
1

Memory Management

Questions answered in this lecture:
How do processes share memory?
What is static relocation?
What is dynamic relocation?
What is segmentation?

UNIVERSITY of WISCONSIN-MADISON
Computer Sciences Department

CS 537
Introduction to Operating Systems

Andrea C. Arpaci-Dusseau
Remzi H. Arpaci-Dusseau

Motivation for Multiprogramming

Uniprogramming: One process runs at a time

User
Process

OS
Physical
Memory

0

2n-1

Stack

Code

Heap
Address
Space

Disadvantages:
• Only one process runs at a time
• Process can destroy OS

Multiprogramming Goals

Sharing
• Several processes coexist in main memory
• Cooperating processes can share portions of address space

Transparency
• Processes are not aware that memory is shared
• Works regardless of number and/or location of processes

Protection
• Cannot corrupt OS or other processes
• Privacy: Cannot read data of other processes

Efficiency
• Do not waste CPU or memory resources
• Keep fragmentation low

Static Relocation
Goal: Allow transparent sharing - Each address space may

be placed anywhere in memory
• OS finds free space for new process
• Modify addresses statically (similar to linker) when load process

OS

Process 2

Process 1

Process 3

Advantages
• Requires no hardware support

2

Discussion of Static Relocation

Disadvantages
• No protection

– Process can destroy OS or other processes
– No privacy

• Address space must be allocated contiguously
– Allocate space for worst-case stack and heap
– What type of fragmentation?

• Cannot move address space after it has been placed
– May not be able to allocate new process
– What type of fragmentation?

Dynamic Relocation

Goal: Protect processes from one another
Requires hardware support

• Memory Management Unit (MMU)

MMU dynamically changes process address at every
memory reference
• Process generates logical or virtual addresses
• Memory hardware uses physical or real addresses

CPU MMU
Memory

Process runs here OS can control MMU

Logical address Physical address

Hardware Support for
Dynamic Relocation

Two operating modes
• Privileged (protected, kernel) mode: OS runs

– When enter OS (trap, system calls, interrupts, exceptions)
– Allows certain instructions to be executed

• Can manipulate contents of MMU

– Allows OS to access all of physical memory

• User mode: User processes run
– Perform translation of logical address to physical address

MMU contains base and bounds registers
• base: start location for address space
• bounds: size limit of address space

Implementation of
 Dynamic Relocation

Translation on every memory access of user process
• MMU compares logical address to bounds register

– if logical address is greater, then generate error
• MMU adds base register to logical address to form physical

address

base modeboundsregisters
32 bits 32 bits 1 bit

mode
=

user?

<
bounds?

no

no

yes

yes +
base

error

logical
address

physical
address

3

Example of Dynamic Relocation

What are the physical addresses for the following 16-bit
logical addresses?

Process 1: base: 0x4320, bounds: 0x2220
• 0x0000:
• 0x1110:
• 0x3000:

Process 2: base: 0x8540, bounds: 0x3330
• 0x0000:
• 0x1110:
• 0x3000:

Operating System
• 0x0000:

Managing Processes
 with Base and Bounds

Context-switch
• Add base and bounds registers to PCB
• Steps

– Change to privileged mode
– Save base and bounds registers of old process
– Load base and bounds registers of new process
– Change to user mode and jump to new process

What if don’t change base and bounds registers when
switch?

Protection requirement
• User process cannot change base and bounds registers
• User process cannot change to privileged mode

Base and Bounds Discussion

Advantages
• Provides protection (both read and write) across address spaces
• Supports dynamic relocation

– Can move address spaces
– Why might you want to do this???

• Simple, inexpensive implementation
– Few registers, little logic in MMU

• Fast
– Add and compare can be done in parallel

Disadvantages
• Each process must be allocated contiguously in physical memory

– Must allocate memory that may not be used by process
• No partial sharing: Cannot share limited parts of address space

Segmentation

Divide address space into logical segments
• Each segment corresponds to logical entity in

address space
– code, stack, heap

Each segment can independently:
• be placed separately in physical memory
• grow and shrink
• be protected (separate read/write/execute

protection bits)

4

Segmented Addressing

How does process designate a particular segment?
• Use part of logical address

– Top bits of logical address select segment
– Low bits of logical address select offset within segment

What if small address space, not enough bits?
• Implicitly by type of memory reference
• Special registers

Segmentation Implementation

0 00xffff0x00003
1 10x0fff0x30002
1 00x04ff0x00001
1 00x06ff0x20000
R WBoundsBaseSegment

MMU contains Segment Table (per process)
• Each segment has own base and bounds, protection bits
• Example: 14 bit logical address, 4 segments

Translate logical addresses to physical addresses:
0x0240:
0x1108:
0x265c:
0x3002:

Discussion of Segmentation

Advantages
• Enables sparse allocation of address space

– Stack and heap can grow independently
– Heap: If no data on free list, dynamic memory allocator requests

more from OS (e.g., UNIX: malloc calls sbrk())
– Stack: OS recognizes reference outside legal segment, extends

stack implicitly
• Different protection for different segments

– Read-only status for code
• Enables sharing of selected segments
• Supports dynamic relocation of each segment

Disadvantages
• Each segment must be allocated contiguously

– May not have sufficient physical memory for large segments

