by that  station (and removed from the ring} 
before that  token can be recreated. This is the most 
conservative protocol, and only allows the bits of one 
message, and one token to be on the ring at any one 
time. For reliability and recovery this is the most 
attractive choice, as only one message is in jeopardy if 
the ring should fail. However, in a large ring it might 
take a long time for the last bit of the message to get 
back to that  station. This creates a lot of "dead time" 
on the ring - time that  stations with waiting packets 
could use. 

Yet another alternative, single token operation is to 
release the token when the connector token is received 
back by the sending station. Single token operation is 
the intuitive compromise between the other two 
alternatives. It has the reliability and recovery 
advantages of single packet operation, yet approaches 
the ring utilisation .of multiple token operation for large 
message packets. For these reasons, single token 
operation has received special interest, and so has been 
selected for study in this paper. 

In addition to looking for the token, stations are also 
constantly monitoring the ring for packets addressed to 
them. When a station recognises its address in a p a c k e t  
it starts to copy the subsequently arriving bits into a 
local buffer. On recognition of the end of a packet 
sequence the station stops copying from the ring. The 
reception of a packet from the ring is non-destructive in 
that the packet is still on the ring after the destination 
has received it. '  It  is the responsibility of the station 
sending a packet to purge that  packet from the ring 
when the station starts to receive the packet itself. This 
behaviour facilitates broadcasting of messages - many 
stations can listen-in, not just one. It also increases the 
ring efficiency and reliability - the receiver of a packet 
can change a bit in that  packet to indicate to the sender 
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that the packet was received; further, the sender can 
compare what it sent out against what it received back, 
and look for errors. 

In order to recognise bit sequences on the ring every 
station buffers st least one bit of information. Thus, 
with only limited memory requirements, a station can 
recognise passing bit sequences {see fig 2-2). 
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Figure  2-2: Token Ring Station with 1 Bit Buffer 

For example, if the token is 8 bits long and has 
sequence 11111111, the token recognition logic need 
only count consecutive l's. When 8 consecutive 1 bits 
have been counted by a station with a waiting packet, 
the station knows it has the token and may change the 
last bit of the token (while it still has it in its buffer) to 
a 0, thus giving the connector token the sequence 
I1111110. 

3. T h e  A l g o r i t h m  

We now present the central contribution of this paper 
- an algorithm for predicting mean response times for 
stations on a token ring. 

3.1. A Hypothesis  - The Proport ionate  Error 
Hypothesis  

This algorithm is based on an idea which was used in 
a different form in the LINEARIZER algorithm of 
Chandy and Neuse [Chandy 82]; we call the idea the 
hypothesis of proportionate error- we shall describe the 
general idea, and then the specifics of the algorithm. 

Most realistic models of computer and communication 
systems are intractable because the state space is too 
large. Therefore, approximate techniques are used to 
estimate performance metrics; due to the approximate 
nature of the analysis, these estimates are erroneous. 
Our goal is to reduce the amount of error by devising an 
algorithm to correct (some of) the error. We 
hypothesise that when the same approximate algorithm 
is used to estimate several metrics, the error is 
consistently in the same direction for all metrics, i.e. the 
estimates are all too large, or all too small. We further 
hypothesise that the magnitude of error of an estimate 
is (roughly) proportionate to the true value of the 

metric being estimated. This hypothesis, called the 
proportionate error hypothesis, may not hold for all 
models, however, we have searched for algorithms to 
correct the error assuming that the hypothesis does 
hold. 

The particular form that the algorithm takes depends 
on the problem at hand. The LINEARIZER algorithm 
takes one approach in correcting the error for analysing 
product-form queueing networks, and we shall take a 
very different approach in this paper for studying token 
rings. Both approaches, however, are based on the same 
hypothesis. In this paper we argue that if the 
proportionate error hypothesis holds true, then the 
ratios of the estimates should be almost exact. 
Therefore, we search for a normalising constant which, 
when multiplied by the (almost exact) ratio, yields an 
accurate estimate of the performance metric: this 
approach is discussed in detail next. 

