
12/3/10	  

1	  

Lecture 37: �
How can computation… �

sort data faster for you?�

UNIVERSITY of WISCONSIN-MADISON �
Computer Sciences Department �

CS 202�
Introduction to Computation �

Professor Andrea Arpaci-Dusseau �
Fall 2010 �

""�

Previous Lecture�

Two intuitive, but slow sorting algorithms�

Selection sort: �
•  Repeat for each key in list �

–  Find minimum key in unsorted portion �
– Move to next position of sorted portion �

Insertion sort: �
•  Repeat for each key in unsorted list �

–  Insert into its correct position in sorted portion �

Both algorithms O(N2) where N is length of list �

Sorting Algorithms: �
Speed Comparison � Recursive Algorithms�

Algorithm is recursive if can be defined by: �
•  Simple base case�
•  Set of rules reducing other cases toward base case�

Recursion: If you still don't get it, see: "Recursion".�



12/3/10	  

2	  

Recursive Definition of �
Factorial�

Example: Fact(5) = 5! = 5 * 4 * 3 * 2 * 1 �
Recursive definition: �

•  Fact(1) = 1 [base case] �
•  For all integers n > 1: Fact(n) = n * Fact (n-1) �

Fact(5) = ??�
"= 5 * Fact (4) �
"= 5 * 4 * Fact(3) �
"= 5 * 4 * 3 * Fact(2) �
"= 5 * 4 * 3 * 2 * Fact (1) �
"= 5 * 4 * 3 * 2 * 1      Recursion ends! �

Merge Sort Algorithm: �
Uses Recursion �

Base case: �
•  If list of length 0 or 1, done (sorted)�

Otherwise: �
•  Divide unsorted list of size M into two sublists of size 

M/2 �
•  Sort each sublist recursively using mergesort �
•  Merge two sublists back into one sorted list �

How to merge two lists into one?�

Merging Two Sorted Runs�

2 �
5 �
6 �
10 �

4 �
8 �
9 �
13 �

Algorithm: Compare 1st element of each list, remove the 
smaller as next element of sorted run �

Very efficient!  Very few comparisons needed for merge�
How many comparisons needed to create list of size N?�

End� End�

O(N) comparisons�

Merge Sort: Example�

2, 5, 8, 10, 11, 13, 14, 14, 15, 16, 19, 35, 46, 66, 72, 89 �

2, 8, 10, 14, 19, 35, 66, 72 �

2, 8, 19, 72 �

2, 8 �

2 � 8 �

19, 72 �

19 � 72 �

10, 14, 35, 66 �

14, 35 �

35 � 14 �

10, 66 �

10 � 66 �

5, 11, 13, 14, 15, 16, 46, 89 �

11, 14, 15, 46 �

14, 15 �

14 � 15 �

11, 46 �

11 � 46 �

5, 13, 16, 89 �

5, 89 �

5 � 89 �

13, 16 �

16 � 13 �

Sort keys: 2 8 19 72 35 14 10 66 14 15 11 46 5 89 16 13�



12/3/10	  

3	  

Merge Sort: �
How many comparisons?�

2, 5, 8, 10, 11, 13, 14, 14, 15, 16, 19, 35, 46, 66, 72, 89 �

2, 8, 10, 14, 19, 35, 66, 72 �

2, 8, 19, 72 �

2, 8 �

2 � 8 �

19, 72 �

19 � 72 �

10, 14, 35, 66 �

14, 35 �

35 � 14 �

10, 66 �

10 � 66 �

5, 11, 13, 14, 15, 16, 46, 89 �

11, 14, 15, 46 �

14, 15 �

14 � 15 �

11, 46 �

11 � 46 �

5, 13, 16, 89 �

5, 89 �

5 � 89 �

13, 16 �

16 � 13 �

How high (or deep) is the tree?�
•  Log N �

How many comparisons to create next level? (last run? 2nd-to-last two runs?) �
•  last run: N, 2nd to last two runs: 2 * N/2, next: 4 * N/4 … always N! �

Total comparisons?�
•  N Log N �

Merge Sort: �
What order to merge runs?�

2, 5, 8, 10, 11, 13, 14, 14, 16, 19, 35, 46, 66, 72, 89 �

2, 8, 10, 14, 19, 35, 66, 72 �

2, 8, 19, 72 �

2, 8 �

2 � 8 �

19, 72 �

19 � 72 �

10, 14, 35, 66 �

14, 35 �

35 � 14 �

10, 66 �

10 � 66 �

5, 11, 13, 14, 15, 16, 46, 89 �

11, 14, 15, 46 �

14, 15 �

14 � 15 �

11, 46 �

11 � 46 �

5, 13, 16, 89 �

5, 89 �

5 � 89 �

13, 16 �

16 � 13 �

Which runs can be merged independently of others?�
• All runs at same level are independent!  �
• Must create runs lower in the tree first! �

Why is this a good property?�
• Can merge runs in parallel! �
• Great for multiprocessors, multi-cores, clusters of machines�

