
1

Protection and Security

Questions answered in this lecture:
How can a system authenticate a user?
How are access rights specified?
What are common security problems?

UNIVERSITY of WISCONSIN-MADISON
Computer Sciences Department

CS 537
Introduction to Operating Systems

Andrea C. Arpaci-Dusseau
Remzi H. Arpaci-Dusseau

Motivation

Protection more important as computer systems develop
• Multiple users have access to same resources
• Computers connected to network
• Increasing importance to electronic commerce

Goals: Ensure users only do what they are supposed to do
• Prevent accidental misuse

– Example: Mistakenly overwrite command interpreter; no one can
log in

– Relatively easy to solve by making hard to do

• Prevent malicious abuse
– Example: Break into accounting system and transfer $3billion
– Hard to completely eliminate

Components of Protection
Mechanism

Authentication
• Make sure system knows which user is doing what action

Authorization determination
• Policy
• Determine what the user is and is not allowed to do

Access enforcement
• Mechanism
• Make sure no loopholes in the system

Flaw in any area ruins entire protection mechanism
• System is only as secure as its weakest link

Authentication

How do you prove who you are?
Passwords

• Secret piece of information known only by user
• System should not store in readable form

– One-way transformations must be used when check
• Disadvantage: Relatively easy to crack

– Humans choose poor passwords
• Short passwords are easy to find with brute force
• Common words found in dictionaries

Key
• Physical possession of item proves identity
• Should not be forgeable or able to be copied
• Advantage: If stolen, user is aware
• Disadvantage: Relatively expensive to make

2

Authorization Determination

Access rights represented with access matrix
• One domain (e.g., user) per row
• One resource (e.g., files) per column
• Each entry indicates privileges of domain for

resource

-RWRRWUser 5
-RWRRWUser 4

--RRWUser 3
--RWRWUser 2
RWRWRWRWUser 1
File DFile CFile BFile A

Representation of Access Matrix
Access matrix is sparsely populated

• Condense information by expressing in two forms
– Access control list: Per column
– Capability: Per row

Access Control Lists: (ACLs)
• For each resource, indicate users that can perform operations

– General form: Each resource has list of <user, privilege> pairs
• Disadvantage

– Tedious to have separate entry for every user
– Optimization: Group users into classes
– UNIX example:

• Three classes of users: self, group, everyone else
• Three privileges: read, write, execute

– AFS example
• Construct arbitrary groups
• Seven privileges: rliwdka

• Advantage: Easy to revoke privileges

Representation of Access Matrix
Capabilities

• For each user, indicate resources that can be accessed
– General form: Each user has list of <resource, privilege> pairs

• Implementation: Naming
– Secure pointer, whose value cannot be change
– Cannot even name objects not in your capability list
– Users cannot construct or copy these pointers
– Often need hardware or language support

Examples
• Virtual address space
• File descriptor for an open file
• Unlisted phone number?

Advantages
• More secure: default is no access to object

Disadvantage
• Difficult to revoke capabilities

Access Enforcement

Responsibilities of security kernel
• Protecting identification and authorization information
• Enforcing access controls

Requirements
• Must run in protected mode
• As small and simple as possible

Paradox
• More powerful protection mechanism -->

Larger and more complex security kernel -->
More likely to have implementation bugs -->
More security holes

3

Common Security Problems

Abuse of valid privileges
• Privileges are not fine grained enough
• Example: Super-user can do anything

Listener (or snooper)
• Eavesdrop on interconnect to steal information
• Example: Set ethernet card to promiscuous mode

Denial of Service (DoS) or Spoiler
• Consume all resources to make system crash or unusable
• Example: Grab all file space or create many processes

More Security Problems

Leverage Covert Channels
• Information leaks outside of normal interface

– Time, power, page faults, ...

• Example: Tenex page-fault caper
– System checked passwords until character didn’t match
– Cracked passwords by placing input string across page

boundary
– Measured time for password check

• If very slow?
– Number of needed attempts?

• Example: Power consumption on smart cards

More Security Problems

Imposter or Trojan Horse
• Application that misuses its environment

– Paths including “.” make users more vulnerable
• Examples

– Program looks like login process
– Editor that reads unauthorized files
– ATMs

Trap door
• Designer leaves hole in software to leverage later
• Example: Login makes user a super-user regardless of password

file
– Problem: Inspection of source code reveals trap door
– Change compiler to insert special code when compiling login!

More Security Problems

Virus
• Fragment of malicious code embedded in legitimate code
• Spread by copying infected programs over network or floppy

disk

Worm
• Capable of spreading itself from machine to machine
• Example: Thousands of computers disabled in Fall 1988

– Sendmail attack:
Debug command left enabled to execute code as super-user

– Fingerd attack:
Give long name to fingerd to overflow buffer and modify stack

– Rsh: Crack passwords of local users by guessing common ones;
Look for .rhost files for access to more machines

4

Regaining Security

May be impossible to secure system once
penetrated
• May not notice that security violation occurred

– Villain can remove all traces from log files

• Hooks can be left for villain to regain control
• Cannot restore system from backup tapes

– Attack could have occurred earlier than suspected

Solutions?
• Remove all files and reinstall all software
• Buy a new machine