3.2. Notat ion  and Assumptions  

• Packets arrive at station i in a Poisson 
manner with mean arrival rate of x i. 

• Packets at all stations have the same size 
distribution. This distribution is described 
by random variable X. The mean and 
second moment of packet length are denoted 
as E[X] and E[X2], respectively. 

• The bandwidth of the ring is expressed as p 
bits per second. The time to transmit a 
packet of length a bits is then a/p seconds. 
The time spent by a station transmitting a 
packet is a random variable S, with mean 
E[S] ~ E[x]/p, and second moment E[S 2] ----- 
E[X2]/# 2. The coefficient of variation of the 
transmitting time is denoted by k, and is 
determined as k ---- as/E[S], where a S is the 
standard deviation of S. 

• We let the queue length of message packets 
at each station be described by random 
variable Qi" The mean of this variable is 

E[Qi]. 

• Let the waiting time for a packet at station i 
be W i. We §hall derive the mean of Wi, 

n[wi]. 

• We define the utilisation of the ring by 
station i to be the product of average packet 
size and packet arrival rate at station i. We 
denote this as Pi" (So, Pi = xi * E[X]/p ). 
The utilisation of the entire ring, p, is then p 
---- Ei Pi, ignoring overhead. 

• In this discussion we assume the ring is 
reliable and free of physical and logical 
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faults. (The single token protocol was 
chosen for study partially because of its 
reliability, but the issue of reliability is not 
of concern in the remainder of this paper). 

The overhead delay is denoted as d, and is 
expressed in seconds. This represents the 
physical ring propogation delay plus the data 
holding time (data buffering time) for a 
station (recall that a station must buffer at 
least 1 bit to allow for token recognition and 
capture). Rings are usually short (e.g: Ikm) 
so propogation delay is minor. Station 
delays are small when compared with the 
mean packet transmission time (E[X]/p 
seconds) because stations buffer very few 
bits (1 to 4 bits), and hence, station delay~ 
are of the order of 1/p to 4/p seconds. 

3.3. Mot ivat ion  for the Algor i thm 

3.3.1. The token ring is an M / G / I  sys tem 
If we consider the token ring just described as a single 

server the entire ring satisfies the assumptions of the 
Polloczek-Khintchine formula [Kleinrock 75]. This 
formula gives the average waiting time in a queueing 
system under the assumptions of a single server with 
Poisson job arrivals, where arriving jobs request service 
times from a general service time distribution; the 
service order is independent of service time request, 
there is no preemption of service and no overhead. 

This type of queueing system is called an M/G/1 
queue. The mean queue length for this system, E[Q], 
excluding the customer (if any) in service, is given by 
the Polloczek-Khintchine formula as 

E [ Q ] = p 2 * ( l + k  2 ) / ( 2 . ( 1 - p ) )  (1) 

Where p is the server utilisation, and k is the coefficient 
of variation of service time. 

We can apply Eqn. 1 to the token ring environment 
and derive the overall mean ring queue length, with X = 
~i Xr This tells us the total number of message packets, 
on average, that are waiting in the ring system, 
excluding the packet being transmitted. From Little's 
Law [Little 61], 

E[W] = E[Q] / × (2) 
were E[W] is the overall average wait time (excluding 
service) for all packets arriving at the ring, over all 
stations. Our goal is to determine E[Wi], for all i, i.e. 
the mean waiting time for packets arriving at each 
station i. The ring is not symmetric, and the mean 
waiting time at each station may be different from the 
overall mean waiting time. Our problem is to derive 
individual station statistics from the overall ring 
statistics. 

