CS 547 Lecture 3: Little’s Result

Daniel Myers

Little’s Result (sometimes called Little’s Law) is the key equation for understanding system dynamics. We’ll
use it over and over again to derive new results in a variety of contexts.

The equation relates three key system parameters: throughput, residence time, and the average number in
the system.

N=AR

For example, if a university awards 50 CS bachelor’s degrees per year, and it takes the average student four
years to earn the degree, we would expect an average of 200 undergraduate students in the CS program.

Proof

As with the Forced-Flow Law, we’ll make a measurement-based argument for the validity of Little’s Result.

Suppose we measure the system for a time period of length 7" and record C' completions during the interval.
Now, divide the entire measurement interval into non-overlapping periods where the number of customers in
the system is stable. When an arrival or departure occurs, the number of customers in the system changes,
then remains stable until the next arrival or departure occurs.

If the ith stable period lasts for ¢; and has a population of n; customers, we can define the total time
accumulated by all customers in the during the period (measured in units of customer-seconds) as

Vi = Niti.
The total number of customer-seconds accumulated over the entire measurement interval is

WZZ%‘
i

Now, the following relationships hold:

=l
I

= o
|

HIQ QIR IR

Using the relationships, we can verify that N = AR to complete the argument.

The Power of Little’s Result

Little’s Result is an extremely useful result for two reasons.



First, it’s an extremely general result. It makes no assumptions about how arrivals occur, how customers
accumulate service, or any other statistical properties of the system. Little’s Result applies to any system.

Second, we can apply the equation to any part of a system. As we go through this course, we’ll use Little’s
Result to analyze entire systems of queues, individual queues, groups of queues within a system, and even
parts of a single queue. The same relationship between throughput, occupancy, and residence time holds in
all parts of a system.

Examples

We measured a router for 30 minutes. 3.6 x 108 packets were transmitted during the interval and the average
queueu length was 8 packets, including the packet in service. Find the average residence time.
This is a straightforward application of the equation: given two of the values, find the third.

- N
R=—
A
B 3 packets
3.6 x 106 packets / (30 * 60) sec
= .0015s

A job trace records the arrival time, start time, and completion time for each task in a system. What is the
average number of waiting jobs?

We can find the average number waiting by applying Little’s Result to the queue’s waiting line. The average
time spent in line is simply the average waiting time, W.

Nwaiting =AW

The average waiting time can be calculated by comparing the arrival time of each job to its start time. The
thoughput can be calculated from the arrival times.

The Utilization Law

We can also apply Little’s Result to the server of the queue. The average time spent at the server is simply
the average service time, s.

Nserver =As

The average number in the server is equivalent to the fraction of time the server is busy serving a customer.
This is the utilization, U. Therefore, the Utilization Law is simply a special case of Little’s Result:

U =As.

Under normal operation, 0 < U < 1. If the system is overloaded (when A > ), the calculation will result in
U>1

Corollary: If @ is the average number in the queue including the customer in service, Q@ — U is the average
number waiting and not being served.

Combining the Forced-Flow Law and Little’s Result

Consider a desktop computer with one disk that serves page faults. We measured that Ug;si, = .8, Sgisky = .01
sec, and Agystem = 5 tasks per second. What is the average number of page faults per task?



We need to calculate V.. First use the Utilization Law to find the disk throughput.
U

Agis = —

s
.80

01
_ 80 faults
sec

Now, use the Forced-Flow Law to find V gz
A

Adisk
s
5

=16

Vaisk =

faults
task

Multiple Classes

In some applications, we divide the customers in a system into multiple classes. For example, we might use
two classes to model different levels of I/O service, where one class gets priority treatment and the other
only gets best-effort service.

If we have two classes, A and B, with paramters N4, A4, Ng, Ap, then the numbers of customers and
throuhgputs are additive.

N=Nas+Ng
A=As+Ap
To calculate the average residence time, we can use Little’s Result to weight the class residence times.
AR=N
=Ns+Np
=AsRa+ ApRp

Closed Systems

Little’s Result still applies to closed systems, but we have to be more careful about defining what “residence
time” means in a system where customers never really leave.

Suppose we pick one particular point in the system that’s visited by all customers, then consider the total
time required for a customer toleave the point, travel all the way through the closed loop, and return to the
point. There are two things the customer must do on its trip through the loop: visit the think node for
an average time of Z and visit the rest of the system for an average time of R. Thus, the average time a
customer spends on one trip through the loop is R + Z.

Since the number of customers NN is a fixed parameter, we can use Little’s Result to calculate throughput:
N
=517

This result matches our previous definition of throughput in a closed system.



