UNIVERSITY of WISCONSIN-MADISON
Computer Sciences Department

CS 202 Professor Andrea Arpaci-Dusseau
Introduction to Computation Fall 2010

Lecture 37:
How can computation...
sort data faster for you?

Previous Lecture

Two intuitive, but slow sorting algorithms

Selection sort:

* Repeat for each key in list
- Find minimum Key in unsorted portion
- Move to next position of sorted portion

Insertion sort:

* Repeat for each key in unsorted list
- Insert into its correct position in sorted portion

Both algorithms O(N?) where N is length of list

Sorting Algorithms:
Speed Comparison

Insertion Selection Bubble

Recursive Algorithms

Algorithm is recursive if can be defined by:
* Simple base case
e Set of rules reducing other cases toward base case

Recursion: If you still don't get it, see: "Recursion".

12/3/10

Recursive Definition of
Factorial

Example: Fact(5) =5!=5* 4*3*2*1
Recursive definition:

e Fact(l) = 1 [base case]

* For all integers n > 1: Fact(n) = n * Fact (n-1)
Fact(5) = 27

=5 * Fact (4)

=5 % 4 Fact(3)

=5%*4* 3 *Fact(2)

WS %4 AR D MiEder (1)

e S | Recursion ends!

Merge Sort Algorithm:
Uses Recursion

Base case:
* If list of length O or 1, done (sorted)

Otherwise:

¢ Divide unsorted list of size M into two sublists of size
M/2

* Sort each sublist recursively using mergesort
* Merge two sublists back into one sorted list

How to merge two lists into one?

Merging Two Sorted Runs

G A e

5 8
9
10 13
End End

Algorithm: Compare 15" element of each list, remove the
smaller as next element of sorted run

Very efficient! Very few comparisons needed for merge
How many comparisons needed to create list of size N?
O(N) comparisons

Merge Sort: Example

I
|
IF
|

I (e
ILooooog " HtOogoEEE

Sort keys: 2 819 72 35 14 10 66 14 1511 46 5 89 16 13

12/3/10

Merge Sort:
How many comparisons?

2,5, 8,10, 11, 13, 14, 14, 15, 16, 19, 35, 46, 66, 72, 89

2, 8,10, 14, 19, 35, 66, 72 5, 11, 13, 14, 15, 16, 46, 89

11, 14, 15, 46 5, 13, 16, 89
2,819, 72 10, 14, 35, 66
14, 15 1, 46 5, 89 13,16
2,8 19,72 14, 35 10, 66
4 15 5 89 16
1 46
2 8 19 72 35 14 10 66
How high (or deep) is the tree?
*Log N

How many comparisons to create next level? (last run? 2"-to-last two runs?)
* last run: N, 2" fo last two runs: 2 * N/2, next: 4 * N/4 ... always N!
Total comparisons?
*NLogN

13

2

Merge Sort:
What order to merage runs?

2,5, 8,10, 11, 13, 14, 14, 16, 19, 35, 46, 66, 72, 89

2, 8,10, 14, 19, 35, 66, 72 5, 11, 13, 14, 15, 16, 46, 89

11, 14, 15, 46 5,13, 16, 89

2,819, 72 10, 14, 35, 66

14, 15 11, 46 5, 89 13, 16

2,8 19,72 14, 35 10, 66
4 15 5 8 16 13
1 46
8 19 72 35 14 10 66
Which runs can be merged independently of others?
*All runs at same level are independent!
*Must create runs lower in the tree first!
Why is this a good property?
*Can merge runs in parallel!
*Great for multiprocessors, multi-cores, clusters of machines

Algorithm Comparison

Insertion Selection Bubble

Quicksort (Qsort) Algorithm:
Recursive

Base case: list of size one is sorted by definition

Otherwise:
Pick an element (pivot) from list
Reorder:
¢ All keys < pivot > move key before pivot
e All keys > pivot > move key after pivot
- Equal values can go either way
* Pivot is now in its final sorted position

Recursively sort (w/ quick sort!) two sub-lists

12/3/10

Quicksort Demo

Quicksort Example

2, 8,19, 72, 35, 14, 10, 66, 14, 15, 11, 46, 5, 89, 16, 13

|

13| |

O (. |

BE N R =
DIOD [46 :l

=50 (@ .m

Quicksort:
How many comparisons?

2, 8,19, 72, 35, 14, 10, 66, 14, 15, 11, 46, 5, 89, 16, 13

2,8,10,11, 5 13 19, 72, 35, 14, 66, 14, 15, 46, 89 16

2 B__8.10]ll 14,14,15 16 19, 72, 35, 66, 46, 89

8,10 11
L4oL4t s 19, 35, 72, 66, 46 89
8
10 19,35 46 72 46
What is height of tree? 1935 =
If pivot divides keys info two equal groups? 66

log N
How many comparisons to form new level of tree?
N

Total comparisons?
N log N

Sorting Algorithm Comparison

Worst case? O(N2) O(N?) O (N log N) O(N2)
If pick bad
pivot
Best case? O(N?) O(N) O (N log N) O (N log N)
If sorted
already
Average case? O(N?) O(N?) O (N log N) O (N log N)

Why does Complexity matter?

10000
9000
8000 &
7000 o
6000 [
5000
4000
3000
2000
1000

OF e gl

0 20 40 60 80 100

s)

N*N
N Log N

Number of comparisons (or iteration

N Relatively small values of N

Why does Complexity matter?

1000000
900000
800000 &
700000 A
600000 ATt
500000
400000
300000
200000
100000

0 -
0 200 400 600 800 1000

N*N
N Log N

Still relatively small values of N

Why does Complexity matter?

4E+15
3.5E+15
3E+15
2.5E+15
2E+15
1.5E+15
1E+15
SE+14 Large values of N

N*N
N Log N
N

0 T ST
0 20000000 40000000 60000000 80000000

How long to sort 60,000,000 keys?
Assume 3 billion (3 * 10%) comparisons per second
With N* N algorithm: Approx 3 * 10'5 comparisons
Requires 10¢ seconds = 280 hours! More than 10 days!
With N Log N algorithm: Approx 1.5 * 10° comparisons
Requires 0.5 seconds!
N Log N grows very slowly with N... Practical for large N

NOW-Sort: World Record Holder

S~ == Sorted 1 million keys (1997)

¢ Disk-to-disk

¢ < 2.5 seconds

¢ 100 machines on network

Merge sort works well here

e Each machine starts with 1/100 of
keys (and data!) on local disk

e Sorts its own keys

* Each sends sorted run of keys (and
data!) to destination machine

¢ After receive all keys, each
machine:

- Merge 100 sorted runs

12/3/10

Today’s Summary

Sorting algorithms
* O(N?) sorting algorithms
- Selection sort: Find minimum and make next
- Insertion sort: Take next and insert in correct place
* O(N log N) sorting algorithms (expected, not worst-case)
- Merge sort: Recursively combine sub-lists into larger lists
- Quicksort: Recursively partition list into sub-lists around pivot

Reading: 3.3.4 for Order of Magnitude

Announcements
e Exam 2 Solutions posted
¢ Homework 8 and 9 available (due Friday 12/3 and Wed 12/8)

¢ Homework 10: Project 2 Website Comments and Demo attendance
- Upload by Thursday 12/9; Comment by Fri 12/10
e Project 2: Due with In-class demos Monday 12/13

12/3/10

