
1

Memory Management Continued

Questions answered in this lecture:
What is paging?
How can segmentation and paging be combined?
How can one speed up address translation?

UNIVERSITY of WISCONSIN-MADISON
Computer Sciences Department

CS 537
Introduction to Operating Systems

Andrea C. Arpaci-Dusseau
Remzi H. Arpaci-Dusseau

Paging
Goal: Eliminate external fragmentation
Idea: Divide memory into fixed-sized pages

• Size: 2n, Example: 4KB
• Physical page: page frame

Process 1

Process 2

Logical View

Ph
ys

ic
al

 V
ie
w

Process 3

Translation of Page Addresses
How to translate logical address to physical address?

• High-order bits of address designate page number
• Low-order bits of address designate offset within page

page number

frame number

page offset

page offset

Logical address

Physical address

32 bits

page table

20 bits 12 bits

Page Table Implementation

Page table per process
• Page table entry (PTE) for each virtual page number (vpn)

– frame number or physical page number (ppn)
– R/W protection bits

Simple vpn->ppn mapping:
• No bounds checking, no addition
• Simply table lookup and bit substitution

How many entries in table?
Can the page table reside in the MMU?
Track page table base in PCB, change on context-switch

2

Page Table Example

What are contents of page table for p3?

Process 3

1 116
1 19

0 00
1 113
1 17

1 15
R Wframe page table base

Advantages of Paging

No external fragmentation
• Any page can be placed in any frame in physical memory
• Fast to allocate and free

– Alloc: No searching for suitable free space
– Free: Doesn’t have to coallesce with adjacent free space
– Just use bitmap to show free/allocated page frames

Simple to swap-out portions of memory to disk
• Page size matches disk block size
• Can run process when some pages are on disk
• Add “present” bit to PTE

Enables sharing of portions of address space
• To share a page, have PTE point to same frame

Disadvantages of Paging

Internal fragmentation: Page size may not match size
needed by process
• Wasted memory grows with larger pages
• Tension?

Additional memory reference to look up in page table -->
Very inefficient
• Page table must be stored in memory
• MMU stores only base address of page table

Storage for page tables may be substantial
• Simple page table: Requires PTE for all pages in address space

– Entry needed even if page not allocated
• Problematic with dynamic stack and heap within address space

Combine Paging and Segmentation

Goal: More efficient support for sparse address spaces
Idea:

• Divide address space into segments (code, heap, stack)
– Segments can be variable length

• Divide each segment into fixed-sized pages

Logical address divided into three portions: System 370

page offset (12 bits)page number (8 bits)seg #
(4 bits)

Implementation
• Each segment has a page table
• Each segment track base (physical address) and bounds of page

table (number of PTEs)
• What changes on a context-switch??

3

Example of Paging and
Segmentation

Translate 24-bit logical to physical addresses

1 10x0d0x0010002

0 00x000x0000001

1 00x140x0020000

R Wboundsbaseseg

...
0x006

0x00b
0x004
0x007

0x00c
...
0x013
0x02a

0x003
0x011
0x01f

...

0x001000

0x002000

0x002070 read:
0x202016 read:
0x104c84 read:
0x010424 write:
0x210014 write:
0x203568 read:

Advantages of Paging and
Segmentation

Advantages of Segments
• Supports sparse address spaces

– Decreases size of page tables
– If segment not used, not need for page table

Advantages of Pages
• No external fragmentation
• Segments can grow without any reshuffling
• Can run process when some pages are swapped to disk

Advantages of Both
• Increases flexibility of sharing

– Share either single page or entire segment
– How?

Disadvantages of Paging and
Segmentation

Overhead of accessing memory
• Page tables reside in main memory
• Overhead reference for every real memory

reference

Large page tables
• Must allocate page tables contiguously
• More problematic with more address bits
• Page table size?

– Assume 2 bits for segment, 18 bits for page number, 12 bits
for offset

Page the Page Tables

Goal: Allow page tables to be allocated non-contiguously
Idea: Page the page tables

• Creates multiple levels of page tables
• Only allocate page tables for pages in use

outer page
(8 bits)

inner page
(10 bits) page offset (12 bits)

30-bit address:

base of pt

4

Page the Page Tables Continued

How should logical address be structured?
• How many bits for each paging level?

Calculate such that page table fits within a page
• Goal: PTE size * number PTE = page size
• Assume PTE size = 4 bytes; page size = 4KB

2^2 * number PTE = 2^12
--> number PTE = 2^10
‡# bits for selecting inner page = 10

Apply recursively throughout logical address

Translation Look-Aside Buffer
(TLB)

Goal: Avoid page table lookups in main memory
Idea: Hardware cache of recent page translations

• Typical size: 64 - 2K entries
• Index by segment + vpn --> ppn

Why does this work?
• process references few unique pages in time interval
• spatial, temporal locality

On each memory reference, check TLB for translation
• If present (hit): use ppn and append page offset
• Else (miss): Use segment and page tables to get ppn

– Update TLB for next access (replace some entry)

How does page size impact TLB performance?

