
9/10/10	

1	

Lecture 3: �
Telling the computer what to do �

UNIVERSITY of WISCONSIN-MADISON �
Computer Sciences Department �

CS 202�
Introduction to Computation �

Professor Andrea Arpaci-Dusseau �
Fall 2010 �

""�

Exercise: How do you tell a
computer what to do?�

Groups of two: �
•  Programmer �
•  Computer (Drawer)�

Role of Programmer: �
•  Give instructions so “Computer” draws specified picture�

Role of Computer (Drawer): �
•  Must follow instructions, but can do so in annoying way�

What primitives are known?�
Basic geometric shapes�

•  Line, circles, rectangles, octagons, hearts�
•  Not houses, not smiley faces, not trees�

Numbers, sizes, and distances�
•  Quantitative measurements (inches, cm)�
•  Qualitative measurements (bigger, smaller)�

Coordinates and layout �
•  Up (above), down (below), top, bottom, left, right,

vertical, horizontal, middle, half, divide, center… �

Step 1: Create Secret Picture�
Draw a picture �

•  You will tell others how to
copy�

Make sure no one else in room
sees! �
•  Will switch partners�

Pick something interesting, but
relatively simple�

9/10/10	

2	

Step 2: Follow Instructions with
Partner�

Version 1: No feedback �
•  Programmer cannot watch drawer�
•  Drawer/computer cannot communicate or ask questions back �
•  Drawer does not need to be cooperative but must follow directions

(subject to interpretation)�

Version 2: Visual feedback �
•  Programmer watches drawer and corrects mistakes�
•  Drawer cannot communicate or ask questions back �

Discussion Questions�

Why is English not good for “programming”?�
•  Other domains where English is not a good match?�

How do different versions impact difficulty?�

Which version corresponds to traditional computer
programming?�

Take-Away Lessons�
Programs need set of basic primitives�

Multiple programs (drawings, outputs) can be made from
those same instructions�

Must be precise: English is not always�

Versions: Easier with more feedback �

Traditional programming languages give no feedback until end�
•  Scratch (very visual) continuously gives feedback, should be easier! �

Language for �
Exploring Algorithms�

Need a programming language for �
•  Specifying algorithms�

– What exactly does it do?�
•  Comparing algorithms�

– Which one is faster?�
•  Executing algorithms�

– Have fun running it! �

Options: �
•  English: Not precise enough and can’t execute it! �
•  Traditional languages: Assembly, C, Java, …�

9/10/10	

3	

Traditional Programming: C�
void requestError(int fd, char *cause, char *errnum, char
*shortmsg, char *longmsg) 	

{	

 char buf[MAXLINE], body[MAXBUF];	

 printf("Request ERROR\n");	

 /* Create the body of the error message */	

 sprintf(body, "<html><title>CS537 Error</title>");	

 sprintf(body, "%s<body bgcolor=""fffff"">\r\n", body);	

 sprintf(body, "%s%s: %s\r\n", body, errnum, shortmsg);	

 sprintf(body, "%s<p>%s: %s\r\n", body, longmsg, cause);	

 sprintf(body, "%s<hr>CS537 Web Server\r\n", body);	

 /* Write out the header information for this response */	

 sprintf(buf, "HTTP/1.0 %s %s\r\n", errnum, shortmsg);	

 Rio_writen(fd, buf, strlen(buf));	

 printf("%s", buf);	

 sprintf(buf, "Content-Type: text/html\r\n");	

 Rio_writen(fd, buf, strlen(buf));	

 printf("%s", buf);	

 sprintf(buf, "Content-Length: %d\r\n\r\n", strlen(body));	

 Rio_writen(fd, buf, strlen(buf));	

 printf("%s", buf);	

 /* Write out the content */	

 Rio_writen(fd, body, strlen(body));	

 printf("%s", body);	

}	

int requestParseURI(char *uri, char *filename, char *cgiargs) 	

{	

 char *ptr;	

 if (!strstr(uri, "cgi")) {	

 /* Static content */	

 strcpy(cgiargs, "");	

 sprintf(filename, ".%s", uri);	

 if (uri[strlen(uri)-1] == '/') {	

 strcat(filename, "home.html");	

 }	

 return 1;	

 } else {	

 /* Dynamic content */	

 ptr = index(uri, '?');	

 if (ptr) {	

 strcpy(cgiargs, ptr+1);	

 *ptr = '\0';	

 } else {	

 strcpy(cgiargs, "");	

 }	

 sprintf(filename, ".%s", uri);	

 return 0;	

 }	

}	

Problems with �
Traditional Languages�

High overhead to learning language�
•  Must get “syntax” just right �

– Keywords, semi-colon placement �

Debugging can be frustrating �
•  Get wrong answer, must figure out why�
•  Program crashes, must figure out why�

Sometimes hard to find motivating problems�
•  Results don’t always look sophisticated�

New Introductory Language:
Scratch�

Low overhead for learning �
•  Specifically designed for beginners�
•  No syntax errors (drag and drop building blocks)�

Bugs in program not (usually) frustrating �
•  Bugs are visual, so entertaining �
•  See bugs right away when problem occurs (Exercise)�

Lots of creative projects�
•  Games, interactive art, music�

Simplifies transition to other languages�
•  Same basic control structures, concepts�

Scratch Demo �
Overview parts of environment �

•  Stage, Sprites, Blocks, Scripts, Costumes, Sounds�
Different categories of blocks�

•  Motion, Looks, Sound, Pen, Control, Sensing,
Operators, Variables�

Example Project: Make walking cat �
•  Each sprite has own code and costumes�
•  Code within a script runs sequentially �

(multiple scripts can run concurrently)�
•  Activate script with “hat” block �
•  Different backgrounds, different Sprites �

9/10/10	

4	

What essential features?�
Computation: Perform calculations, work of algorithm�

•  Arithmetic and logical operations�
Input/Output: Get data from user; Show result to user�

•  Input: Keyboard and mouse; Output: Display�
•  Scratch Limitations: Can’t access disk or network �

Control Structures: Repeat loops, if statements�
•  Run code only in some circumstances�

Expressions: Query values and environment �
•  Ask questions: mouse clicked? Object touching edge? �

Variables: Remember data while computing over it �
•  Store numbers, strings, lists�

1) Computation �
Perform calculations, work of algorithm�

•  Arithmetic and logical operations�
•  Scratch: Operator blocks�

2) Input/Output �
Input: Get data into computer�

•  Scratch: Sensing blocks: keyboard and mouse �

2) Input/Output �
Output: Get data out of computer�

•  Scratch: Change display (Motion, Looks, Pen) and Sounds�

9/10/10	

5	

2) Input/Output �
Output: Get data out of computer�

•  Scratch: Change display (Motion, Looks, Pen) and Sounds�

2) Input/Output �
Output: Get data out of computer�

•  Scratch: Change display (Motion, Looks, Pen) and Sounds�

3) Control Structures�

Control Structures: Run code in non-sequential order�
•  Scratch: Control�

3) Control Structures�
Control Structures: Run code in non-sequential order�

•  Scratch: Control�

9/10/10	

6	

3) Control Structures�

Control Structures: Run code in non-sequential order�
•  Scratch: Control�

4) Expressions�
Expressions: Ask questions; Query values and environment �

•  Scratch: Sensing �

4) Expressions�
Expressions: Ask questions; Query values and environment �

•  Scratch: Sensing �

5) Variables�
Variables: Remember data while computing over it �

•  Scratch: Variables - Store numbers, strings, lists �

9/10/10	

7	

Today’s Overview �
Today’s Topics �

•  Motivation: English not precise enough for specifying algorithms�
•  Introduction to Scratch�

Reading: �
•  Sections 2.1 and 2.2 �

Announcements�
•  Assignment 1 Due Today�

–  Grades for weekly homeworks: 10 point scale�
–  Use Learn@UW to check grades and comments (we’ll announce)�

•  Download Scratch 1.4 as needed from http://scratch.mit.edu �
–  Assignment 2 available, due next Friday; Easier after Monday’s lecture�

