
11/3/10	

1	

Lecture 26: �
How does a computer…�
prevent race conditions?�

UNIVERSITY of WISCONSIN-MADISON �
Computer Sciences Department �

CS 202�
Introduction to Computation �

Professor Andrea Arpaci-Dusseau �
Fall 2010 �

""�

Today’s Scenario �

Imagine: You’ve written a great Scratch program�
•  Lots of interacting Sprites, variables�
•  Most of the time it works like you expect…�

But, sometimes… Funny results�
•  Sprites disappear/reappear in unexpected ways�
•  Points don’t increment �
•  Hard to be sure -- is something wrong or not?�

Answer Today�
•  What is going wrong?�
•  How can we fix this type of problem? �

Easiest Possible Game�

User controls cat with
arrow keys�

Cat picks up 6 objects for
points �

Game over when pick up
all 6 objects�

How might one implement
this? �

Problem: �
Asking Same Question Twice�

Why won’t this code always work?�

If ball sees “touching Sprite1” and
hides first, Sprite 1 won’t see
“touching ball”, won’t increment! �

Problem: �
Two Sprites ask same question,
and get different answers! �

Solution?�
Only one Sprite asks question; how?�

•  Ball could inc variable�
•  Broadcast answer (if others need to

know) �

Sprite 11 (baseball)�

Sprite 1 (cat)�

11/3/10	

2	

Why does this happen?�

Concurrency in Scratch�
•  Every script stack executes concurrently (appears

simultaneous) with all others�

Concurrency usually good thing: �
•  Can do many things at “same” time! �
•  Multiple Sprites can be moving at same time�
•  Play music in background�
•  Multiple Sprites can be checking different conditions�

–  If key pressed�
–  If touching another Sprite�

Many Concurrent Environments�
Multiprogramming on single processor: �

•  Context switch quickly between active processes: Time sharing �
•  Application view: Context switches can happen at any time! �

Parallel Systems�
•  Multiprocessors �
•  Distributed systems�
•  Multiple processes running at same time�
•  Can greatly improve performance�

Problem of Concurrency: �
Race Conditions! �

Race condition: Ordering of instructions across scripts
impacts results�
•  Ordering: How scripts are scheduled�

Results: Sometimes get result A, sometimes get result B…�

Problematic when multiple scripts access shared state�
•  Access + modify what appears on stage (touching vs. hiding)�
•  Access + modify same variables�

Second Example: Monkey Game�

Many things happening
concurrently! �

•  Multiple bananas falling
from tree�

•  Thief monkey moving �
•  User moves monkey with

keys�
–  Up and l/r simultaneously�
–  More efficient way to move

with keys�

11/3/10	

3	

More Efficient Movement �
Jump: Monkey moves up,
waits, moves back down �

Left right movement: Lets
user hold down keys�

Avoiding Race Conditions�

Banana Scripts �
Only Banana Sprite asks

question “touching”�
•  Increments shared

variable�
•  Goto new position �

Monkey does not ask same
question �
•  Monkey doesn’t need to

know answer�

Avoiding Race Conditions�
Thief Script � New Situation: �

Two Sprites need answer�

Monkey Script �

Actions when Thief and Monkey meet �
-  Change Banana count �
-  Thief says Thanks�
-  Monkey says “Oh no!”�

How to avoid Race condition?�
•  Only one sprite asks questions�
•  Broadcast message to other�

Scripts for Simplified Bug on a Plate very
similar (check out code!)�

How is Concurrency Implemented�
in Scratch?�

How does Scratch environment pick block to run next?�

Repeat until all blocks completed!
!Run “few” commands from each stack!
! !(Remember last position in each stack)!
!Update screen!

