

Why does this matter? Adding 1 bit doubles amount can be represented • 1 bit: 2 numbers (0, 1) • 2 bits: 4 numbers (00, 01, 10, 11) • 3 bits: 8 numbers (000, 001, 010, 011, 100, 101, 110, 111) • 4 bits: 2⁴ = 16 numbers • ... • 8 bits = 2⁸ = 256 • ... • 16 bits: 2¹⁶ = 65536 • 32 bits: 2³² = 4,294,967,296 • 64 bits: 2⁶⁴ = 18,446,744,073,709,551,616

What kinds of data must bits represent? Logical: True, False

• Straight-forward: Two states

• True: 1, False: 0

Numbers

 Signed, unsigned, integers, floating point, complex, rational, irrational, ...

Text

· Characters, words, strings, ...

Images

· Pixels, colors, shapes, movies ...

Sound

Instructions

Representing Letters, Words, Strings in Binary?

How would you do it????

Representing Letters

Simplest approach: Associate each letter with binary number (table shows decimal numbers)

If saw in computer memory: 8 5 12 12 15 (but in binary), how would you decode (or translate from computer to human)?
hello

How would you encode (translate from human to computer): scratch 19 3 18 1 20 3 8

How many bits are needed for this simple encoding?

Round up to nearest power of two

 $32 = 2^5 \rightarrow \text{Need 5 bits}$

Problems with using only 5 bits?

Need extra characters for capitals, punctuation, spaces, etc.

ASCII: American Standard Code for Information Interchange

8 bits; how many different characters?

