
1

Journaling File Systems

Questions answered in this lecture:
Why is it hard to maintain on-disk consistency?
How does the FSCK tool help with consistency?
What information is written to a journal?
What 3 journaling modes does Linux ext3 support?

UNIVERSITY of WISCONSIN-MADISON
Computer Sciences Department

CS 537
Introduction to Operating Systems

Andrea C. Arpaci-Dusseau
Remzi H. Arpaci-Dusseau

Review: The I/O Path (Reads)

Read() from file
• Check if block is in cache
• If so, return block to user

[1 in figure]
• If not, read from disk, insert

into cache, return to user [2]

Disk

Main
Memory
(Cache)

1

2

Block
in

cache

Block
 Not in
cache

L
ea

ve
 c

o
py

 i
n

 c
ac

h
e

Review: The I/O Path (Writes)

Write() to file
• Write is buffered in memory

(“write behind”) [1]
• Sometime later, OS decides

to write to disk [2]

Why delay writes?
• Implications for performance
• Implications for reliability

Disk

Main
Memory
(Cache)

1

2

Buffer in memory

Later
Write to

disk

Many “dirty” blocks in memory:
What order to write to disk?

Example: Appending a new block to existing file
• Write data bitmap B (for new data block),

write inode I of file (to add new pointer, update time),
write new data block D

B I D

Disk
Memory? ? ?

2

The Problem

Writes: Have to update disk with N writes
• Disk does only a single write atomically

Crashes: System may crash at arbitrary point
• Bad case: In the middle of an update sequence

Desire: To update on-disk structures atomically
• Either all should happen or none

Example: Bitmap first

Write Ordering: Bitmap (B), Inode (I), Data (D)
• But CRASH after B has reached disk, before I or D

Result?

B I D

Disk

Memory

Example: Inode first

Write Ordering: Inode (I), Bitmap (B), Data (D)
• But CRASH after I has reached disk, before B or D

Result?

B I D

Disk

Memory

Example: Inode first

Write Ordering: Inode (I), Bitmap (B), Data (D)
• CRASH after I AND B have reached disk, before D

Result?

B I D

Disk

Memory

3

Example: Data first

Write Ordering: Data (D) , Bitmap (B), Inode (I)
• CRASH after D has reached disk, before I or B

Result?

B I D

Disk

Memory

Traditional Solution: FSCK

FSCK: “file system checker”
When system boots:

• Make multiple passes over file system,
looking for inconsistencies
– e.g., inode pointers and bitmaps,

directory entries and inode reference counts

• Either fix automatically or punt to admin
• Does fsck have to run upon every reboot?

Main problem with fsck: Performance
• Sometimes takes hours to run on large disk volumes

How To Avoid The Long Scan?

Idea: Write something down to disk before
updating its data structures
• Called the “write ahead log” or “journal”

When crash occurs, look through log and see
what was going on
• Use contents of log to fix file system structures
• The process is called “recovery”

Case Study: Linux ext3

Journal location
• EITHER on a separate device partition
• OR just a “special” file within ext2

Three separate modes of operation:
• Data: All data is journaled
• Ordered, Writeback: Just metadata is journaled

First focus: Data journaling mode

4

Transactions in ext3 Data
Journaling Mode

Same example: Update Inode (I), Bitmap (B), Data (D)
First, write to journal:

• Transaction begin (Tx begin)
• Transaction descriptor (info about this Tx)
• I, B, and D blocks (in this example)
• Transaction end (Tx end)

Then, “checkpoint” data to fixed ext2 structures
• Copy I, B, and D to their fixed file system locations

Finally, free Tx in journal
• Journal is fixed-sized circular buffer, entries

must be periodically freed

What if there’s a Crash?

Recovery: Go through log and “redo” operations
that have been successfully commited to log

What if …
• Tx begin but not Tx end in log?
• Tx begin through Tx end are in log,

but I, B, and D have not yet been checkpointed?
• What if Tx is in log, I, B, D have been checkpointed,

but Tx has not been freed from log?

Performance? (As compared to fsck?)

Complication: Disk Scheduling

Problem: Low-levels of I/O subsystem in OS
and even the disk/RAID itself may reorder
requests

How does this affect Tx management?
• Where is it OK to issue writes in parallel?

– Tx begin
– Tx info
– I, B, D
– Tx end
– Checkpoint: I, B, D copied to final destinations
– Tx freed in journal

Problem with Data Journaling

Data journaling: Lots of extra writes
• All data committed to disk twice

(once in journal, once to final location)

Overkill if only goal is to keep metadata consistent
Instead, use ext2 writeback mode

• Just journals metadata
• Writes data to final location directly, at any time

Problems?
Solution: Ordered mode

• How to order data block write w.r.t. Tx writes?

5

Conclusions

Journaling
• All modern file systems use journaling to

reduce recovery time during startup
(e.g., Linux ext3, ReiserFS, SGI XFS, IBM JFS, NTFS)

• Simple idea: Use write-ahead log to record some
info about what you are going to do before doing it

• Turns multi-write update sequence into a single
atomic update (“all or nothing”)

• Some performance overhead: Extra writes to journal
– Worth the cost?