To derive approximate ring statistics from station 
statistics we shall partition the overall mean ring queue 
length E[Q] into the individual station components. 
Our approach is to derive approximate mean queue 

e 

lengths at individual stations ql and divide E[Q] in 
proportion to these values so that 

EIQi] =.( q[' / Ejqj ) * E[Q] (3) 

3.3.2. Determining  individual s tat ion queue 
lengths 

A packet P arriving at random at station j can expect 
certain delays before being transmitted onto the ring 
from j to its destination. P 's  waiting time is divided 
into two components (see fig 3-1) for convenience: 

1. waiting for the token to reach station j from 
its location on the the ring at the instant at 
which P arrives. 

2. waiting for the packets ahead of P in station 
j's queue to be sent, given that the token is 
now at station j. 

For instance, consider a packet P arriving at random 
at station 10 (say). Suppose that when P arrives the 
token is at station 1, and there are already 2 packets 
ahead of P in station 10's queue. We partition the 
waiting time for P into a) the time required for the 
token to get to station 10 from its current location at 

o $  e 

P 

Figure 3-1: Waiting time components for a random 
arrival in a token ring 

station 1, and b) the time remaining for the token to 
return to station 10 after making 2 more complete 
revolutions. (On the revolution in progress when P 
arrived, the packet at the head of station 10's queue will 
be transmitted when station 10 gets the token. On the 
next revolution the packet immediately ahead of packet 
P will be transmitted. Then at the end of the second 
revolution, packet P will be transmitted.) Our goal is to 
divide the number of revolutions a token must make 
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before P is transmitted into an initial partial revolution, 
followed by a number (0 or more) of whole revolutions. 

These component delays are now discussed from the 
point of view of a randomly arrived packet at station j. 

W a i t i n g  for the token to reach stat ion j 
- the initial partial  revolut ion 

When a random packet arrives at station j, the token 
could be at any of the N stations {including j). The 
time for the token to reach station j will depend on 

• the time for the present user of the token 

(say, station i) to complete transmission and 
release the token. 

• the probability that any station between i 
and j will seize the token while on its way to 
j. 

These considerations result in the definition of a 
random variable Tij which describes the time for the 
token to reach station j given that it is held by station 
i. We are interested in the value of E[Tij}, and compute 
it as follows (see explanation below): 

E[Tij ] ---~ E[S2]/2*E[S] + d , if i~pred(j) (4) 

E[Tipred(j) ] + Ppred(j)*E[S] + d , if i=f~pred(j) 

where pred(j) is the id of the station 
immediately preceding j on the ring. 

Explanat ion for Eqn. 4, ease 1: i ~ p r e d ( j )  

That is, if station i is immediately adjacent to j on the 
ring, then as soon as i's transmission completes it will 
give the token straight to j. (E[S2]/2*E[S] is called the 
mean residual life of the service time and represents 
the average remaining service time after a random 
"glance" at an active server. For more information 
about the theory of residual life, consult [Kleinrock 75]). 

Explanat ion for Eqn. 4, ease 2: i=f~pred(j) 
The time for the token to travel from station i to 

station j is the sum of the time taken for the token to 
travel from station i to station pred(j), and the time 
taken by station pred(j) to pass the token to station 
j. The probability that station pred(j) will have a 
packet for the ring is assumed to be Ppred(j) ° the 
utilisation of that station. If station pred(j) does have a 
packet, then this will delay the time for j to get the 
token by E[S] - a complete mean packet service time. 

Using PK for the probability that station k has a 
packet for the ring is a simplification. An early version 

of the algorithm used 1 - e "~K(TKK'E[S2]/2*E[s]) for this 
probability. This value is the probability of at least one 
arrival in the time for the token to reach status k, after 

k releases it. We found, however, that this made little 
difference to the results, and in fact that using PK 
provided slightly better results. We suspect that 
proportional error contributes to the accuracy of the 
more simple approximation. 

It is possible for the token to be in transit between 
stations when P arrives. This possibility was considered 
in our initial models, but was later discarded because it 
did not make the model more accurate for the 
parameter ranges of interest. 