 $2^8 = 256$

Binary 0 000 0000 0 000 0001 0	Oct D																					
000 0000 0		no Herr	Abbr	pg/! 1	nel il	CIIC ^[] 2]		Binary		Dec	Hex	Glyph	Binary	Oct	Dec	Hex	Glyph	Binary	Oct	Dec	Hex	
	000		NUL	Α.	40	V0	Null character	010 0000	040	32	20		100 0000	100	64	40	0	110 0000	140	96	60	
			SOH	÷	28		Start of Header	010 0001	041	33	21	1	100 0001	101	65	41	Α	110 0001	141	97	61	
000 0010 0	02 2	2 02	STX	5	48		Start of Text	010 0010	042	34	22		100 0010	102	66	42	В	110 0010	142	98	62	
000 0011 0	03 3	03	ETX	N	40		End of Text	010 0011	043	35	23		100 0011	103	67	43	С	110 0011	143	99	63	
000 0100 0	04 4	04	EOT	%	4D		End of Transmission	010 0100	044	36	24	s	100 0100	104	68	44	D	110 0100	144	100	64	
000 0101 0	05 5	05	ENQ	15	^E		Enquiry	010 0101	045	37	25	%	100 0101	105	69	45	Е	110 0101	145	101	65	
000 0110 0	06 6	06	ACK	N	4		Acknowledgment	010 0110	046	38	26	8	100 0110	108	70	46	F	110 0110	146	102	66	
000 0111 0	07	07	BEL	۸.	46	Va.	Bell	010 0111	047	39	27		100 0111	107	71	47	G	110 0111	147	103	67	
000 1000 0	10 8	08	BS	. 5	44	ъ	Backspace ^{() 4(j) 5)}	010 1000	050	40	28	- (100 1000	110	72	48	н	110 1000	150	104	68	
000 1001 0	011 9	09	HT	Ŋ.	4	¥	Horizontal Tab	010 1001		41	29	<u>`</u>	100 1001			49	1	110 1001				
000 1010 0	12 1	0 0A	LF	ly.	N	'n	Line feed	010 1010	052	42	2Δ	-	100 1010	112	74	44	-	110 1010				
000 1011 0	13 1	1 OB	VT	Υ,	*K	W	Vertical Tab	010 1011			2B	+	100 1011			4B	К	110 1011				
000 1100 0	14 1	5 00	FF	4	M.	A	Form feed	010 1100			20		100 1100			4C	i.	110 1100				
000 1101 0	15 1	3 OD	CR	S _k	^M	٧	Carriage return ^(t 6)	010 1101			2D	-	100 1101			4D	M	110 1101			6D	
000 1110 0			90	5	4N		SNft Out	010 1110			2E		100 1110			4E	N	110 1110			6E	
000 1111 0			SI	5	40		Shift In	010 1111			2F	7	100 1111			4F	0	110 1111			6F	
001 0000 0	20 1	6 10	DLE	5	4P		Data Link Escape	011 0000			30	0	101 0000			50	P	111 0000				
001 0001 0			DC1	N	^Q		Device Control 1 (oft. XON)	011 0000			31	1	101 0000			51	0	111 0000			70	
001 0010 0			DC2	1	4R		Device Control 2				-					-	B		1000			
001 0011 0			DC3	5	46		Device Control 3 (oft. XOFF)	011 0010			32	2	101 0010			52		111 0010			72	
001 0100 0			DC4	N	۸Ţ		Device Control 4	011 0011			33	3	101 0011			53	s	111 0011			73	
001 0101 0			NAK	N	40		Negative Acknowledgement	011 0100			34	4	101 0100	-	-	54	т	111 0100	100		74	
001 0110 0			SYN	8	**		Synchronous Idle	011 0101			35	5	101 0101			55	U	111 0101			75	
001 0111 0			ETB	5	^W		End of Trans. Block Cancel	011 0110			38	6	101 0110			56	V	111 0110			76	
001 1000 0			CAN	5	AX AY		Cancel End of Medium	011 0111			37	7	101 0111			57	W	111 0111				
001 1001 0			SUB	-	^Y		End of Medium Substitute	011 1000			38	8	101 1000			58	х	111 1000				
001 1010 0			ESC	-	72	(F17)	Escape ^(1.8)	011 1001			39	9	101 1001			59	Y	111 1001			79	
001 1011 0			ESC	- %	4	w.,,	Escape ⁽¹⁹⁾ File Separator	011 1010	072	58	ЗА		101 1010	132	90	5A	Z	111 1010	172	122	7A	
001 1100 0	-		GS	4	A)		File Separator Group Separator	011 1011	073	59	3B		101 1011	133	91	5B	-1	111 1011	173	123	7B	
001 1110 0			RS RS	-	7		Record Separator	011 1100	074	60	30	<	101 1100	134	92	5C	A.	111 1100	174	124	7C	
001 1110 0			US	-	Α.		Unit Separator	011 1101	075	61	3D	-	101 1101	135	93	5D	1	111 1101	175	125	7D	

Problems with Naïve Approach?

Requires many bits to represent large pictures

- Consumes a lot of storage (memory, disk)
- Consumes a lot of time to transmit (fax, network)

Important: Millions of pixels on modern displays

How can we use fewer bits?

General technique: Compression

- · Lossless: loses no information
- Lossy: throws away info that humans (hopefully) can't detect anyways

Run-Length Compression

Run-length encoding

- · Record length of each run of white then black pixels
- · Lossless or lossy?

More Complications?

Length is represented with binary number

• Assume 8 bit binary number

Problem?

Cannot record lengths that don't fit in 8 bits!

What is the maximum length that can be recorded?

 $2^{8}-1 = 255$

How can we represent run of 500 black pixels?

· 0 255 0 245

How would you represent colors?

- Examples: JPEG, TIFF, PNG, GIF, BMP (See Reading!)

Demo: Seurat or Paintballs?

Today's Summary

Today's topics

- Text: ASCII code maps letters/symbols to numbers
- · Translate analog to digital
- · Images: Represent color of each pixel
 - Use run-length encoding to compress size
- Sound: Sample amplitude of sound wave

Reading:

· Pages 130-151 of "Invitation to Computer Science"

Announcements

- Homework 3: Decision tree for interative story; extend!
 - · Due before class Friday
- Grades for HW1 and HW2 posted through Learn@UW