
12/17/10	  

1	  

Lecture 41: �
What problems stretch the limits of 

computation? �

UNIVERSITY of WISCONSIN-MADISON �
Computer Sciences Department �

CS 202�
Introduction to Computation �

Professor Andrea Arpaci-Dusseau �
Fall 2010 �

""�

Handout �
Create the minimal spanning tree 
that connects all of the houses �

Construct the shortest route for a 
Traveling Salesperson �

Discussion �
Is there an inherent difference between "�

"being brilliant �

and �

being able to appreciate brilliance?�

What is Brilliance?�

Ability to find “needle in a haystack”�
•  Mozart found “satisfying assignments” to our�

neural circuits for music appreciation �
•  Relatively easy to identify the fact �

needle has been found�

What is a computational analogue of this phenomenon?�

Many hard computation problems require solutions involving �
“finding a needle in a haystack”�
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Compare 4 Algorithms�

-  Path between nodes of graph�
-  Minimal spanning tree�
-  Monkey puzzle�
-  Travelling salesperson �

Which ones are easy and which are hard to solve?�

Problem 1: Path?�
Social network or graph�

•  Each node represents student �
•  Two nodes connected by edge �

if those students are friends�

Scenario: �
•  Kate starts a rumor�
•  Will it reach Ronak?�
•  Is there a path or connection 

between two?�

What algorithm could you 
use?�

Problem 1: Path?�
Social network or graph�

•  Each node represents student �
•  Two nodes connected by edge �

if those students are friends�

Scenario: �
•  Julia starts a rumor�
•  Will it reach Ronak?�
•  Is there a path or connection 

between two?�

How does running time 
depend on network size�
(number of edges, E)?�
•  Never need to visit an edge 

more than once�
•  At most O(E)�

Problem 2: Spanning Trees�
Goal: Connect all houses (nodes) 

with shortest path (edges)�
•  Uses: roads and utilities�
•  Uses: Wiring chips on circuit 

boards �

Algorithm?�
•  Greedy: make step-by-step 

decisions that work best for 
current situation �

•  Begin: Connect closest pair of 
nodes�

•  Each step: Connect to next 
closest �

•  Don’t need to look at different 
combinations�
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Problem 3: Monkey Puzzle�
Given: �

•  Set of N square cards with 
top and bottom halves of 
colored monkeys�

•  N = M2 �

•  Cannot rotate cards�
Problem: �

•  Is there an arrangement of 
cards such that each pair of 
adjacent cards completes 
monkey?�

Algorithm?�

M=3, N=9 �

M
=3
�

Monkey Puzzle Algorithm�
Try every combination of cards 

and see if it works�
•  Try every card for 1st box �
•  Try each of remaining cards in 2nd 

box �
•  Try each of remaining cards in 3rd 

box…�
•  Etc…�

Does a greedy algorithm work?�
How many combinations possible?�

•  9 * 8 * 7 * 6 * 5 * 4 * 3 * 2 * 1 �
= 9 Factorial = 9! �

1st � 4th� 7th�

2nd� 5th� 8th�

3rd� 6th� 9th�

Analysis of Monkey Puzzle�
For N cards, number of arrangements to examine is N! �

Assume can analyze one arrangement in 1 microsecond �
How long to solve for N=9, 16, 25?�

Requires brilliance to solve quickly! �

N � Time to analyze�
9 � 362,880 us � < 1 sec�
16 � 20,922,789,888,000 us � > .5 year�
25 � 15,511,210,043,330,985,984,000,000 us � Years and years�

Problem 4: �
Travelling Salesperson (TSP)�
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Politicians �

Visiting all ball parks in US�

Collecting coins from meters�

Delivering mail�

Star  imagery�

DNA sequencing �

Computer networks�

Power cables�

Problem 4: Traveling Salesperson 
(TSP)�

Given: �
•  Weighted graph of nodes 

for cities and edges for 
paths (weight is length)�

Problem: �
•  Is there a route thru every 

city (and back to start) 
with cost < K?�
– Can’t revisit same cities�

Algorithm?�

Traveling Salesperson Solution �

Approach�
•  Compute cost of every route�

Worst-case�
•  Path connecting every city�

Build every route�
•  Pick starting city�
•  Pick next city (N-1 choices)�
•  Pick 3rd city (N-2) choices�

Number of routes?�
•  N! (factorial)�
•  Greedy algorithm will not work here! �

Try It Yourself�

30 cities is fun! �
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Common Solution for Problems 
Requiring “Brilliance”�

Exhaustive Search�
Naïve algorithms for many “needle in a haystack” 

tasks involve checking all possible answers�
•  Combinatorial Explosion �
•  Exponential running time�

Common in many interesting problems�

Can we design smarter algorithms? �

P vs NP Question �
P: Problems for which solutions exist in polynomial time �

•  cNk : c and k are fixed integers; N is input size�
•  O(1), O(log N), O(N), O(N log N), O(N2), O(N3)�
•  Example: Searching, sorting, Path, Spanning Tree�
•  Reasonable, tractable�

NP: Problems where solution can be checked in polynomial time�
•  Examples: Monkey Puzzle, Traveling Salesman �
•  Current solutions require super-polynomial-time�

–  O(2N), O(NN), O(N!)�
•  Unreasonable, intractable�

Question: Is P = NP?�
•   “Can we automate brilliance?”�
•  Computer scientists have not yet proved equal or not equal�

NP-complete Problems�

Problems in NP that are “the hardest”�
•  If they are in P then so is every NP problem�
•  All NP-complete problems essentially equivalent �

How do we handle NP-Complete Problems?�
1.  Heuristics �
•  Algorithms that produce reasonable solutions in 

practice �
2.  Approximation algorithms �
•  Compute provably near-optimal solutions�

Today’s Summary�
P vs NP�

•  P problems can be solved in polynomial time�
– Example: Minimal spanning tree uses a greedy algorithm to 

find shortest path connecting all nodes�
•  NP problems can only be checked in polynomial time�

– Unknown if polynomial-time solutions exist �
– Naïve solutions exhaustively examine all possibilities�

Announcements�
•  Sign up for Project 2 demo if you haven’t �

–  Must be this week!  (Mostly tomorrow: Thursday)�

•  Final: Dec 22 (Wed) at 10:05 – 12:05 in Psych 113 �
–  All Multiple Choice, Not cumulative�

•  Sorting (Selection, Insertion, Merge, Quicksort) – Basic algorithm and complexity�
•  Web services (Networking, Google, cryptography, lying components)�
•  Complexity of problems�


