
1

Introduction and Overview

Questions answered in this lecture:
What is an operating system?
How have operating systems evolved?
Why study operating systems?

UNIVERSITY of WISCONSIN-MADISON
Computer Sciences Department

CS 537
Introduction to Operating Systems

Andrea C. Arpaci-Dusseau
Remzi H. Arpaci-Dusseau

What is an Operating System?

OS:
Everything in system that isn’t an application or hardware

OS:
Software that converts hardware into a useful form for
applications

Not easy to define precisely…

Users

Hardware

Operating System

Applications
compilers
databases
word processors

CPU
memory
I/O devices

What is the role of the OS?

Role #1: Provide standard Library (I.e., abstract
resources)

What is a resource?
• Anything valuable (e.g., CPU, memory, disk)

Advantages of standard library
• Allow applications to reuse common facilities
• Make different devices look the same
• Provide higher-level abstractions

Challenges
• What are the correct abstractions?
• How much of hardware should be exposed?

What is the role of the OS?

Role #2: Resource coordinator (I.e., manager)

Advantages of resource coordinator
• Virtualize resources so multiple users or applications

can share
• Protect applications from one another
• Provide efficient and fair access to resources

Challenges
• What are the correct mechanisms?
• What are the correct policies?

2

What Functionality belongs in OS?

No single right answer
• Desired functionality depends on outside factors
• OS must adapt to both user expectations and

technology changes
– Change abstractions provided to users
– Change algorithms to implement those abstractions
– Change low-level implementation to deal with hardware

Current operating systems driven by evolution

History of the OS

Two distinct phases of history
• Phase 1: Computers are expensive

– Goal: Use computer’s time efficiently
– Maximize throughput (I.e., jobs per second)
– Maximize utilization (I.e., percentage busy)

• Phase 2: Computers are inexpensive
– Goal: Use people’s time efficiently
– Minimize response time

First commercial systems

1950s Hardware
• Enormous, expensive, and slow
• Input/Output: Punch cards and line printers

Goal of OS
• Get the hardware working
• Single operator/programmer/user runs and debugs interactively

OS Functionality
• Standard library only (no sharing or coordination of resources)
• Monitor that is always resident; transfer control to programs

Advantages
• Worked and allowed interactive debugging

Problems
• Inefficient use of hardware (throughput and utilization)

Batch Processing

Goal of OS: Better throughput and utilization
Batch: Group of jobs submitted together

• Operator collects jobs; orders efficiently; runs one at a time

Advantages
• Amortize setup costs over many jobs
• Operator more skilled at loading tapes
• Keep machine busy while programmer thinks
• Improves throughput and utilization

Problems
• User must wait until batch is done for results
• Machine idle when job is reading from cards and writing to

printers

3

Spooling

Hardware
• Mechanical I/O devices much slower than CPU
• Read 17 cards/sec vs. execute 1000s instructions/sec

Goal of OS
• Improve performance by overlapping I/O with CPU execution

Spooling: Simultaneous Peripheral Operations On-Line
1. Read card punches to disk
2. Compute (while reading and writing to disk)
3. Write output from disk to printer

OS Functionality
• Buffering and interrupt handling

Problem
• Machine idle when job waits for I/O to/from disk

Multiprogrammed Batch Systems

Observation: Spooling provides pool of ready jobs
Goal of OS

• Improve performance by always running a job
• Keep multiple jobs resident in memory
• When job waits for disk I/O, OS switches to another job

OS Functionality
• Job scheduling policies
• Memory management and protection

Advantage: Improves throughput and utilization
Disadvantage: Machine not interactive

Inexpensive Peripherals

1960s Hardware
• Expensive mainframes, but inexpensive keyboards and monitors
• Enables text editors and interactive debuggers

Goal of OS
• Improve user’s response time

OS Functionality
• Time-sharing: switch between jobs to give appearance of

dedicated machine
• More complex job scheduling
• Concurrency control and synchronization

Advantage
• Users easily submit jobs and get immediate feedback

Inexpensive Personal Computers

1980s Hardware
• Entire machine is inexpensive
• One dedicated machine per user

Goal of OS
• Give user control over machine

OS Functionality
• Remove time-sharing of jobs, protection, and virtual memory

Advantages
• Simplicity
• Works with little main memory
• Machine is all your own (performance is predictable)

Disadvantages
• No time-sharing or protection between jobs

4

Inexpensive, Powerful Computers

1990s+ Hardware
• PCs with increasing computation and storage
• Users connected to the web

Goal of OS
• Allow single user to run several applications simultaneously
• Provide security from malicious attacks
• Efficiently support web servers

OS Functionality
• Add back time-sharing, protection, and virtual memory

Current Systems

Conclusion: OS changes due to both hardware and users
Current trends

• Multiprocessors
• Networked systems
• Virtual machines

OS code base is large
• Millions of lines of code
• 1000 person-years of work

Code is complex and poorly understood
• System outlives any of its builders
• System will always contain bugs
• Behavior is hard to predict, tuning is done by guessing

OS Components

Kernel: Core components of the OS

Process scheduler
• Determines when and for long each process executes

Memory manager
• Determines when and how memory is allocated to processes
• Decides what to do when main memory is full

File system
• Organizes named collections of data in persistent storage

Networking
• Enables processes to communicate with one another

Why study Operating Systems?

Build, modify, or administer an operating system

Understand system performance
• Behavior of OS impacts entire machine
• Challenge to understand large, complex system
• Tune workload performance
• Apply knowledge across many areas

– Computer architecture, programming languages, data
structures and algorithms, and performance modeling

