UNIVERSITY of WISCONSIN-MADISON
Computer Sciences Department

Cs 537 Andrea C. Arpaci-Dusseau
Introduction to Operating Systems Remzi H. Arpaci-Dusseau

Questions answered in this lecture:
Why are semaphores necessary?
How are semaphores used for mutual exclusion?
How are semaphores used for scheduling constraints?
Examples: Join and Producer/Consumer

Locks only provide mutual exclusion

e Ensure only one thread is in critical section at a time

May want more: Place ordering on scheduling of threads
e Example: Producer/Consumer
- Producer: Creates a resource (data)
- Consumer: Uses a resource (data)
e Example
- ps | grep “gec” | we
* Don’t want producers and consumers to operate in lock step
- Place a fixed-size buffer between producers and consumers
- Synchronize accesses to buffer
- Producer waits if buffer full; consumer waits if buffer empty

Semaphores: Introduced by Dijkstra in 1960s

Semaphores have two purposes

* Mutex: Ensure threads don’t access critical section
at same time

* Scheduling constraints: Ensure threads execute in
specific order

Allocate and Initialize
* Semaphore contains a non-negative integer value
¢ User cannot read or write value directly after initialization
— Sem_t sem;
— Intisemiinit(&sem, is_shared, init_value);
Wait or Test
e P() for “test” in Dutch (proberen)
¢ Waits until value of sem is > O, then decrements sem value
e Int sem_wait(&sem);
Signal or Increment or Post
e V() for “increment” in Dutch (verhogen)
* Increments value of semaphore
¢ Int sem post(&sem);




typedef struct {
int value;
queue tlist;
} semaphore;
sem_wait (semaphore *S) { // Must be executed atomically
S->value--;
if (S->value < 0) {
add this process to S->tlist;
block();
}
}
sem_signal (semaphore *S) {// Must be executed atomically
S->value++;
if (S->value <= 0) {
remove thread t from S->tlist;
wakeup(t);

What happens if sem is initialized to 2?
* Scenario: Three processes call sem_wait(&sem)

Observations
* Sem value is negative --> Number of waiters on queue

e Sem value is positive --> Number of threads that can be in c.s.
at same time

Previous example with locks:

Void deposit (int amount) {
mutex_lock(&mylock);
balance += amount;
mutex_unlock(&mylocak);

}

Example with semaphores:

Void deposit(int amount) {
sem_wait(&sem);
balance += amount;
sem_signal(&sem);

Binary semaphore is sufficient for mutex
* Binary semaphore has boolean value (not integer)
e bsem_wait(): Waits until value is 1, then sets to O

* bsem_signal(): Sets value to 1, waking one waiting
process

General semaphore is also called counting
semaphore




General case: One thread waits for another to reach
some point

Example: Implement thread_join()

e Parent thread calls thread_join(), which must wait for child
thread to call exit();

* Shared sem between parent and child (created when child
thread is created)

Parent thread Child thread

Simplest case:
* Single producer thread, single cons
+ Single shared buffer between prod
Requirements

Producer must wait for consumer t
Requires 2 semaphores

» emptyBuffer: Initialize to ???

o fullBuffer: Initialize to ???

Producer
While (1) {

sem_wait (&emptyBuffer);
Fill(&buffer);

sem_signal (&fullBuffer);

umer thread

ucer and consumer

Consumer must wait for producer to fill buffer

o empty buffer (if filled)

Consumer
While (1) {

sem_wait(&fullBuffer);
Use(&buffer);

sem_signal (&emptyBuffer);

Thread_join() { exit() {
sem wait(&sem); sem_signal(&sem);
} }
Next case:

Single producer thread, single consumer thread

Shared buffer with N elements between producer and consumer
Requirements

Consumer must wait for producer to fill buffer
Producer must wait for consumer to empty buffer (if filled)
Requires 2 semaphores

» emptyBuffer: Initialize to ???

» fullBuffer: Initialize to ???

Producer Consumer

i=0; j = 0;

While (1) { While (1) {
sem_wait(&emptyBuffer); sem_wait(&fullBuffer);
Fill(sbuffer[i]); Use(&buffer[j]);

i = (i+1)sN; j = (3+1)8N;
sem_signal(&fullBuffer); sem_signal (&emptyBuffer);

Final case:
Requirements

Producer

While (1) {
sem_wait (&emptyBuffer);
myi = findempty (&buffer);
Fill(&buffer[myi]);
sem_signal (&fullBuffer);

Multiple producer threads, multiple consumer threads
Shared buffer with N elements between producer and consumer

Consumer must wait for producer to fill buffer
Producer must wait for consumer to empty buffer (if filled)
Each consumer must grab unique filled element
Each producer must grab unique empty element

Consumer

While (1) {
sem_wait(&fullBuffer);
myj = findfull(&buffer);
Use(&buffer[myj]l);
sem_signal (&emptyBuffer);




Consider three possible locations for mutual exclusion; Which work??? Which is best???

Producer #1
sem_wait(&mutex);
sem_wait(&emptyBuffer);
myi = findempty (&buffer);
Fill(&buffer[myi]);
sem_signal(&fullBuffer);
sem_signal(&mutex);

Producer #2
sem_wait(&emptyBuffer);
sem_wait(&mutex);
myi = findempty (&buffer);
Fill(&buffer[myi]);
sem_signal(&mutex);
sem_signal(&fullBuffer);

Producer #3
sem_wait(&emptyBuffer);
sem_wait(&mutex);
myi = findempty (&buffer);
sem_signal(&mutex);
Fill(&buffer[myi]);
sem_signal(&fullBuffer);

Consumer #1
sem_wait(&mutex);
sem wait(&fullBuffer);
myj = findfull(&buffer);
Use(&buffer[myj]);
sem_signal(&emptyBuffer);
sem_signal(&mutex);
Consumer #2
sem wait(&fullBuffer);
sem_wait(&mutex);
myj = findfull(&buffer);
Use(&buffer[myj]);
sem_signal(&mutex);
sem_signal(&emptyBuffer);

Consumer #3
sem wait(&fullBuffer);
sem_wait(&mutex);
myj = findfull(&buffer);
sem_signal(&mutex);
Use(&buffer[myj]);
sem_signal (&emptyBuffer);




