
1

Deadlock

Questions answered in this lecture:
What are the four necessary conditions for deadlock?
How can deadlock be prevented?
How can deadlock be avoided?
How can deadlock be detected and recovered from?

UNIVERSITY of WISCONSIN-MADISON
Computer Sciences Department

CS 537
Introduction to Operating Systems

Andrea C. Arpaci-Dusseau
Remzi H. Arpaci-Dusseau

Deadlock: Why does it happen?

Informal: Every entity is waiting for resource held by
another entity; none release until it gets what it is
waiting for

Deadlock Example
Two threads access two shared variables, A and B
Variable A is protected by lock x, variable B by lock y
How to add lock and unlock statements?
int A, B;

Thread 1

A += 10;

B += 20;

A += B;

A += 30;

Thread 2

B += 10;

A += 20;

A += B;

B += 30;

Deadlock Example
int A, B;
lock_t x, y;
Thread 1

lock(x);

A += 10;

lock(y);

B += 20;

A += B;

unlock(y);

A += 30;

unlock(x);

Thread 2

lock(y);

B += 10;

lock(x);

A += 20;

A += B;

unlock(x);

B += 30;

unlock(y);

What can go wrong??

2

Representing Deadlock

Two common ways of representing deadlock
• Vertices:

– Threads (or processes) in system
– Resources (anything of value, including locks and semaphores)

• Edges: Indicate thread is waiting for the other

T1 T2

“waiting for”

“waiting for”

Wait-For Graph Resource-Allocation Graph

T1 T2
wants

held by

y

x
wants

held by

Conditions for Deadlock

Mutual exclusion
• Resource can not be shared
• Requests are delayed until resource is released

Hold-and-wait
• Thread holds one resource while waits for another

No preemption
• Resources are released voluntarily after completion

Circular wait
• Circular dependencies exist in “waits-for” or “resource-

allocation” graphs

ALL four conditions MUST hold

Handing Deadlock

Deadlock prevention
• Ensure deadlock does not happen
• Ensure at least one of 4 conditions does not occur

Deadlock avoidance
• Ensure deadlock does not happen
• Use information about resource requests to dynamically avoid

unsafe situations

Deadlock detection and recovery
• Allow deadlocks, but detect when occur
• Recover and continue

Ignore
• Easiest and most common approach

Deadlock Prevention #1

Approach
• Ensure 1 of 4 conditions cannot occur
• Negate each of the 4 conditions

No single approach is appropriate (or possible) for
all circumstances

No mutual exclusion --> Make resource sharable
• Example: Read-only files

3

Deadlock Prevention #2
No Hold-and-wait --> Two possibilities
1) Only request resources when have none

• Release resource before requesting next one

Thread 1

lock(x);

A += 10;

unlock(x);

lock(y);

B += 20;

unlock(y);

lock(x);

A += 30;

unlock(x);

Thread 2

lock(y);

B += 10;

unlock(y);

lock(x);

A += 20;

unlock(x);

lock(y);

B += 30;

unlock(y);

Deadlock Prevention #2

No Hold-and-wait
2) Atomically acquire all resources at once

• Example #1: Single lock to protect all

Thread 1

lock(z);

A += 10;

B += 20;

A += B;

A += 30;

unlock(z);

Thread 2

lock(z);

B += 10;

A += 20;

A += B;

B += 30;

unlock(z);

Deadlock Prevention #2

No Hold-and-wait
2) Atomically acquire all resources at once

• Example #2: New primitive to acquire two locks

Thread 1

lock(x,y);

A += 10;

B += 20;

A += B;

unlock(y);

A += 30;

unlock(x);

Thread 2

lock(x,y);

B += 10;

A += 20;

A += B;

unlock(x);

B += 30;

unlock(y);

Deadlock Prevention #2
Problems w/ acquiring many resources atomically

• Low resource utilization
– Must make pessimistic assumptions about resource usage
if (cond1) {
lock(x);

}
if (cond2) {
lock(y);

}

• Starvation
– If need many resources, others might keep getting one of

them

4

Deadlock Prevention #3

No “no preemption” --> Preempt resources
Example: A waiting for something held by B, then take

resource away from B and give to A
• Only works for some resources (e.g., CPU and

memory)
• Not possible if resource cannot be saved and

restored
– Can’t take away a lock without causing problems

Deadlock Prevention #4

No circular wait --> Impose ordering on resources
• Give all resources a ranking; must acquire highest

ranked first
• How to change Example?

Problems?

Deadlock Avoidance

Dijkstra’s Banker’s Algorithm
Avoid unsafe states of processes holding

resources
• Unsafe states might lead to deadlock if processes

make certain future requests
• When process requests resource, only give if doesn’t

cause unsafe state
• Problem: Requires processes to specify all possible

future resource demands

Banker’s Algorithm Example
Scenario:

• Three processes, P0, P1, and P2
• Five available resources, N=5
• Each process may need maximum of 4 resources simultaneously

Not safe example: P0 has 2, P1 has 1, P2 has 1
• Why could this lead to deadlock?
• Implication: Avoid this state, allow only states with enough resources

left to satisfy claim of at least 1 process
• Claim: Maximum need - currently loaned to this process

Example:
• P0 requests: Allow?
• P1 requests: Allow?
• P2 requests: Allow?
• P0 requests: Allow?
• P1 requests: Allow?
• P0 requests: Allow?
• P0 releases 2
• Allow any others now?

5

Deadlock Detection and Recovery

Detection
• Maintain wait-for graph of requests
• Run algorithm looking for cycles

– When should algorithm be run?

Recovery: Terminate deadlock
• Reboot system (Abort all processes)
• Abort all deadlocked processes
• Abort one process in cycle

Challenges
• How to take resource away from process? Undo effects of

process (e.g., removing money from account)
– Must roll-back state to safe state (checkpoint memory of job)

• Could starve process if repeatedly abort it

