
CS 547 Lecture 19: M/G/1 Variations

Daniel Myers

This lectures deals with some variations to the basic M/G/1 model, and their applications to real systems.

Approximating a G/G/1 Queue

The G/G/1 queue has both general service times and a general arrival process. Typically, the arrivals are
characterized in terms of the mean interarrival time, a, and the coefficient of variation in the interarrival
times, c2

a.

You might expect G/G/1 to be an important model, because it could allow us to model a greater variety of
systems than M/G/1. While G/G/1 does have its important applications, it’s significantly more difficult to
analyze than the M/G/1 system, so there are fewer good results available, and the results that do exist are
typically only approximations. Therefore, we prefer to use the M/G/1 model whenever it’s reasonable, even
if the arrivals are not perfectly Poisson.

Nonetheless, it’s sometimes necessary for us to work with systems that have arrival processes that are burstier
than a Poisson process. In these cases, we can use a simple modification of the basic M/G/1 equations to
gain some increased accuracy without going to full-scale G/G/1 approximations.

The G/G/1 approximation incorporates the interarrival coefficient of variation, c2
a, into the M/G/1 residence

time calculation.

R ≈ s +
sU(c2

a + c2
s)

2(1− U)

If we have Poisson arrivals, then the interarrival times are exponentially distributed and c2
a = 1, which yields

the same equation we’ve already seen for M/G/1.

This approximation is not guaranteed to work, but it’s worth trying if you feel that the arrival process is
meaningfully non-Poisson. It’s also good to show others that you’re aware of the existence of non-Poisson
arrivals and can bend your models to account for them.

PowerNap

This section is based on the paper “PowerNap: Eliminating Server Idle Power” by Meisner, Gold, and
Wenisch.

The PowerNap authors are concerned with reducing energy consumption in a large-scale datacenter. There
have been many proposed strategies for reducing power consumption, but the PowerNap proposal is one of
the simplest: when a server has no more work to do, turn it off, then turn it back on when a new job arrives.

A consider a server with three modes: ON, IDLE, and OFF. When a server is ON, it draws full power and
can perform useful work. When a server is IDLE, it consumes about 60% of its full power. Servers can
transition between IDLE and ON instantly. When a server is OFF, it draws no power, but transitioning

1



from OFF to ON requires a startup period where the server draws full power, but cannot actually serve any
jobs.

There are two basic strategies.

• ON/IDLE: when a server’s queue is empty, switch to IDLE mode; switch back to ON when a new job
arrives

• ON/OFF: turn OFF when a server’s queue is empty; when a new job arrives turn back ON, wait for
the setup period, then serve the new job

The goal of the PowerNap paper is to compare the performance of these two strategies. To capture the effect
of both power consumption and residence time, they use

η =
1

R · E[Power]

as their preferred statistic. The key problem is to determine the values of R and E[Power] for both the
ON/IDLE and ON/OFF strategies.

ON/IDLE

We can analyze the ON/IDLE strategy using a basic M/G/1 queue.

The server can transition from IDLE to ON instantly, so jobs never suffer a waiting time penalty. The
average residence time is simply

R = s +
sU(1 + c2

s)
2(1− U)

The server draws full power whenever it is serving a job and IDLE power whenever it isn’t serving. The
fraction of time the server is busy with a job is simply the utilization U , so

E[Power] = UPON + (1− U)PIDLE

ON/OFF

Analyzing the ON/OFF strategy is more complicated, because we must account for the time spent in setup
when the server transitions from OFF to ON. Suppose that the setup time is governed by a random variable
I (for initialization). We can then model the behavior of the ON/OFF strategy using an M/G/1 queue
“with exceptional first service”. In this model, the first customer arriving to an empty queue has its service
time increased by the random intialization time I.

Analyzing this queue is non-trivial, because there is a complicated interaction between the setup period and
residence time. Jobs can continue to arrive during the setup period, which means they must wait for the
setup period to end. Once setup ends and the server begins processing jobs, there may be a backlog of jobs
built up, so new jobs that arrive shortly after the setup period ends experience an increased residence time.
The key result was derived by Welch in 1964.

R = s +
sU(1 + c2

s)
2(1− U)

+
2E[I] + λE[I2]
2(1 + λE[I])

Note that the first part of this result is simply the expected residence time in a normal M/G/1 queue. E[I]
and E[I2] are the first and second moments of the random setup time.

2



We still need to find an expression for the average power consumption in the ON/OFF strategy. Let Usetup

denote the fraction of time the server is busy with setup or serving jobs.

E[Power] = UsetupPON + (1− Usetup)0

Therefore, if we can find an expression for Usetup, we have the solution.1

Unfortunately, we can’t simply calculate Usetup as λs, as we’d normally do with the Utilization Law, but we
can still apply Little’s result to derive the expression we need.

Let ssetup denote the average time a customer spends in service, including the extra setup time for customers
that arrive to an empty queue. With probability 1− Usetup the queue is empty at an arrival instant, so

ssetup = s + (1− Usetup)E[I]

Now, use Little’s result on the server.

Usetup = λssetup

= λ(s + (1− Usetup)E[I])

=
λE[I] + λs

1 + λE[I]

Now, the expected power consumption of the ON/OFF strategy is

E[Power] =
λE[I] + λs

1 + λE[I]
PON

The PowerNap uses these equations to compare the performance of ON/IDLE and ON/OFF for different
loads and average setup times.

Busy Periods

This is extra material that was not covered in class.

A busy period starts when a customer arrives to an empty queue and ends when a departing customer leaves
behind an empty queue. We can also derive the expression for Usetup by reasoning about the length of the
busy period, denoted B

Busy periods are complex, because they’re recursive. When a job arrives to an empty queue, the busy period
includes the service time for that job. It also includes the service times of any jobs that arrive during the
first job, and any jobs that arrive during any of those jobs, and so forth.

Suppose the first job has a service time of w. On average, we’d expect λw jobs to arrive during the first
job’s service time. The expected time required to serve all of those jobs is λws. Because jobs continue to
arrive at rate λ, we’d expect λ(λws) more jobs to arrive while we’re serving the jobs that arrived during the

1The method shown in this section is not exactly what they did in the paper. Their model is assumes a mandatory shutdown
and powerup time indepednent of the setup period, so the result is a little more complex. The result here is my own derivation
for the utilization of the M/G/1 queue with exceptional first service.

3



first job. Extending this idea into an infinite sum,

B = w + λsw + (λs)2w + (λs)3w + . . .

=
∞∑

i=0

(λs)iw

=
w

1− U

Therefore, if a busy period starts with a job of length w, we expect it to last for w
1−U . If we consider a job

of average length, we get the average busy period in the M/G/1 queue.2

B =
s

1− U

Now consider the M/G/1 queue with setup. The busy period starts with a job of length s+E[I]. Therefore,
the expected busy period length is

Bsetup =
s + E[I]
1− λs

When the queue finally becomes empty, we expect to wait 1
λ until the next arrival. The fraction of time the

queue is busy is

Usetup =
Bsetup

Bsetup + 1
λ

Simplifying this expression yields the same result we derived in the previous section.

2Funny how this equation keeps coming up, isn’t it?

4