Order of stacks is unknown! �
•  Don’t know which stack will be first or next �
•  Could pick different stack each time�
•  Cannot assume any order across stacks! �
•  May differ from run to run, across versions, machines, web

version…�

11/3/10	

4	

Example: �
Concurrent Initialization �

Multiple stacks initialize
same variable (test)� What will Sprite say?�

What will be final value of
test?�

Test could be: �
0, 1, 2, 3, or 4! �

Conclusion: �
Cannot make any assumption

about stack ordering �

Example: �
How many Meows?�

Confused Cat Scripts� How many meows?�
Could be 0, 1, or 5! �

How to ensure initialize
correctly? (assume want
test = 5 before repeat
loop)�

Must control order blocks
are executed�

Easiest Fix: Remove Concurrency�

Single script does everything � No concurrency within a
script �

Blocks in single script
execute in order�

Guaranteed to initialize
variables before entering
repeat loop �

Doesn’t work if multiple
initial scripts use “test”
variable�

General Solution: �
Control Order of Scripts�

Correct Initialization � Use broadcast/recieve�

When Green Flag Clicked�
•  Perform initialization of

variables �
•  Broadcast Ready �

When Receive Ready�
•  Guaranteed everything

initialized correctly�
•  Ready to Go! �

11/3/10	

5	

How do we reason about
Concurrency?�Problem: �

Difficult to build programs when no assumptions about
switches between stacks�

Solution:�
Atomic operation: Will not be interrupted in the middle�

What happens if not atomic and switch between
two related instructions?�
•  State of world could change�

Need to cross intersection: wait until no cars�
Look to right: no cars �
Look to left: no cars �
Decide to drive across road�
Accident! �

What happened?�
"Something changed between when you checked
"and when you started to drive�

Another Example�

Need to sit down on a chair�
Look to behind you: there’s a chair�
Decide to sit down �
Embarrassing fall on floor! �

What happened?�
"Something changed between when you checked
"and when you started to act �

Problem: �
Difficult to build programs when no assumptions about
switches between stacks�

Solution:�
Atomic operation: Will not be interrupted in the middle�

What happens if not atomic and switch between
two related instructions?�
•  State of world could change�

What is Atomic in Scratch?�
Scratch: Each command block executes atomically except: �

Blocks that wait �
•  Specified amount of time�

–  Examples: “wait," "glide", “say”�
•  For something to finish�

–  Examples: "play sound and wait”, "broadcast and wait”�

When encounter waiting block, check condition �
•  If not done, Scratch continues to next stack �
•  If done, Scratch goes to next block after wait block �

Are Multiple Blocks in Same Script �
 Atomic?�

Scratch executes some number of blocks in each
stack before moving to next stack �

How many blocks does Scratch run in each stack? �

Scratch runs all blocks in one stack until�
•  Reach waiting block �
•  Reach end of stack �
•  Reach end of innermost loop �

Example: move, next costume, turn: Atomic�

11/3/10	

6	

Adding Unique Items to a List �
What is code trying to do?�

•  Only add items to Unique List if not
already there�

Will this code work?�
•  Yes! Why?�
•  Each checks if item in list; if not, adds it �

Critical section: instructions that must be
executed without interruption �

What is critical section here?�
•  What is shared variable?�

–  Unique List �
•  Two blocks: �

–  if not Unique List contains x�
–  Add x to Unique List �

•  If no interruptions, works fine! �

Adding Unique Items to List: �
With an Interruption! �

Why won’t this code work?�

Critical section no longer
guaranteed to be atomic! �

Will schedule other script
when each calls “say”�

Adding Unique Items to List: �
With an Interruption! �

Why won’t this code work?�

Critical section no longer
guaranteed to be atomic! �

Will schedule other script
when each calls “wait”�

Today’s Summary�

Concurrency: Entities appear to run simultaneously�
•  Scratch: Concurrency occurs across Script Stacks�

– Unknown ordering across stacks�
•  Challenge: Avoid Race Conditions (unpredictable

results) when switch between scripts �
•  Switches between scripts after inner loop or waiting

blocks �
No Reading �
Announcements�

•  HW 6 due Friday before class�
•  Last chance to finish Project 1 demos�

