UNIVERSITY of WISCONSIN-MADISON
Computer Sciences Department

CS 202 Professor Andrea Arpaci-Dusseau
Introduction to Computation Fall 2010

Lecture 3:
Telling the computer what to do

© Original Arist
Reproduction rights obtainable from
i Cat corm

wniw CaaanStock:

LS & (o
“You feel awkward? " NO, SiMMS, T SAD T WANT To S6E A PROFIT ARSUND.
You're the one who said we ought to hunt bare.” HERE:

Exercise: How do you tell a
computer what to do?

Groups of two:

* Programmer

 Computer (Drawer)
Role of Programmer:

* Give instructions so “Computer” draws specified picture
Role of Computer (Drawer):

* Must follow instructions, but can do so in annoying way

o B

What primitives are known?

Basic geometric shapes
* Line, circles, rectangles, octagons, hearts
* Not houses, not smiley faces, not trees

Numbers, sizes, and distances
e Quantitative measurements (inches, cm)
* Qualitative measurements (bigger, smaller)

Coordinates and layout

e Up (above), down (below), top, bottom, left, right,
vertical, horizontal, middle, half, divide, center...

Step 1: Create Secret Picture

@ Draw a picture
\J ¢ You will tell others how to

copy

Make sure no one else in room
sees!
¢ Will switch partners

Pick something interesting, but
@ relatively simple

9/10/10

Step 2: Follow Instructions with
Partner

Version 1: No feedback
* Programmer cannot watch drawer
* Drawer/computer cannot communicate or ask questions back

* Drawer does not need to be cooperative but must follow directions
(subject to interpretation)

Version 2: Visual feedback
* Programmer watches drawer and corrects mistakes
* Drawer cannot communicate or ask questions back

Discussion Questions

Why is English not good for “programming”?
e Other domains where English is not a good match?

How do different versions impact difficulty?

Which version corresponds to traditional computer
programming?

Take-Away Lessons

Programs need set of basic primitives

Multiple programs (drawings, outputs) can be made from
those same instructions

Must be precise: English is not always
Versions: Easier with more feedback

Traditional programming languages give no feedback until end
» Scratch (very visual) continuously gives feedback, should be easier!

Language for
Exploring Algorithms

Need a programming language for
 Specifying algorithms
- What exactly does it do?
* Comparing algorithms
- Which one is faster?
* Executing algorithms
- Have fun running it!

Options:
* English: Not precise enough and can’t execute it!
* Traditional languages: Assembly, C, Java, ...

9/10/10

Traditional Programming: C

void requestError(int fd, char *cause, char *errnum, char
*shortmsg, char *longmsg)

char buff MAXLINE], body[MAXBUF]; int requestParseURI(char *uri, char *filename, char *cgiargs)
printf("Request ERROR\n"); char *ptr;

/% Create the body of the error message */

sprintf(body, "<html><(itle>CS537 Error</title>"); if (!strstr(uri, "cgi”

sprintf(body, "%s<body bgcolor=""fffff"">\\n", body); /% Static content */

sprintf(body, "%s%s: %s\tn", body, errnum, shortmsg); strepy(cgiargs, "");

sprintf(body. "%s<p>%s: %s\\n", body, longmsg, cause); sprintf(filename, ".%s", uri);

sprintf(body, "%s<hr>CS537 Web Server\iin", body): if (urifstrlen(uri)- 1] == 1) {

strcat(filename, "home.html");
/% Wite out the header information for this response */

sprintf(buf, "HTTP/1.0 %s %s\An", errnum, shortmsg); retun 1
Rio_writen(fd, buf, strlen(buf)); }else {
printf("%s", buf); /% Dynamic content */
ptr = index(uri, '?');
sprintf(buf, "Content-Type: text/htmI\An"); if (ptr) {
Rio_writen(fd, buf, strlen(buf)); strepy(cgiargs, ptr+1);
printf("%s" , buf); “ptr = \0"
}else {
sprintf(buf, "Content-Length: %d\in\n", strlen(body)):; strepy(egiargs, ");
Rio_writen(fd, buf, strlen(buf)); 3
printf("%s", buf); sprintf(filename, ".%s", uri);
return 0;
/% Write out the content */ }
Rio_writen(fd, body, strlen(body)): }
printf("%s", body);

Problems with
Traditional Languages

High overhead to learning language
* Must get “syntax” just right

- Keywords, semi-colon placement

Debugging can be frustrating
* Get wrong answer, must figure out why
* Program crashes, must figure out why

Sometimes hard to find motivating problems
* Results don’t always look sophisticated

New Introductory Language:
Scratch

Low overhead for learning
* Specifically designed for beginners
* No syntax errors (drag and drop building blocks)

Bugs in program not (usually) frustrating
* Bugs are visual, so entertaining
* See bugs right away when problem occurs (Exercise)

Lots of creative projects
¢ Games, interactive art, music

Simplifies transition to other languages
¢ Same basic control structures, concepts

Scratch Demo

Overview parts of environment
» Stage, Sprites, Blocks, Scripts, Costumes, Sounds
Different categories of blocks
* Motion, Looks, Sound, Pen, Control, Sensing,
Operators, Variables
Example Project: Make walking cat
* Each sprite has own code and costumes

* Code within a script runs sequentially
(multiple scripts can run concurrently)

* Activate script with “hat” block
* Different backgrounds, different Sprites

9/10/10

What essential features?

