
1

Distributed File Systems

Questions answered in this lecture:
Why are distributed file systems useful?
What is difficult about distributed file systems?
How does NFS work?

UNIVERSITY of WISCONSIN-MADISON
Computer Sciences Department

CS 537
Introduction to Operating Systems

Andrea C. Arpaci-Dusseau
Remzi H. Arpaci-Dusseau

What is a distributed file system?

Client

Client

Client

Client

Server

Network

Examples: NFS, AFS

Motivation

Why are distributed file systems useful?
• Access from multiple clients

– Same user on different machines can access same files

• Simplifies sharing
– Different users on different machines can read/write to

same files

• Simplifies administration
– One shared server to maintain (and backup)

• Improve reliability
– Add RAID storage to server

Challenges
Transparent access

• User sees single, global file system regardless of location

Scalable performance
• Performance does not degrade as more clients are added

Fault Tolerance
• Client and server identify and respond appropriately when other

crashes

Consistency
• See same directory and file contents on different clients at

same time

Security
• Secure communication and user authentication

Tension across these goals
• Example: Caching helps performance, but hurts consistency



2

Case Study: NFS

Sun’s Network File System
• Introduced in 1980s, multiple versions (v2, v3, v4)

Key idea #1: Stateless server
• Server not required to remember anything (in memory)

– Which clients are connected, which files are open, ...
• Implication: All client requests have enough info to complete op

– Example: Client specifies offset in file to write to
• One Advantage: Server state does not grow with more clients

Key idea #2: Idempotent server operations
• Operation can be repeated with same result (no side effects)
• Example: a=b+1; Not a=a+1;

Helps which Challenge??

NFS Overview

Remote Procedure Calls (RPC) for communication between
client and server

Client Implementation
• Provides transparent access to NFS file system

– UNIX contains Virtual File system layer (VFS)
– Vnode: interface for procedures on an individual file

• Translates vnode operations to NFS RPCs

Server Implementation
• Stateless: Must not have anything only in memory
• Implication: All modified data written to stable storage before

return control to client
– Servers often add NVRAM to improve performance

Basic NFS Protocol

Operations
• lookup(dirfh, name) returns (fh, attributes)

– Use mount protocol for root directory
• create(dirfh, name, attr) returns (newfs, attr)
• remove(dirfs, name) returns (status)
• read(fh, offset, count) returns (attr, data)
• write(fh, offset, count, data) returns attr
• gettattr(fh) returns attr

What is missing??

Mapping UNIX System Calls to
NFS Operations

Unix system call: fd = open(“/dir/foo”)
• Traverse pathname to get filehandle for foo

– dirfh = lookup(rootdirfh, “dir”);
– fh = lookup(dirfh, “foo”);

• Record mapping from fd file descriptor to fh NFS filehandle
• Set initial file offset to 0 for fd
• Return fd file descriptor

Unix system call: read(fd,buffer,bytes)
• Get current file offset for fd
• Map fd to fh NFS filehandle
• Call data = read(fh, offset, bytes) and copy data into

buffer
• Increment file offset by bytes

Unix system call: close(fd)
• Free resources assocatiated with fd



3

Client-side Caching

Caching needed to improve performance
• Reads: Check local cache before going to server
• Writes: Only periodically write-back data to server
• Avoid contacting server

– Avoid slow communication over network
– Server becomes scalability bottleneck with more clients

Two client caches
• data blocks
• attributes (metadata)

Cache Consistency

Problem: Consistency across multiple copies
(server and multiple clients)
• How to keep data consistent between client and

server?
– If file is changed on server, will client see update?
– Determining factor: Read policy on clients

• How to keep data consistent across clients?
– If write file on client A and read on client B, will B see

update?
– Determining factor: Write and read policy on clients

NFS Consistency: Reads
Reads: How does client keep current with server state?

• Attribute cache: Used to determine when file changes
– File open: Client checks server to see if attributes have changed

• If haven’t checked in past T seconds (configurable, T=3)
– Discard entries every N seconds (configurable, N=60)

• Data cache
– Discard all blocks of file if attributes show file has been modified

Eg: Client cache has file A’s attributes and blocks 1, 2, 3
• Client opens A:
• Client reads block 1
• Client waits 70 seconds
• Client reads block 2
• Block 3 is changed on server
• Client reads block 3
• Client reads block 4
• Client waits 70 seconds
• Client reads block 1

NFS Consistency: Writes

Writes: How does client update server?
• Files

– Write-back from client cache to server every 30 seconds
– Also, Flush on close()

• Directories
– Synchronously write to server

Example: Client X and Y have file A (blocks 1,2,3) cached
• Clients X and Y open file A
• Client X writes to blocks 1 and 2
• Client Y reads block 1
• 30 seconds later...
• Client Y reads block 2
• 40 seconds later...
• Client Y reads block 1



4

Conclusions

Distributed file systems
• Important for data sharing
• Challenges: Fault tolerance, scalable performance, and

consistency

NFS: Popular distributed file system
• Key features:

– Stateless server, idempotent operations: Simplifies fault tolerance
– Crashed server appears as slow server to clients

• Client caches needed for scalable performance
– Rules for invalidating cache entries and flushing data to server are

not straight-forward
– Data consistency very hard to reason about