Algorithm Comparison � Quicksort (Qsort) Algorithm: �
Recursive�

Base case: list of size one is sorted by definition �

Otherwise: �
Pick an element (pivot) from list �
Reorder: �

•  All keys < pivot  move key before pivot �
•  All keys > pivot  move key after pivot �

– Equal values can go either way�
•  Pivot is now in its final sorted position �

Recursively sort (w/ quick sort!) two sub-lists�



12/3/10	  

4	  

Quicksort Demo � Quicksort Example�

2, 8, 19, 72, 35, 14, 10, 66, 14, 15, 11, 46, 5, 89, 16, 13 �

2, 8, 10, 11, 5 �

2 � 8, 10, 11 �

8, 10 �

8 �

19, 72, 35, 14, 66, 14, 15, 46, 89 16 �

14, 14, 15 �

14, 14 �

19, 72, 35, 66, 46, 89 �

19, 35, 72, 66, 46 �

19, 35 �

19 �

72, 66 �

72 �

13 �
5 �

10 �

11 � 15 �
16 �

89 �

46 �
35 �

66 �

Quicksort: �
How many comparisons? �

2, 8, 19, 72, 35, 14, 10, 66, 14, 15, 11, 46, 5, 89, 16, 13 �

2, 8, 10, 11, 5 �

2 � 8, 10, 11 �

8, 10 �

8 �

19, 72, 35, 14, 66, 14, 15, 46, 89 16 �

14, 14, 15 �

14, 14 �

19, 72, 35, 66, 46, 89 �

19, 35, 72, 66, 46 �

19, 35 �

19 �

72, 66 �

72 �

13 �
5 �

10 �

11 � 15 �

16 �

89 �

46 �
35 �

66 �What is height of tree?�
If pivot divides keys into two equal groups?"�
log N �

How many comparisons to form new level of tree?  �
N �

Total comparisons?�
N log N �

Sorting Algorithm Comparison �
Selection Sort � Insertion Sort � Merge Sort � Quick Sort �

Worst case?� O(N2)� O(N2)� O (N log N)� O(N2)�
If pick bad 
pivot �

Best case?� O(N2)� O(N)�
If sorted 
already�

O (N log N)� O (N log N)�

Average case?� O(N2)� O(N2)� O (N log N)� O (N log N)�



12/3/10	  

5	  

Why does Complexity matter?�

0 �
1000 �
2000 �
3000 �
4000 �
5000 �
6000 �
7000 �
8000 �
9000 �

10000 �

0 � 20 � 40 � 60 � 80 � 100 �

N * N �
N Log N �
N �

N �

Nu
m
be

r 
of

 c
om

pa
ri
so

ns
 (o

r 
ite

ra
ti
on

s)
�

Relatively small values of N �

Why does Complexity matter?�

0 �
100000 �
200000 �
300000 �
400000 �
500000 �
600000 �
700000 �
800000 �
900000 �

1000000 �

0 � 200 � 400 � 600 � 800 � 1000 �

N * N �
N Log N �
N �

Still relatively small values of N �

Why does Complexity matter?�

0 �

5E+14 �

1E+15 �

1.5E+15 �

2E+15 �

2.5E+15 �

3E+15 �

3.5E+15 �

4E+15 �

0 � 20000000 � 40000000 � 60000000 � 80000000 �

N * N �
N Log N �
N �

How long to sort 60,000,000 keys? �
"Assume 3 billion (3 * 109) comparisons per second�

With N* N algorithm: Approx 3 * 1015 comparisons�
""Requires 106 seconds = 280 hours! More than 10 days! �

With N Log N algorithm: Approx 1.5 * 109 comparisons�
"Requires 0.5 seconds! �

N Log N grows very slowly with N… Practical for large N �

Large values of N �

NOW-Sort: World Record Holder�
Sorted 1 million keys (1997)�

•  Disk-to-disk �
•  < 2.5 seconds�
•  100 machines on network �

Merge sort works well here�
•  Each machine starts with 1/100 of 

keys (and data!) on local disk �
•  Sorts its own keys�
•  Each sends sorted run of keys (and 

data!) to destination machine�
•  After receive all keys, each 

machine: �
–  Merge 100 sorted runs�



12/3/10	  

6	  

Today’s Summary�
Sorting algorithms�

•  O(N2) sorting algorithms�
–  Selection sort: Find minimum and make next �
–  Insertion sort: Take next and insert in correct place�

•  O(N log N) sorting algorithms (expected, not worst-case)�
–  Merge sort: Recursively combine sub-lists into larger lists�
–  Quicksort: Recursively partition list into sub-lists around pivot �

Reading: 3.3.4 for Order of Magnitude�
Announcements�

•  Exam 2 Solutions posted�
•  Homework 8 and 9 available (due Friday 12/3 and Wed 12/8)�
•  Homework 10: Project 2 Website Comments and Demo attendance�

–  Upload by Thursday 12/9; Comment by Fri 12/10 �

•  Project 2: Due with In-class demos Monday 12/13 �


