
1

Synchronization

Questions answered in this lecture:
Why is synchronization necessary?
What are race conditions, critical sections, and atomic

operations?
How to protect critical sections with atomic loads and

stores?

UNIVERSITY of WISCONSIN-MADISON
Computer Sciences Department

CS 537
Introduction to Operating Systems

Andrea C. Arpaci-Dusseau
Remzi H. Arpaci-Dusseau

Cooperation requires
Synchronization

Example:
Two threads share account balance in memory
Each runs common code, deposit()
void deposit (int amount) {

balance = balance + amount;
}

Compile to sequence of assembly instructions
load R1, balance
add R1, amount
store R1, balance

Which variables are shared? Which private?

Concurrent Execution

What happens if 2 threads deposit concurrently?
Assume any interleaving of instructions is possible
Make no assumptions about scheduler

Initial balance: $100
Thread 1:deposit(10) Thread 2:deposit(20)
Load R1, balance

Load R1, balance
Add R1, amount

Add R1, amount
Store R1, balance

Store R1, balance
What is the final balance?

Definitions
Race condition: Result depends upon ordering of execution

• Non-deterministic bug, very difficult to find

Critical section: Required Properties
• Mutual exclusion

– Only one thread in critical section at a time
• Progress (deadlock-free)

– If several simultaneous requests, must allow one to proceed
– Must not depend on threads outside critical section

• Bounded (starvation-free)
– Must eventually allow each waiting thread to enter

Desirable Properties
• Efficient

– Don’t consume substantial resources while waiting
– Do not busy wait (I.e., spin wait)

• Fair
– Don’t make some processes wait longer than others

2

Implementing Critical Sections

To implement, need atomic operations
Atomic operation: No other instructions can be interleaved
Examples of atomic operations

• Loads and stores of words <-- Today’s topic
– Load r1, B
– Store r1, A

• Code between interrupts on uniprocessors
– Disable timer interrupts, don’t do any I/O

• Special hw instructions
– Test&Set
– Compare&Swap

Critical Section: Attempt #1

Code uses a single shared lock variable
Boolean lock = false; // shared variable
Void deposit(int amount) {
while (lock) /* wait */ ;
lock = true;

balance += amount; // critical section

lock = false;
}
Why doesn’t this work? Which principle is violated?

Attempt #2

Each thread has its own lock; lock indexed by tid (0, 1)
Boolean lock[2] = {false, false}; // shared
Void deposit(int amount) {
lock[tid] = true;
while (lock[1-tid]) /* wait */ ;

balance += amount; // critical section

lock[tid] = false;
}
Why doesn’t this work? Which principle is violated?

Attempt #3

Turn variable determines which thread can enter
Int turn = 0; // shared
Void deposit(int amount) {
while (turn == 1-tid) /* wait */ ;

balance += amount; // critical section

turn = 1-tid;
}
Why doesn’t this work? Which principle is violated?

3

Peterson’s Algorithm:
Solution for Two Threads

Combine approaches 2 and 3: Separate locks and turn variable
Int turn = 0; // shared
Boolean lock[2] = {false, false};
Void deposit(int amount) {

lock[tid] = true;
turn = 1-tid;
while (lock[1-tid] && turn == 1-tid) /* wait */ ;

balance += amount; // critical section

lock[tid] = false;
}

Peterson’s Algorithm:
Intuition

Mutual exclusion: Enter critical section if and
only if
• Other thread does not want to enter
• Other thread wants to enter, but your turn

Progress: Both threads cannot wait forever at
while() loop
• Completes if other process does not want to enter
• Other process (matching turn) will eventually finish

Bouded waiting
• Each process waits at most one critical section

Lamport’s Bakery Algorithm
for N Threads

Bakery algorithm intuition
Each thread picks next highest ticket (may have ties)
Enter critical section when have lowest ticket

Choosing[tid] = true;
Number[tid] = Max(number[0]..number[n-1]) + 1;
Choosing[tid] = false;
For (j = 0; j < n; j++) {

while (choosing[j]);
while (number[j] && ((number[j],j) < (number[tid],tid)));

}
Balance += amount;
Number[tid] = 0;