Computation: Perform calculations, work of algorithm
* Arithmetic and logical operations
Input/Outfput: Get data from user; Show result to user
e Input: Keyboard and mouse; Output: Display
 Scratch Limitations: Can’t access disk or network
Control Structures: Repeat loops, if statements
¢ Run code only in some circumstances
Expressions: Query values and environment
e Ask questions: mouse clicked? Object touching edge?
Variables: Remember data while computing over it
* Store numbers, strings, lists

1) Computation

Perform calculations, work of algorithm
* Arithmetic and logical operations
* Scratch: Operator blocks

gives the result of 6 plus 2

gives the result of 6 minus 2
gives the result of 6 times 2

gives the result of 6 divided by 2

2) Input/Output

Input: Get data into computer
* Scratch: Sensing blocks: keyboard and mouse

=

ol el Sit asks and waits for person to type a response
say [T TRTN for € secs Says “It's nice to meet you*

say answer for) secs says the response

asks a question and stores the keyboard input in €09
The question appears in a voice balloon on the screen. The program waits
as the user types in a response, until the Enter key is pressed or the check
mark is clicked.

2) Input/Output

Output: Get data out of computer
» Scratch: Change display (Motion, Looks, Pen) and Sounds

go to x: @ y: @ jump to the center of the stage

x:-240 y:180 g x:240 y:180

X:-240 y:-180 0 [] x:240 y:-180

You can use m to tell a sprite to jump to any location on the stage.

9/10/10

2) Input/Output

Output: Get data out of computer
» Scratch: Change display (Motion, Looks, Pen) and Sounds

(forever keep doing this:

next costume change to the next costume on the list
|wait (B secs wait 0.5 secs
]

You can rearrange the order of the list by
dragging and dropping the costumes

When w gets to the end of the list,

it goes back to the top.

2) Input/Output

Output: Get data out of computer
» Scratch: Change display (Motion, Looks, Pen) and Sounds

when spice | key pressed whenever space key is pressed

play sound laugh play this sound

If your computer has a microphone, you can record your own sounds.

Go to Sounds and click Record. (= (=
Use this to record.

Then click OK. Choose your sound
from the menu.

3) Control Structures

Control Structures: Run code in non-sequential order
* Scratch: Control

keep doing this forever

3) Control Structures

Control Structures: Run code in non-sequential order
* Scratch: Control

repeat .

=

T
repeat this 10 times
[05]

9/10/10

3) Control Structures

Control Structures: Run code in non-sequential order
* Scratch: Control

=

keep checking:
if this is true

then do this

4) Expressions

Expressions: Ask questions; Query values and environment
* Scratch: Sensing

mouse down?

Y ... dovn if the mouse button is clicked

play drum {T}9 for beats then do this
=

reports true if the mouse button is clicked anywhere
on the screen

4) Expressions

Expressions: Ask questions; Query values and environment
* Scratch: Sensing

touching color [l ?
forever if . touching color 2 _ if sprite is touching this color

turn & (ED degrees

sprite is touching
the color red

then do this

move () steps

To choose a color:

Get the eye dropper by clicking in the square.

° Use the eye dropper to click on the color you want.

touching color 2 Color appears in square.

5) Variables

Variables: Remember data while computing over it
e Scratch: Variables - Store numbers, strings, lists

set variable |to [

when clicked when the green flag button is clicked
set score |to [J set score to O (reset the score)
‘forever keep doing this:

point towards Mouse-pointer point towards the mouse-pointer

move steps move

ifl " touching Sprite2 |2 if you catch Sprite2

change score |by §§ increase your score

=

9/10/10

9/10/10

Today’s Overview

Today’s Topics
* Motivation: English not precise enough for specifying algorithms
e Introduction to Scratch

Reading:
e Sections 2.1 and 2.2

Announcements

* Assignment 1 Due Today
- Grades for weekly homeworks: 10 point scale
- Use Learn@UW to check grades and comments (we'll announce)

» Download Scratch 1.4 as needed from http://scratch.mit.edu
- Assignment 2 available, due next Friday; Easier after Monday’s lecture