Now that we know the time for the token to reach j, 
given that it is at i, we can derive the mean time for the 
token to reach station j, regardless of where the token 
is. We describe this time with random variable K 3, 
The token will be at station i with probability Pi (station 
i's utilisation), so we may compute E[Kj] as: 

E[Kj] ----- ,U i pi*E[Tij] (5) 

Wait ing for packets  ahead of  P to leave 
- the succeeding whole  revolut ions  

When the token has arrived at station j (the initial 
partial revolution is over), packet P must still wait until 
all packets ahead of it in j 's queue have been sent. In 
this token ring protocol, a station may only send one 
packet before passing the token, so after each of the 
packets in j 's queue is sent, the token will have to be 
released. 

So, when one of the packets in j 's queue is sent, and 
the token released, the remaining stations on the ring 
will get an opportunity to send a packet. Station j will 
send a packet, then station j + l  rood N may send one, 
j+2 rood N may send one, and so on, until station j gets 
the token back again. Then j sends another packet and 
the other stations get a similar chance. This behaviour 
continues until all of the packets originally ahead of 
packet P in j 's queue are sent. This packet's wait is 
now over, and so it may begin transmission. 

This situation is best illustrated by an example. 
Consult figure 3-2. Station 1 has just received packet 
P. The token has reached station 1, and now packet P 

finds itself waiting at station 1 for the three packets 
ahead to be sent. After packet A is sent, station 2 will 
send packet D, followed by station 3 sending packet 
F. The sequence continues, G-B-E-H-C-I, and then 
station 1 can send packet P. So, from P's  point of view, 
it had to wait for 9 packets to be sent before it could be 
sent. Had any arrivals into stations 2 or 3 occured 
before packet C could have been sent this would have 
lengthened the sequence, and so the delay to packet 
P. Notice that packet J, and all subsequent arrivals at 
station 4 will not affect in any way the time for packet 
P to get onto the ring. 
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Figu re  3-2: Example of packet waiting 

We will call the time spent by a packet waiting for 
complete token revolutions (due to packets it finds 
ahead of it station j 's queue), work. Let this work time 
spent by a packet be described by a random variable Zj, 
with mean E[Zj]. When a random packet, P, arrives at 
station j, each of the stations m (m c 1..N) will contain 
E[Qm] packets in their queues, on the average. By the 
time that this packet at station j starts transmission 
(after E[Wi] ) there will be, on average, ~m*E[Wi] new 

arrivals at each queue m. The E[Qj] packets at station j 
will have to compete for the ring with E[Qm]+Xm*E[Wj] 
other packets at each station m. If j 's queue is emptied 
first, it doesn't matter how big the other queues are 
because the waiting packet at j will now be at the head 
of the queue. Thus the maximum number of packets 
that any station i can send before P enters the ring is 
E[Qj]. Hence we estimate the number of packets that 
enter at station i before P enters the ring as 
min(E[Qj],E[Qm]+X~*E[Wj] ). These considerations 
result i ,  the following definition of expected work: 

E[Zj] = E[S] * ( E[Qj] + (6) 

Em~i MIN(E[Qjl,E[Qm]+×m*E[Wi])) 

T h e  t o t a l  m e a n  w a i t  t i m e  

The goal of the algorithm is to determine E[Wi] , the 
mean wait time at each station j. The last two sections 
discussed the determination of each of the two 
components of total wait time. The overall wait time 
for a packet is the sum of the two components described 
above. That  is, the expected wait time for a packet at 
station j, is estimated as: 

t 
w j = E[Ki] + E[Zj] (7) 

The result of these computations is a set of 
approximate mean wait times and queue lengths. We 
know,, however, that the total queue length must sum to 

E[Q], and so use Eqn. 3 to arrive at the final estimates 
for wait times and queue lengths. 

We now present the algorithm in stepwise form. 

3.4. T h e  A l g o r i t h m  
The algorithm is iterative. New values for the queue 

lengths of message packets at individual stations, E[Qi], 
are computed in each iteration from the old values, 
LAST_E[Qi] , taken from the last iteration. At the end 
of each iteration, these two values are compared to 
check for iteration convergence. 

Inputs: Message packet distribution moments 
- SIX], EFX ~] 

Ring bandwidth - 

Number of stations - N 

The arrival rates, for all i - x i 

Initialisation: Initialise for all i 
E[WI] = 0.0 
E[Q i] = 0.0 
LAST_E[QI] = 0.0 

w i' = 0 . 0  

q1' = 0 . 0  

Compute utilisations 
Pt = Xi * E[S] 
P = Ei  Pi 

Compute coefficient of variation of 
service 

k = a s / EiS]  

Step 1: 

Step 2: 

Step 3: 

Step 4: 

Step 5: 

Step 6: 

Compute E[Q], the overall queue 
length using Eqn. I 

Compute E[Tii], for all i and j using 

Eqn. 4 

Compute E[Ki], for all i using Eqn. 5 

Compute work, E[Zi], for all i using 
Eqn. 6 

Compute w i , the approximate wait 
times, for all i using Eqn. 7 

and qi, the approximate queue 
lengths, using Little's Law. 

Save former values of E[Qi] in 
LAST_E[Qi],  for all i. 

Compute E[Qi], the predicted queue 
length using Eqn. 3 

and E[Wi], the predicted wait times, 
using Eqn. 2 
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Step 7: Compare E[Qi] and LAST_E[Qi]. If 
the convergence criterion is met, 
terminate. If the convergence criteria 
is not met, go to step 4. 

Convergence Criterion 
The convergence criterion used is based on queue 

length. At the end of one iteration new values of E[Qi] 
are compared with old values (LAST_E[Qi]). Define 
MAXDIF to be the largest relative difference between 
the corresponding values of E[Qi] and LAST E[Qi]. 
MAXDIF is compared with a small number (e.g..0001). 
If MAXDIF is larger then .0001, we must continue. If 
MAXDIF is smaller than .0001, we may terminate the 
iteration. 

4. R e s u l t s ,  Val idat ion  and Discussion 

A token ring was not available for instrumentation, so 
testing of the algorithm was done against simulation. A 
very efficient simulation model of the token was 
constructed in Fortran. This model included confidence 
interval estimates to facilitate simulation convergence 
determination, as well as to aid in the evaluation of the 
results of the algorithm. 

The experiments were sequenced in increasing order of 
variability of model parameters. That is, initial 
experiments considered only symmetric rings. From 
these, a large range of models were considered where 
the packet size was identically distributed over all 
stations, but the arrival rates were different. We now 
present a discussion of the results. 

4.1. Symmetric Rings 
The Konheim Meister [Konheim 74] result reported in 

[Bux 81] indicates that the expected wait time at a 
node in a symmetric exhaustive service token ring is 

W = ~*E[S 2] / (1-~)'2'E[S] (8) 
+ E[S] 
+ N*d*(1-p/N) / 2*(l-p) 
+ N*d / 2 

Numerous simulation experiments were conducted 
with symmetric rings of various sizes. The results 
obtained from the simulation experiments were all in 
agreement with Eqn. 8. The analytic algorithm 
presented in this paper gives results identical with Eqn. 
8, except for the last two terms, which we consider 
insignificant. Notice that the first term of Eqn. 8 is 
exactly the Polloezek-Khintchine formula (see Eqn. 1). 

The last two terms in Eqn. 8 are, under the 
assumptions considered in this paper, very s~nall. For 
instance, on a 100 station, 4 Mbps ring, where each 
station imparts a 1 hit delay to the ring traffic, even if 
the ring utilisation is 90% the last two terms are less 

than .0002 seconds. Of far more significance are the 
first two terms. 

4.2. Asymmetric Rings 
We conducted experiments with rings of various sizes 

and degrees of asymmetry. The state space of possible 
token ring configurations and arriving packet 
characteristics is enormous, so we attempted to cover a 
manageable, but useful portion of it. 

