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State Transition Models

A Markov chain is a model consisting of a group of states and specified transitions between the states. Older
texts on queueing theory prefer to derive most of their results using Markov models, as opposed to the mean
value analysis approach we’ve used for most of this course. Understanding Markov chains will allow us to
derive some new results that would be difficult to get using MVA alone.

Kinds of Markov Chains

A Markov chain can have a finite or infinite number of states. In a discrete time markov chain (DTMC) each
state change takes place at a fixed decision point and the time between changes is constant. In a continuous
time Markov chain (CTMC), changes can happen at any instant.

As you might expect, finite and discrete models are easier to analyze, so we’ll use a DTMC for our examples
in this lecture. Queueing models rely on CTMCs with infinite states, which we’ll cover in the next note.

The Markovian Property

Suppose we have a DTMC. Let Xn be a random variable denoting the state the model is in at time step n.
One thing we might be interested in reasoning about is the probability of being in a given state, say state j,
at time step n. In general, this probability could depend on the entire time history of the chain; that is, the
probability of being in state j at time n is influenced by the state the model was in at every previous time
step. Suppose the model was in state i at time step n− 1 and some state st at each time step 0 ≤ t < n− 1.
The probability we’re interested in could be written as

P [Xn = j | Xn−1 = i and Xn−2 = sn−2 and . . . X0 = s0]

The Markovian Property says that transitions in a Markov chain depend on only the current state, and not
on any history of previous states. That is, state transitions in a Markov model are memoryless.

P [Xn = j | Xn−1 = i and Xn−2 = sn−2 and . . . X0 = s0] = P [Xn = j | Xn−1 = i]

For any pair of states i and j, let Pij denote the one-step transition probability of moving from state i to
state j, independent of the time step or previous history. Specifiying the one-step transition probabilities is
a compact way of describing a Markov chain.

An Example Model

Consider a model with just two states, called state 0 and state 1, and transition probabilities given by

• P00 = 1− p

• P01 = p
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• P10 = q

• P11 = 1− q

So, the probability of moving from state 0 to state 1 is p, and the probability of moving from 1 to 0 is q, etc.

It’s convenient to collect the transition probabilities into a matrix.

P =
(

1− p p
q 1− q

)

Now, let π(n) be a vector denoting the probability of being in each state after n transitions. Given a starting
distribution, π(0), we can use total probability to calculate the probability to calculate the chance of being
in each state after one transition step.

If the model is state 0 after one transition, there are two ways it could have gotten there: by starting in
state 0, then staying in state 0 with probability 1 − p, or by starting in state 1 and transitioning to 0 with
probability q. Similar arguments apply to being in state 1.

π
(1)
0 = π

(0)
0 (1− p) + π
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π
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1 = π

(0)
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Writing these equation in matrix form,(
π

(1)
0 π

(1)
1

)
=

(
π

(0)
0 π

(0)
1

) (
1− p p

q 1− q

)
π(1) = π(0)P

Using row vectors for the π values is somewhat atypical (most linear algebra books use column vectors and
place the matrix on the left), but is necessary because of how we defined the matrix P .

The Limiting Probabilities

If we know π(0) we can easily calculate any value of π(n), just by repeatedly multiplying by P .

π(n) = π(0)Pn

The matrix elements Pn
ij represent the probability of being in state j after n transitions, given that we started

in state i.

What happens as n → ∞? It isn’t obvious, but it can be shown using induction that the matrix P will
converge to a stable matrix with a single value in each column, and identical rows.1

lim
n→∞

Pn =
( q

p+q
p

p+q
q

p+q
p

p+q

)
This is a surprising result! It turns out – at least for this simple example – that the probability of being
in state 0 converges to a constant value of q

p+q , regardless of the starting state. Similarly, the probability
of being in state 1 converges to p

p+q . Also note that these two probabilities sum to 1, so this is an actual
distribution.

Let π = limn→∞ π(n) be a vector denoting the limiting probability of being in each state. If we want to
calculate π, we can simply multiply the matrix P by itself until the values converge, then read the values
from any one of the rows.

1M. Harchol-Balter, Performance Modeling and Design of Computer Systems, Ch. 8.
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The Stationary Equations

If we don’t want to perform repeated matrix multiplication, there is another way of obtaining the limiting
probabilities. The vector π = (π0, π1, . . . , πN−1) is a stationary distribution for the Markov chain if it satisfies

π = πP

N−1∑
j=0

πj = 1

It’s possible to prove theorems demonstrating that the solution to the stationary equations will also be the
limiting distribution.

It’s necessary to add the requirement that the elements of π sum to 1 to obtain a solution. Without the
extra constraint, the system π = πP is underdetermined – the equations are not linearly independent – and
has infinitely many solutions.

Questions of Existence and Convergence

At several points thus far, we’ve taken limits without guaranteeing that the limit actually existed. In
particular, there’s no obvious reason why Pn should converge as n →∞, or that the long-run probability of
being in each state should be stable.

In fact, there are a set of “good” properties for Markov chains. Any model satisfying these good properties
will have a limiting distribution, which can be calculated by iteratively multiplying the P matrix, or by
solving the stationary equations. For now, we’ll assume that all of our chains have these properties, and
we’ll look at them in more detail in a future class.
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