
1

Threads and Cooperation

Questions answered in this lecture:
Why are threads useful?
How does one use POSIX pthreads?
What are user-level versus kernel-level threads?
How do processes (or threads) communicate (IPC)?

UNIVERSITY of WISCONSIN-MADISON
Computer Sciences Department

CS 537
Introduction to Operating Systems

Andrea C. Arpaci-Dusseau
Remzi H. Arpaci-Dusseau

Why support Threads?

Divide large task across several cooperative threads
Multi-threaded task has many performance benefits

• Adapt to slow devices
One thread waits for device while other threads computes

• Defer work
One thread performs non-critical work in the background,
when idle

• Parallelism
Each thread runs simultaneously on a multiprocessor

Common Programming Models

Multi-threaded programs tend to be structured in one of
three common models:
• Manager/worker

Single manager handles input and assigns work to the worker
threads

• Producer/consumer
Multiple producer threads create data (or work) that is
handled by one of the multiple consumer threads

• Pipeline
Task is divided into series of subtasks, each of which is handled
in series by a different thread

What do threads share?

Multiple threads within a single process share:
• Process ID (PID)
• Address space

– Code (instructions)
– Most data (heap)

• Open file descriptors
• Signals and signal handlers
• Current working directory
• User and group id

Each thread has its own
• Thread ID (TID)
• Set of registers, including Program counter and Stack pointer
• Stack for local variables and return addresses
• Signal mask

2

Thread Operations

Variety of thread systems exist
• Win32 threads
• C-Threads
• POSIX Pthreads

Common thread operations
• Create
• Exit
• Suspend
• Resume
• Sleep
• Wake
• Join (instead of wait())

Operations for threads usually faster than for processes

PThread Example
Main()
{

pthread_t t1, t2;
char *msg1 = “Thread 1”; char *msg2 = “Thread 2”;
int ret1, ret2;
ret1 = pthread_create(&t1, NULL, print_fn, (void *)msg1);
ret2 = pthread_create(&t2, NULL, print_fn, (void *)msg2);
if (ret1 || ret2) {

fprintf(stderr, “ERROR: pthread_created failed.\n”);
exit(1);

}
pthread_join(t1, NULL);
pthread_join(t2, NULL);
printf(“Thread 1 and thread 2 complete.\n”);

}
Void print_fn(void *ptr)
{

printf(“%s\n”, (char *)ptr);
}

Output???

OS Support for Threads

Three approaches for thread support
• User-level threads
• Kernel-level threads
• Hybrid of User-level and Kernel-level threads

Thread Model #1

User-level threads: Many-to-one thread mapping
• Implemented by user-level runtime libraries

– Create, schedule, synchronize threads at user-level
• OS is not aware of user-level threads

– OS thinks each process contains only a single thread of control

Advantages
• Does not require OS support; Portable
• Can tune scheduling policy to meet application demands
• Lower overhead thread operations since no system calls

Disadvantages
• Cannot leverage multiprocessors
• Entire process blocks when one thread blocks

3

Thread Model #2

Kernel-level threads: One-to-one thread mapping
• OS provides each user-level thread with a kernel thread
• Each kernel thread scheduled independently
• Thread operations (creation, scheduling, synchronization)

performed by OS

Advantages
• Each kernel-level thread can in parallel on a multiprocessor
• When one thread blocks, other threads from process can be

scheduled

Disadvantages
• Higher overhead for thread operations
• OS must scale well with increasing number of threads

Thread Model #3

Hybrid of Kernel and user-level threads: m-to-n thread mapping
• Application creates m threads
• OS provides pool of n kernel threads
• Few user-level threads mapped to each kernel-level thread

Advantages
• Can get best of user-level and kernel-level implementations
• Works well given many short-lived user threads mapped to constant-

size pool
Disadvantages

• Complicated…
• How to select mappings?
• How to determine the best number of kernel threads?

– User specified
– OS dynamically adjusts number depending on system load

Interprocess Communication (IPC)

To cooperate usefully, threads must communicate
with each other

How do processes and threads communicate?
• Shared Memory
• Message Passing
• Signals

IPC: Shared Memory

Processes
• Each process has private address space
• Explicitly set up shared memory segment within each address

space

Threads
• Always share address space (use heap for shared data)

Advantages
• Fast and easy to share data

Disadvantages
• Must synchronize data accesses; error prone

Synchronization: Topic for next few lectures

4

IPC: Message Passing
Message passing most commonly used between processes

• Explicitly pass data btwn sender (src) + receiver (destination)
• Example: Unix pipes

Advantages:
• Makes sharing explicit
• Improves modularity (narrow interface)
• Does not require trust between sender and receiver

Disadvantages:
• Performance overhead to copy messages

Issues:
• How to name source and destination?

– One process, set of processes, or mailbox (port)
• Does sending process wait (I.e., block) for receiver?

– Blocking: Slows down sender
– Non-blocking: Requires buffering between sender and receiver

IPC: Signals

Signal
• Software interrupt that notifies a process of an event
• Examples: SIGFPE, SIGKILL, SIGUSR1, SIGSTOP, SIGCONT

What happens when a signal is received?
• Catch: Specify signal handler to be called
• Ignore: Rely on OS default action

– Example: Abort, memory dump, suspend or resume process
• Mask: Block signal so it is not delivered

– May be temporary (while handling signal of same type)

Disadvantage
• Does not specify any data to be exchanged
• Complex semantics with threads

Threads and Signals

Problem: To which thread should OS deliver signal?
Option 1: Require sender to specify thread id (instead of

process id)
• Sender may not know about individual threads

Option 2: OS picks destination thread
• POSIX: Each thread has signal mask (disable specified signals)
• OS delivers signal to all threads without signal masked
• Application determines which thread is most appropriate for

handing signal