Ring sizes were partitioned into three groups - small 
(up to 5 stations), medium - (6 to 11 stations), and large 
(12 to 21 stations). Larger ring configurations are 
certainly possible, but we expect that because of 
performance, reliability and cost, very large ring 
systems will be partitioned into rings of rings, and so on. 

Within each of the three ring sizes different asymmtric 
topologies were considered. Type I asymmetry 
considered rings where one of the stations had an arrival 
rate greater than all the other stations. Each of the 
other stations had the same arrival rate. Type II 
asymmetry considered rings where there were stations 
having larger arriva rates than the rest of the stations. 
These two stations each had the same arrival rate and 
were adjacent on the ring. Type HI asymmetry was the 
same as Type II except the two stations with high 
arrival rates were on opposite sides of the ring. With 
rings exhibiting Type I, II and HI asymmetry we were 
also interested in studying the effect of position on the 
ring on individual station response times. 

Two packet size distributions were considered for the 
tests. A few of the tests used exponentially distributed 
packet sizes. Most of the experiments considered only 
constant packet size distributions because it was more 
realistic. 

A further parameter of concern was the ring 
utilisation. Earlier studies [Tropper 81]resulted in 
models that were accurate only for low utilisations. We 
felt that , in order to be useful, our algorithm should 
work for high utilisations as well. Our experiments 
allowed the ring utilisation to range over 20%-90%. 

A sample of the results of the study is shown in figure 
4-1. 

4.3. Accuracy 

The validation metric used in the study was the 
relative deviation of the wait time predicted by the 
algorithm from that produced by the simulation. The 
predicted mean response time for station i is the sum of 
the mean wait time at station i (E[Wi]) and the mean 
packet transmit time (E[S]). In all configurations 
studied, including 
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• overall utilisations ranging from 20%-90% 

• asymmetry Types I, II, and HI 

, rings with 5, 11, and 21 stations 

• constant message packet size distribution 

the algorithm has consitently predicted individual 
station response times within 10% of times produced by 
the detailed simulation model. Over 270 such individual 
station response times were so predicted during this 
study. It is worthy of note that the algorithm is 
consistently accurate for the entire range of utilisations, 
from low to high. 

M e d i u m  R i n g  

N = 11 stations 
. = 1 Mbps 
E[X] = I0000 bits; E[X 2] = I00000000 blts 2 

( c o n s t a n t  d i s t r i b u t i o n )  
Type I asymmetry:  Xi.l~ i = l / s ;  

x 1 = lO/s. 30/s and 80/s 
Note:  90~ c o n f i d e n c e  i n t e r v a l s  a r e  shown 
where  wlde"',enou~h t o  b_!e vlslbi_____~e o__nn . . . .  
~h__~e r~x~p3 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ~:£--_ __: :_~ =: 

. . . . .  . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . .  . . . . . . .  

============================= : : .~_~ . ? : :  : : : : : : : : : : : : : : : : : : : : : : : : : : :  

Figure  4-1: Example plot of respone time 

5. C o n c l u s i o n  

We have presented a heuristic based on the hypothesis 
of proportionate error to analyse token ring local area 
networks. The heuristic is rapid and accurate. We 
were fortunate in that the M/G/1 formula gave us an 
accurate estimate of the overall behaviour of the system; 
the M/G/1 estimate of overall queue length multiplied 
with accurate estimates (based on the proportional error 
hypothesis) of the ratios of individual station queue 

lengths to the overall queue lengths, gave accurate 
estimates of performance metrics. Applying the 
proportionate error hypothesis to other problems may 
not be equally straight-forward. 

The arguments used in developing this heuristic apply 
to rings using multiple token and single packet 
protocols. However, validation has been carried out 
only with the single token protocol. We plan to carry 
out validation studies with the other protocols. 

Models of local area networks which incorporate 
higher-level station-to-station protocols, such as HDLC, 
have not appeared in the literature. We feel that the 
proportionate error hypothesis applies to such models as 
well. 
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