
1

Semaphores

Questions answered in this lecture:
Why are semaphores necessary?
How are semaphores used for mutual exclusion?
How are semaphores used for scheduling constraints?
Examples: Join and Producer/Consumer

UNIVERSITY of WISCONSIN-MADISON
Computer Sciences Department

CS 537
Introduction to Operating Systems

Andrea C. Arpaci-Dusseau
Remzi H. Arpaci-Dusseau

Motivation for Semaphores

Locks only provide mutual exclusion
• Ensure only one thread is in critical section at a time

May want more: Place ordering on scheduling of threads
• Example: Producer/Consumer

– Producer: Creates a resource (data)
– Consumer: Uses a resource (data)

• Example
- ps | grep “gcc” | wc

• Don’t want producers and consumers to operate in lock step
– Place a fixed-size buffer between producers and consumers
– Synchronize accesses to buffer
– Producer waits if buffer full; consumer waits if buffer empty

Semaphores

Semaphores: Introduced by Dijkstra in 1960s

Semaphores have two purposes
• Mutex: Ensure threads don’t access critical section

at same time
• Scheduling constraints: Ensure threads execute in

specific order

Semaphore Operations
Allocate and Initialize

• Semaphore contains a non-negative integer value
• User cannot read or write value directly after initialization

– Sem_t sem;
– Int sem_init(&sem, is_shared, init_value);

Wait or Test
• P() for “test” in Dutch (proberen)
• Waits until value of sem is > 0, then decrements sem value
• Int sem_wait(&sem);

Signal or Increment or Post
• V() for “increment” in Dutch (verhogen)
• Increments value of semaphore
• Int sem_post(&sem);

2

Semaphore Implementation
typedef struct {

int value;
queue tlist;

} semaphore;
sem_wait (semaphore *S) { // Must be executed atomically

S->value--;
if (S->value < 0) {

add this process to S->tlist;
block();

}
}
sem_signal (semaphore *S) {// Must be executed atomically

S->value++;
if (S->value <= 0) {

remove thread t from S->tlist;
wakeup(t);

}
}

Semaphore Example

What happens if sem is initialized to 2?
• Scenario: Three processes call sem_wait(&sem)

Observations
• Sem value is negative --> Number of waiters on queue
• Sem value is positive --> Number of threads that can be in c.s.

at same time

Mutual Exclusion with Semaphores

Previous example with locks:
Void deposit (int amount) {
mutex_lock(&mylock);
balance += amount;
mutex_unlock(&mylocak);

}
Example with semaphores:
Void deposit(int amount) {
sem_wait(&sem);
balance += amount;
sem_signal(&sem);

}
To what value should sem be initialized???

Binary Semaphores

Binary semaphore is sufficient for mutex
• Binary semaphore has boolean value (not integer)
• bsem_wait(): Waits until value is 1, then sets to 0
• bsem_signal(): Sets value to 1, waking one waiting

process

General semaphore is also called counting
semaphore

3

Scheduling Constraints with
Semaphores

General case: One thread waits for another to reach
some point

Example: Implement thread_join()
• Parent thread calls thread_join(), which must wait for child

thread to call exit();
• Shared sem between parent and child (created when child

thread is created)
To what value is sem initialized???

Parent thread
Thread_join() {

sem_wait(&sem);

}

Child thread
exit() {

sem_signal(&sem);

}

Producer/Consumer: Single Buffer
Simplest case:

• Single producer thread, single consumer thread
• Single shared buffer between producer and consumer

Requirements
• Consumer must wait for producer to fill buffer
• Producer must wait for consumer to empty buffer (if filled)

Requires 2 semaphores
• emptyBuffer: Initialize to ???
• fullBuffer: Initialize to ???

Producer

While (1) {

sem_wait(&emptyBuffer);
Fill(&buffer);

sem_signal(&fullBuffer);

}

Consumer

While (1) {

sem_wait(&fullBuffer);
Use(&buffer);

sem_signal(&emptyBuffer);

}

Producer/Consumer:
Circular Buffer

Next case:
• Single producer thread, single consumer thread
• Shared buffer with N elements between producer and consumer

Requirements
• Consumer must wait for producer to fill buffer
• Producer must wait for consumer to empty buffer (if filled)

Requires 2 semaphores
• emptyBuffer: Initialize to ???
• fullBuffer: Initialize to ???

Producer
i = 0;
While (1) {

sem_wait(&emptyBuffer);
Fill(&buffer[i]);
i = (i+1)%N;
sem_signal(&fullBuffer);

}

Consumer
j = 0;
While (1) {

sem_wait(&fullBuffer);
Use(&buffer[j]);
j = (j+1)%N;
sem_signal(&emptyBuffer);

}

Producer/Consumer:
Multiple Threads

Final case:
• Multiple producer threads, multiple consumer threads
• Shared buffer with N elements between producer and consumer

Requirements
• Consumer must wait for producer to fill buffer
• Producer must wait for consumer to empty buffer (if filled)
• Each consumer must grab unique filled element
• Each producer must grab unique empty element
• Why will previous code not work???

Producer
While (1) {

sem_wait(&emptyBuffer);
myi = findempty(&buffer);
Fill(&buffer[myi]);
sem_signal(&fullBuffer);

}

Consumer
While (1) {

sem_wait(&fullBuffer);
myj = findfull(&buffer);
Use(&buffer[myj]);
sem_signal(&emptyBuffer);

}
Are myi and myj private or shared? Where is mutual exclusion needed???

4

Producer/Consumer:
Multiple Threads

Consider three possible locations for mutual exclusion; Which work??? Which is best???

Producer #1
sem_wait(&mutex);
sem_wait(&emptyBuffer);
myi = findempty(&buffer);
Fill(&buffer[myi]);
sem_signal(&fullBuffer);
sem_signal(&mutex);

Consumer #1
sem_wait(&mutex);
sem_wait(&fullBuffer);
myj = findfull(&buffer);
Use(&buffer[myj]);
sem_signal(&emptyBuffer);
sem_signal(&mutex);

Consumer #2
sem_wait(&fullBuffer);
sem_wait(&mutex);
myj = findfull(&buffer);
Use(&buffer[myj]);
sem_signal(&mutex);
sem_signal(&emptyBuffer);

Consumer #3
sem_wait(&fullBuffer);
sem_wait(&mutex);
myj = findfull(&buffer);
sem_signal(&mutex);
Use(&buffer[myj]);
sem_signal(&emptyBuffer);

Producer #2
sem_wait(&emptyBuffer);
sem_wait(&mutex);
myi = findempty(&buffer);
Fill(&buffer[myi]);
sem_signal(&mutex);
sem_signal(&fullBuffer);

Producer #3
sem_wait(&emptyBuffer);
sem_wait(&mutex);
myi = findempty(&buffer);
sem_signal(&mutex);
Fill(&buffer[myi]);
sem_signal(&fullBuffer);

