UNIVERSITY of WISCONSIN-MADISON
Computer Sciences Department

Andrea C. Arpaci-Dusseau

Cs 537
Remzi H. Arpaci-Dusseau

Introduction to Operating Systems

Questions answered in this lecture:
What is paging?
How can segmentation and paging be combined?
How can one speed up address translation?

Goal: Eliminate external fragmentation
Idea: Divide memory into fixed-sized pages
* Size: 2", Example: 4KB

* Physical page: page frame

Physical View

R

Process 1

Process 3
Process 2

Logical View

How to translate logical address to physical address?
* High-order bits of address designate page number
* Low-order bits of address designate offset within page

20 bits 12 bits 32 bits
‘ page offset ‘ Logical address

page number

page offset Physical address

Page table per process
* Page table entry (PTE) for each virtual page number (vpn)
- frame number or physical page number (ppn)
- R/W protection bits
Simple vpn->ppn mapping:
* No bounds checking, no addition
* Simply table lookup and bit substitution
How many entries in table?
Can the page table reside in the MMU?
Track page table base in PCB, change on context-switch

What are contents of page table for p3?

frame R W % page table base
5 11
7 11
13 11
0 00
9 11
16 11

R

Process 3

No external fragmentation
* Any page can be placed in any frame in physical memory
* Fast to allocate and free
- Alloc: No searching for suitable free space
- Free: Doesn’t have to coallesce with adjacent free space
- Just use bitmap to show free/allocated page frames
Simple to swap-out portions of memory to disk
* Page size matches disk block size
e Can run process when some pages are on disk
* Add “present” bit to PTE
Enables sharing of portions of address space
e To share a page, have PTE point to same frame

Internal fragmentation: Page size may not match size
needed by process
* Wasted memory grows with larger pages
* Tension?
Additional memory reference to look up in page table -->
Very inefficient
* Page table must be stored in memory
* MMU stores only base address of page table
Storage for page tables may be substantial
e Simple page table: Requires PTE for all pages in address space
- Entry needed even if page not allocated
* Problematic with dynamic stack and heap within address space

Goal: More efficient support for sparse address spaces
Idea:
* Divide address space into segments (code, heap, stack)
- Segments can be variable length
* Divide each segment into fixed-sized pages

Logical address divided into three portions: System 370

‘ (iegi:) ‘puge number (8 bits) page offset (12 bits)

Implementation
e Each segment has a page table

* Each segment track base (physical address) and bounds of page
table (number of PTEs)

Example of Paging and
Segmentation

Translate 24-bit logical to physical addresses

seg | base bounds R W
0x01f
0 0x002000 |[0x14 10
0x011
1 0x000000 |[0x00 00 0%003
2 0x001000 |[0x0d 11 0x02a
0x013 0x002000
0xf230§010 read: 0x00c
gxlg‘losj rea;i. 0x007
¥10eces reads 0x004
0x010424 er._te. 0%00b
0x210014 write: 0%006 0x001000
0x203568 read:

Advantages of Paging and
Segmentation

Advantages of Segments
e Supports sparse address spaces
- Decreases size of page tables
- If segment not used, not need for page table
Advantages of Pages
* No external fragmentation
* Segments can grow without any reshuffling
e Can run process when some pages are swapped to disk
Advantages of Both
* Increases flexibility of sharing
- Share either single page or entire segment
- How?

Disadvantages of Paging and
Segmentation

Overhead of accessing memory
* Page tables reside in main memory
e Overhead reference for every real memory
reference
Large page tables
* Must allocate page tables contiguously
* More problematic with more address bits

* Page table size?

- Assume 2 bits for segment, 18 bits for page number, 12 bits
for offset

Page the Page Tables

Goal: Allow page tables to be allocated non-contiguously

Idea: Page the page tables
* Creates multiple levels of page tables
e Only allocate page tables for pages in use

30-bit address:

page offset (12 bits)

How should logical address be structured?

* How many bits for each paging level?

Calculate such that page table fits within a page
* Goal: PTE size * number PTE = page size

* Assume PTE size = 4 bytes; page size = 4KB
272 * number PTE = 2712

--> number PTE = 2710

># bits for selecting inner page = 10

Apply recursively throughout logical address

Goal: Avoid page table lookups in main memory
Idea: Hardware cache of recent page translations
* Typical size: 64 - 2K entries

* Index by segment + vpn --> ppn
Why does this work?

» process references few unique pages in time interval
* spatial, femporal locality
On each memory reference, check TLB for translation
o If present (hit): use ppn and append page offset
* Else (miss): Use segment and page tables to get ppn
- Update TLB for next access (replace some entry)

