
1

Virtual Memory: Working Sets

Questions answered in this lecture:
How to allocate memory across competing processes?
What is thrashing? What is a working set?
How to ensure working set of all processes fit?

UNIVERSITY of WISCONSIN-MADISON
Computer Sciences Department

CS 537
Introduction to Operating Systems

Andrea C. Arpaci-Dusseau
Remzi H. Arpaci-Dusseau

Allocating Memory across
Processes

Scenario:
• Several physical pages allocated to processes A, B, and C.

Process B page faults.
• Which page should be replaced?
• Three options...

Per-process replacement
• Each process has separate pool of pages

– Fixed number of pages (e.g., Digital VMS)
– Fixed fraction of physical memory (1/P)
– Proportional to size of allocated address space

• Page fault in one process only replaces pages of that process
– Perform replacement (e.g., LRU) over only those pages

• Advantage: No interference across processes
• Disadvantage: Potentially inefficient allocation of memory

– How to handle sharing of pages?

Allocating Memory across
Processes

Per-user replacement
• Each user has separate pool of pages
• Advantage: Fair across different users
• Disadvantage: Inefficient allocation

Global replacement
• Pages from all processes lumped into single replacement pool

– Example: Run clock over all page frames
• Each process competes with other processes for frames
• Advantages:

– Flexibility of allocation
– Minimize total number of page faults

• Disadvantages
– One memory-intensive process can hog memory, hurt all processes

Impact of Additional Processes

What happens to “performance” as add more
processes?
• Consider CPU utilization as metric
• Increase number of processes from 1

– Process blocks: Other processes can run
– CPU utilization increases with more processes

• Increase number of processes after memory filled
– Increases number of page faults
– Memory contention increases with more processes
– CPU utilization decreases with more processes

2

Overcommitting Memory

When does the Virtual Memory illusion break?
Example:

• Set of processes frequently referencing 33 important pages
• Physical memory can fit 32 pages

What happens?
• Process A references page not in physical memory
• OS runs another process B
• OS replaces some page in memory with page for A
• How long can B run before it page faults?

– Cycle continues...

Thrashing
System is reading and writing pages instead of executing

useful instructions
• Implication: Average memory access time = disk access time
• Memory appears as slow as disk, instead of disk appearing as

fast as memory

Average access time calculation
• H: Percentage of references that hit page in physical memory
• CAccessMemory: Cost of referencing page in memory (e.g., 100 ns)
• CPageFault: Cost of page fault (e.g., 20 ms or 20,000,000ns)
• H * CAccessMemory + (1-H) * CPageFault

Example: 1 out of every 33 references misses, H = 97%
• 0.97 * (100 ns) + (0.03) * (20000000ns) = 750000 ns = 750 us
• More than 1000 times slower than physical memory access

Need very high hit rate for acceptable performance

Motivation for Solution

Thrashing cannot be fixed with better replacement
policies
• Page replacement policies do not indicate that a page must be

kept in memory
• Only show which pages are better than others to replace

Student’s analogy to thrashing: Too many courses
• Solution: Drop a course

OS solution: Admission control
• Determine how much memory each process needs
• Long-term scheduling policy

– Run only those processes whose memory requirements can be
satisfied

• What if memory needs of one process are too large????

Working Set

Informal definition
• Collection of pages the process is referencing frequently
• Collection of pages that must be resident to avoid thrashing

Formal definition
• Assume locality; use recent past to predict future
• Pages referenced by process in last T seconds of execution
• Working set changes slowly over time

Example:
• Page reference stream:
• A B A B C B A C A C D C D E B E D F B F D B E D

3

Balance Set
Motivation: Process should not be scheduled unless

working set is resident in main memory
Divide runnable processes into two groups:

• Active: Working set is loaded
• Inactive: Working set is swapped to disk

Balance set: Sum of working sets of all active processes
Interaction with scheduler

• If balance set exceeds size of memory, move some process to
inactive set
– Which process???

• If balance set is less than size of memory, move some process
to active set
– Which process?

• Any other decisions?

Possible Implementations

Must constantly update working set information
Initial proposal:

• Store capacitor with each page frame
• Charge capacitor on page reference
• Capacitor discharges slowly if page not referenced
• T determined by size of capacitor

Problems with this proposal?

Working Set Implementation

Leverage use bits (as in clock algorithm)
OS maintains idle time for each page

• Amount of CPU received by process since last access
to page

• Periodically scan all resident pages of a process
– If use bit is set, clear page’s idle time
– If use bit is clear, add process CPU time (since last scan)

to idle time

• If idle time < T, page is in working set

Unresolved Questions

How should value of T be configured?
• What if T is too large?

How should working set be defined when pages are
shared?
• Put jobs sharing pages in same balance set

What processes should compose balance set?
How much memory needed for a “balanced system”?

• Balanced system: Each resource (e.g., CPU, memory, disk)
becomes bottleneck at nearly same time

• How much memory is needed to keep the CPU busy?
• With working set approach, CPU may be idle even with

runnable processes

4

VM Trends:
Interaction with File I/O

Integrated VM and file buffer cache in physical memory
• Physical memory used for both VM and as cache for file I/O
• OS determines how much of physical memory to devote to each

role

Can perform file I/O using VM system
• Memory-mapped files: (mmap() in UNIX)
• Programmer perspective: File lives in memory, access through

pointer dereferences
• Advantages: Elegant, no overhead for system calls (no read() or

write()), use madvise() for prefetching hints
• How?

– Set up page tables to indicate each page of file initially not
present

– When process accesses page of file, causes page fault
– OS fetches file page from disk, set present bit

Current Trends

VM code is not as critical
• Reason #1: Personal vs. time-shared machine

– Why does this matter?

• Reason #2: Memory is more affordable, more memory

Less hardware support for replacement policies
• Software emulation of use and dirty bits

Larger page sizes
• Better TLB coverage
• Smaller page tables
• Disadvantage: More internal fragmentation

– Multiple page sizes

