UNIVERSITY of WISCONSIN-MADISON Computer Sciences Department

CS 537 Introduction to Operating Systems Andrea C. Arpaci-Dusseau Remzi H. Arpaci-Dusseau

CPU Scheduling

Questions answered in this lecture:

What is scheduling vs. allocation? What is preemptive vs. non-preemptive scheduling? What are FCFS, SJF, STCF, RR and priority-based scheduling policies?

What are their advantages and disadvantages?

Types of Resources

Resources can be classified into one of two groups Type of resource determines how the OS manages it

1) Non-preemptible resources

- Once given resource, cannot be reused until voluntarily relinquished
- Resource has complex or costly state associated with it
- Need many instances of this resource
- Example: Blocks on disk
- OS management: allocation
- Decide which process gets which resource

2) Preemptible resources

- Can take resource away, give it back later
- Resource has little state associated with it
- May only have one of this resource
- Example: CPU
- OS management: scheduling
- Decide order in which requests are serviced
- Decide how long process keeps resource

Levels of CPU Management

Dispatcher

- Low-level mechanism
- Performs context-switch
 - Save execution state of old process in PCB
 - Add PCB to appropriate queue (ready or blocked)
 - Load state of next process from PCB to registers
 - Switch from kernel to user mode
 - Jump to instruction in user process

Scheduler

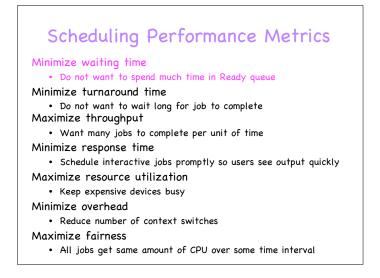
· Policy to determine which process gets CPU when

Allocator

- Policy to determine which processes compete for which CPU
- Needed for multiprocessor, parallel, and distributed systems

CPU Workload Model

Workload contains collection of jobs (processes) Job model

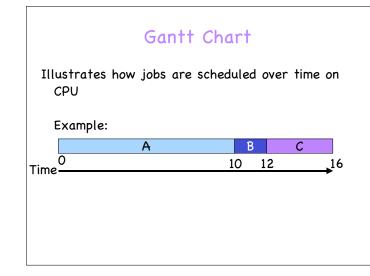

- Job alternates between CPU and I/O bursts (i.e., moves between ready and blocked queues)
- CPU-bound job: Long CPU bursts
- I/O-bound job: Short CPU bursts

Do not know type of job before it executes

• Do not know duration of CPU or I/O burst

Need job scheduling for each ready job

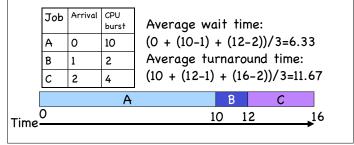
• Schedule each CPU burst

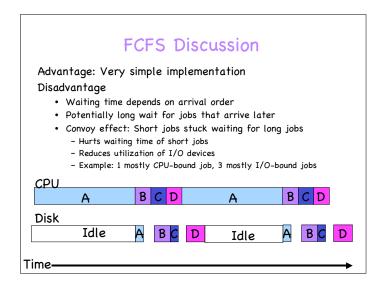

When may Scheduler switch?

Non-preemptive scheduler

- Process remains scheduled until voluntarily relinquishes CPU
- Scheduler may switch in two cases:
- -

Preemptive scheduler

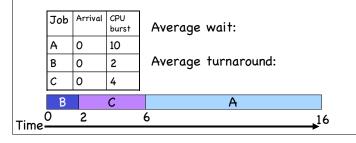

- Process may be descheduled at any time
- Additional cases:
- -
- -



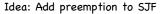
First-Come-First-Served (FCFS)

Idea: Maintain FIFO list of jobs as they arrive

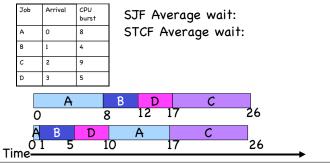
- Non-preemptive policy
- Allocate CPU to job at head of list

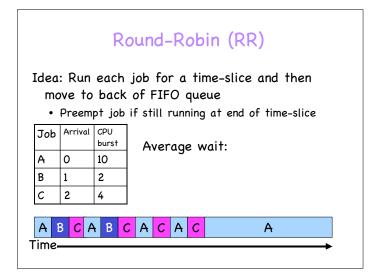


Shortest-Job-First (SJF)


Idea: Minimize average wait time by running shortest CPU-burst next

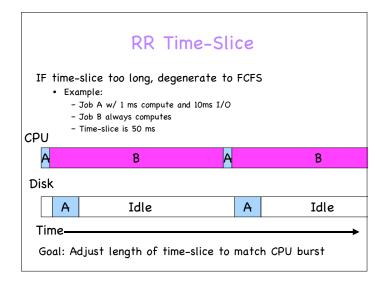
- Non-preemptive
- Use FCFS if jobs are of same length

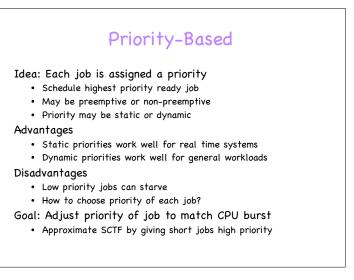



SJF Discussion Advantages • Provably optimal for minimizing average wait time (with no preemption) • Moving shorter job before longer job improves waiting time of short job more than it harms waiting time of long job • Helps keep I/O devices busy Disadvantages • Not practical: Cannot predict future CPU burst time • OS solution: Use past behavior to predict future behavior • Starvation: Long jobs may never be scheduled

Shortest-Time-to-Completion-First (STCF or SCTF)

• Schedule newly ready job if shorter than remaining burst for running job


RR Discussion


Advantages

- Jobs get fair share of CPU
- Shortest jobs finish relatively quickly

Disadvantages

- Poor average waiting time with similar job lengths
 - Example: 10 jobs each requiring 10 time slices
 - RR: All complete after about 100 time slices
 - FCFS performs better!
- Performance depends on length of time-slice
 - If time-slice too short, pay overhead of context switch
 - If time-slice too long, degenerate to FCFS

