
1

Dynamic Memory Allocation

Questions answered in this lecture:
When is a stack appropriate? When is a heap?
What are best-fit, first-fit, worst-fit, and buddy

allocation algorithms?
How can memory be freed (using reference counts or

garbage collection)?

UNIVERSITY of WISCONSIN-MADISON
Computer Sciences Department

CS 537
Introduction to Operating Systems

Andrea C. Arpaci-Dusseau
Remzi H. Arpaci-Dusseau

Motivation for Dynamic Memory

Why do processes need dynamic allocation of memory?
• Do not know amount of memory needed at compile time
• Must be pessimistic when allocate memory statically

– Allocate enough for worst possible case
– Storage is used inefficiently

Recursive procedures
• Do not know how many times procedure will be nested

Complex data structures: lists and trees
• struct my_t *p=(struct my_t *)malloc(sizeof(struct my_t));

Two types of dynamic allocation
• Stack
• Heap

Stack Organization
Definition: Memory is freed in opposite order from allocation

alloc(A);
alloc(B);
alloc(C);
free(C);
alloc(D);
free(D);
free(B);
free(A);

Implementation: Pointer separates allocated and freed
space
• Allocate: Increment pointer
• Free: Decrement pointer

Stack Discussion

OS uses stack for procedure call frames (local variables)
main () {

int A = 0;
foo (A);
printf(“A: %d\n”, A);

}
void foo (int Z) {

int A = 2;
Z = 5;
printf(“A: %d Z: %d\n”, A, Z);

}

Advantages
• Keeps all free space contiguous
• Simple to implement
• Efficient at run time

Disadvantages
• Not appropriate for all data structures

2

Heap Organization

Advantage
• Works for all data structures

Disadvantages
• Allocation can be slow
• End up with small chunks of free space

Where to allocate 16 bytes? 12 bytes? 24 bytes??

Definition: Allocate from any random location
• Memory consists of allocated areas and free areas

(holes)
• Order of allocation and free is unpredictable

Free

Free

Alloc

Alloc

16 bytes

24 bytes

12bytes

16 bytes

A

B

Fragmentation

Definition: Free memory that is too small to be usefully
allocated
• External: Visible to allocator
• Internal: Visible to requester (e.g., if must allocate at some

granularity)

Goal: Minimize fragmentation
• Few holes, each hole is large
• Free space is contiguous

Stack
• All free space is contiguous
• No fragmentation

Heap
• How to allocate to minimize fragmentation?

Heap Implementation

Data structure: free list
• Linked list of free blocks, tracks memory not in use
• Header in each block

– size of block
– ptr to next block in list

void *Allocate(x bytes)
• Choose block large enough for request (>= x bytes)
• Keep remainder of free block on free list
• Update list pointers and size variable
• Return pointer to allocated memory

Free(ptr)
• Add block back to free list
• Merge adjacent blocks in free list, update ptrs and size

variables

Heap Allocation Policies

Best fit
• Search entire list for each allocation
• Choose free block that most closely matches size of request
• Optimization: Stop searching if see exact match

First fit
• Allocate first block that is large enough

Rotating first fit (or “Next fit”):
• Variant of first fit, remember place in list
• Start with next free block each time

Worst fit
• Allocate largest block to request (most leftover space)

3

Heap Allocation Examples

Scenario: Two free blocks of size 20 and 15 bytes
Allocation stream: 10, 20

• Best
• First
• Worst

Allocation stream: 8, 12, 12
• Best
• First
• Worst

Buddy Allocation

Fast, simple allocation for blocks of 2n bytes [Knuth68]
void *Allocate (k bytes)

• Raise allocation request to nearest s = 2n

• Search free list for appropriate size
– Represent free list with bitmap
– Recursively divide larger free blocks until find block of size s
– “Buddy” block remains free

• Mark corresponding bits as allocated

Free(ptr)
• Mark bits as free
• Recursively coalesce block with buddy, if buddy is free

– May coalesce lazily (later, in background) to avoid overhead

Buddy Allocation Example

Scenario: 1MB of free memory
Request stream:

• Allocate 70KB, 35KB, 80KB
• Free 35KB, 80KB, 70KB

Comparison of Allocation
Strategies

No optimal algorithm
• Fragmentation highly dependent on workload

Best fit
• Tends to leave some very large holes and some very small holes

– Can’t use very small holes easily

First fit
• Tends to leave “average” sized holes
• Advantage: Faster than best fit
• Next fit used often in practice

Buddy allocation
• Minimizes external fragmentation
• Disadvantage: Internal fragmentation when not 2^n request

4

Memory Allocation in Practice

How is malloc() implemented?
Data structure: Free lists

• Header for each element of free list
– pointer to next free block
– size of block
– magic number

• Where is header stored?
• What if remainder of block is smaller than header?

Two free lists
• One organized by size

– Separate list for each popular, small size (e.g., 1 KB)
– Allocation is fast, no external fragmentation

• Second is sorted by address
– Use next fit to search appropriately
– Free blocks shuffled between two lists

Freeing Memory
C: Expect programmer to explicitly call free(ptr)
Two possible problems

• Dangling pointers: Recycle storage that is still in-use
– Have two pointers to same memory, free one and use second

foo_t *a = malloc(sizeof(foo_t));
foo_t *b = a;
b->bar = 50;
free(a);
foo_t *c = malloc(sizeof(foo_t));
c->bar = 20;
printf(“b->bar: %d\n”, b->bar);

• Memory leaks: Forget to free storage
– If lose pointer, can never free associated memory
– Okay in short jobs, not okay for OS or long-running servers

foo_t *a = malloc(sizeof(foo_t));
foo_t *b = malloc(sizeof(foo_t));
b = a;

Reference Counts

Idea: Reference counts
• Track number of references to each memory chunk

– Increment count when new pointer references it
– Decrement count when pointer no longer references it

• When reference count = 0, free memory

Examples
• Hard links in Unix

echo Hi > file
ln file new
rm file
cat new

• Smalltalk

Disadvantages
• Circular data structures --> Memory leaks

Garbage Collection

Observation: To use data, must have pointer to it
• Without pointer, cannot access (or find) data
• Memory is free implicitly when no longer referenced

– Programmer does not call free()

Approach
• When system needs more memory, free unreachable chunks

Requirements
• Must be able to find all objects (referenced and not)
• Must be able to find all pointers to objects

– Strongly typed language
– Compiler cooperates by marking data type in memory

• Size of each object
• Which fields are pointers

5

Mark and Sweep
Garbage Collection

Pass 1: Mark all reachable data
• Start with all statically allocated and local (stack) variables
• Mark each data object as reachable
• Recursively mark all data objects can reach through pointers

Pass 2: Sweep through all memory
• Examine each data object
• Free those objects not marked

Advantages
• Works with circular data structures
• Simple for application programmers

Disadvantages
• Often CPU-intensive (poor caching behavior too)
• Difficult to implement such that can execute job during g.c.
• Requires language support (Java, LISP)

