
1

CPU Scheduling

Questions answered in this lecture:
What is scheduling vs. allocation?
What is preemptive vs. non-preemptive scheduling?
What are FCFS, SJF, STCF, RR and priority-based

scheduling policies?
What are their advantages and disadvantages?

UNIVERSITY of WISCONSIN-MADISON
Computer Sciences Department

CS 537
Introduction to Operating Systems

Andrea C. Arpaci-Dusseau
Remzi H. Arpaci-Dusseau

Types of Resources
Resources can be classified into one of two groups
Type of resource determines how the OS manages it
1) Non-preemptible resources

• Once given resource, cannot be reused until voluntarily relinquished
• Resource has complex or costly state associated with it
• Need many instances of this resource
• Example: Blocks on disk
• OS management: allocation

– Decide which process gets which resource
2) Preemptible resources

• Can take resource away, give it back later
• Resource has little state associated with it
• May only have one of this resource
• Example: CPU
• OS management: scheduling

– Decide order in which requests are serviced
– Decide how long process keeps resource

Levels of CPU Management

Dispatcher
• Low-level mechanism
• Performs context-switch

– Save execution state of old process in PCB
– Add PCB to appropriate queue (ready or blocked)
– Load state of next process from PCB to registers
– Switch from kernel to user mode
– Jump to instruction in user process

Scheduler
• Policy to determine which process gets CPU when

Allocator
• Policy to determine which processes compete for which CPU
• Needed for multiprocessor, parallel, and distributed systems

CPU Workload Model

Workload contains collection of jobs (processes)
Job model

• Job alternates between CPU and I/O bursts (i.e.,
moves between ready and blocked queues)

• CPU-bound job: Long CPU bursts
• I/O-bound job: Short CPU bursts

Do not know type of job before it executes
• Do not know duration of CPU or I/O burst

Need job scheduling for each ready job
• Schedule each CPU burst



2

Scheduling Performance Metrics
Minimize waiting time

• Do not want to spend much time in Ready queue

Minimize turnaround time
• Do not want to wait long for job to complete

Maximize throughput
• Want many jobs to complete per unit of time

Minimize response time
• Schedule interactive jobs promptly so users see output quickly

Maximize resource utilization
• Keep expensive devices busy

Minimize overhead
• Reduce number of context switches

Maximize fairness
• All jobs get same amount of CPU over some time interval

When may Scheduler switch?

Non-preemptive scheduler
• Process remains scheduled until voluntarily relinquishes CPU
• Scheduler may switch in two cases:

–
–

Preemptive scheduler
• Process may be descheduled at any time
• Additional cases:

–
–
–

Gantt Chart

Illustrates how jobs are scheduled over time on
CPU

Example:
A B C

Time 10 12 160

First-Come-First-Served (FCFS)

C
B
A

Job

2
1
0

Arrival

4
2
10

CPU
burst

A B C

Time 10 12 160

Average wait time:
(0 + (10-1) + (12-2))/3=6.33
Average turnaround time:
(10 + (12-1) + (16-2))/3=11.67

Idea: Maintain FIFO list of jobs as they arrive
• Non-preemptive policy
• Allocate CPU to job at head of list



3

FCFS Discussion
Advantage: Very simple implementation
Disadvantage

• Waiting time depends on arrival order
• Potentially long wait for jobs that arrive later
• Convoy effect: Short jobs stuck waiting for long jobs

– Hurts waiting time of short jobs
– Reduces utilization of I/O devices
– Example: 1 mostly CPU-bound job, 3 mostly I/O-bound jobs

CB DA CB DA

CB DIdle A Idle CB DA

CPU

Disk

Time

Shortest-Job-First (SJF)

Idea: Minimize average wait time by running
shortest CPU-burst next
• Non-preemptive
• Use FCFS if jobs are of same length

C
B
A

Job

0
0
0

Arrival

4
2
10

CPU
burst

AB C

Time 160

Average wait:

Average turnaround:

2 6

SJF Discussion

Advantages
• Provably optimal for minimizing average wait time

(with no preemption)
– Moving shorter job before longer job improves waiting time

of short job more than it harms waiting time of long job

• Helps keep I/O devices busy

Disadvantages
• Not practical: Cannot predict future CPU burst time

– OS solution: Use past behavior to predict future behavior

• Starvation: Long jobs may never be scheduled

Shortest-Time-to-Completion-First
(STCF or SCTF)

Idea: Add preemption to SJF
• Schedule newly ready job if shorter than remaining burst for

running job

92C

D

B

A

Job

3

1

0

Arrival

5

4

8

CPU
burst

Time

SJF Average wait:
STCF Average wait:

A B CD

A B D A C
0 8 12

26

2617

17101 50



4

Round-Robin (RR)

Idea: Run each job for a time-slice and then
move to back of FIFO queue
• Preempt job if still running at end of time-slice

C
B

A

Job

2
1

0

Arrival

4
2

10

CPU
burst

A B C A B C A C A C A

Average wait:

Time

RR Discussion

Advantages
• Jobs get fair share of CPU
• Shortest jobs finish relatively quickly

Disadvantages
• Poor average waiting time with similar job lengths

– Example: 10 jobs each requiring 10 time slices
– RR: All complete after about 100 time slices
– FCFS performs better!

• Performance depends on length of time-slice
– If time-slice too short, pay overhead of context switch
– If time-slice too long, degenerate to FCFS

RR Time-Slice

IF time-slice too long, degenerate to FCFS
• Example:

– Job A w/ 1 ms compute and 10ms I/O
– Job B always computes
– Time-slice is 50 ms

BA BA
CPU

Disk

A Idle A Idle

Goal: Adjust length of time-slice to match CPU burst

Time

Priority-Based

Idea: Each job is assigned a priority
• Schedule highest priority ready job
• May be preemptive or non-preemptive
• Priority may be static or dynamic

Advantages
• Static priorities work well for real time systems
• Dynamic priorities work well for general workloads

Disadvantages
• Low priority jobs can starve
• How to choose priority of each job?

Goal: Adjust priority of job to match CPU burst
• Approximate SCTF by giving short jobs high priority


