
10/11/16

1

Concurrency:
Threads

Questions answered in this lecture:

Why is concurrency useful?

What is a thread and how does it differ from processes?

What can go wrong if scheduling of critical sections is not atomic?

UNIVERSITY of WISCONSIN-MADISON
Computer Sciences Department

CS 537
Introduction to Operating Systems

Andrea C. Arpaci-Dusseau
Remzi H. Arpaci-Dusseau

Announcements

P2: Due next Friday
• Test scripts released soon

• Purpose of graph is to demonstrate scheduler is working correctly

1st Exam: Congratulations for completing!
• Grades will be posted to Learn@UW

• Return individual sheets next week

• Exam with answers will be posted to course web page

Read as we go along!
• Chapter 26

10/11/16

2

Review: Easy Piece 1

Virtualization

CPU

Memory

Context Switch

Schedulers

Segmentation

Paging

TLBs

Multilevel

Swapping

Allocation

http://cacm.acm.org/magazines/2012/4/147359-cpu-db-recording-microprocessor-history/fulltext

Motivation for
Concurrency

10/11/16

3

Motivation

CPU Trend: Same speed, but multiple cores

Option 0: Run many different applications on one machine

Goal: Write applications that fully utilize many cores

Option 1: Build applications from many communicating processes
• Example: Chrome (process per tab)
• Communicate via pipe() or similar

Pros?
• Don’t need new abstractions; good for security

Cons?
• Cumbersome programming
• High communication overheads
• Expensive context switching (why expensive?)

CONCURRENCY:
Option 2

New abstraction: thread

Threads are like processes, except:
multiple threads of same process share same address space

Approach

• Divide large task across several cooperative threads
• Communicate through shared address space

10/11/16

4

Common
Programming Models

Multi-threaded programs tend to be structured as:
• Producer/consumer

Multiple producer threads create data (or work) that
is handled by one of the multiple consumer threads

• Pipeline
Task is divided into series of subtasks, each of
which is handled in series by a different thread

• Defer work with background thread
One thread performs non-critical work in the
background (when CPU idle)

CPU 1 CPU 2
running
thread 1

running
thread 2

RAM

What state do threads share?

10/11/16

5

CPU 1 CPU 2
running
thread 1

running
thread 2

RAM
PageDir A

PageDir B
…

Do threads share page directories?

What state do threads share?

PTBRPTBR
IP IP

Do threads share Instruction Pointers?

CODE HEAP …Virt Mem
(PageDir A)

Share code, but each thread may be executing different code at the same time
à Different Instruction Pointers

CPU 1 CPU 2
running
thread 1

running
thread 2

RAM
PageDir A

PageDir B
…PTBRPTBR

CODE HEAPVirt Mem
(PageDir A)

IP IPSP SP

STACK 1 STACK 2

Do threads share stack pointer?

threads executing different functions need different stacks

10/11/16

6

THREAD VS. Process

Multiple threads within a single process share:
• Process ID (PID)
• Address space

• Code (instructions)
• Most data (heap)

• Open file descriptors
• Current working directory

• User and group id

Each thread has its own
• Thread ID (TID)

• Set of registers, including Program counter and Stack pointer
• Stack for local variables and return addresses

(in same address space)

THREAD API

Variety of thread systems exist
• POSIX Pthreads

Common thread operations
• Create

• Exit

• Join (instead of wait() for processes)

10/11/16

7

OS Support:
Approach 1

User-level threads: Many-to-one thread mapping
• Implemented by user-level runtime libraries

• Create, schedule, synchronize threads at user-level

• OS is not aware of user-level threads
• OS thinks each process contains only single thread of control

Advantages
• Does not require OS support; Portable

• Can tune scheduling policy to meet application demands
• Lower overhead thread operations since no system call

Disadvantages?
• Cannot leverage multiprocessors
• Entire process blocks when one thread blocks

OS Support:
Approach 2

Kernel-level threads: One-to-one thread mapping
• OS provides each user-level thread with a kernel thread
• Each kernel thread scheduled independently

• Thread operations (creation, scheduling, synchronization)
performed by OS

Advantages
• Each kernel-level thread can run in parallel on a

multiprocessor
• When one thread blocks, other threads from process can be

scheduled

Disadvantages
• Higher overhead for thread operations
• OS must scale well with increasing number of threads

10/11/16

8

Demo: basic threads
main-thread-0.c

Thread SchedulE #1

0x195 mov 0x9cd4, %eax

0x19a add $0x1, %eax

0x19d mov %eax, 0x9cd4A

Thread 1 Thread 2

%eax: ?
%rip: 0x195

State:
0x9cd4: 100
%eax: ?
%rip = 0x195

process
control
blocks:

T1

%eax: ?
%rip: 0x195

balance = balance + 1; balance at 0x9cd4

What is state after instruction 0x195 completes?

Registers are virtualized by OS;
Each thread thinks it has own

10/11/16

9

Thread SchedulE #1

Thread 1 Thread 2
State:
0x9cd4: 100
%eax: 100
%rip = 0x19a

process
control
blocks:

T1

%eax: ?
%rip: 0x195

%eax: ?
%rip: 0x195

0x195 mov 0x9cd4, %eax

0x19a add $0x1, %eax

0x19d mov %eax, 0x9cd4A

What is state after instruction 0x19a completes?

Thread SchedulE #1

Thread 1 Thread 2
State:
0x9cd4: 100
%eax: 101
%rip = 0x19d

process
control
blocks:

T1

%eax: ?
%rip: 0x195

%eax: ?
%rip: 0x195

0x195 mov 0x9cd4, %eax

0x19a add $0x1, %eax

0x19d mov %eax, 0x9cd4A

What is state after instruction 0x19d completes?

10/11/16

10

Thread SchedulE #1

Thread 1 Thread 2
State:
0x9cd4: 101
%eax: 101
%rip = 0x1a2

process
control
blocks:

T1

%eax: ?
%rip: 0x195

%eax: ?
%rip: 0x195

Thread Context Switch
New contents of PCB and %eax and %rip?

0x195 mov 0x9cd4, %eax

0x19a add $0x1, %eax

0x19d mov %eax, 0x9cd4A

Thread SchedulE #1

Thread 1 Thread 2
State:
0x9cd4: 101
%eax: ?
%rip = 0x195

process
control
blocks:

T2

%eax: 101
%rip: 0x1a2

%eax: ?
%rip: 0x195

0x195 mov 0x9cd4, %eax

0x19a add $0x1, %eax

0x19d mov %eax, 0x9cd4A

What is state after instruction 0x195 completes?

10/11/16

11

Thread SchedulE #1

Thread 1 Thread 2
State:
0x9cd4: 101
%eax: 101
%rip = 0x19a

process
control
blocks:

T2

%eax: 101
%rip: 0x1a2

%eax: ?
%rip: 0x195

0x195 mov 0x9cd4, %eax

0x19a add $0x1, %eax

0x19d mov %eax, 0x9cd4A

What is state after instruction 0x19a completes?

Thread SchedulE #1

Thread 1 Thread 2
State:
0x9cd4: 101
%eax: 102
%rip = 0x19d

process
control
blocks:

T2

%eax: 101
%rip: 0x1a2

%eax: ?
%rip: 0x195

What is state after instruction 0x19d completes?

0x195 mov 0x9cd4, %eax

0x19a add $0x1, %eax

0x19d mov %eax, 0x9cd4A

10/11/16

12

Thread SchedulE #1

Thread 1 Thread 2
State:
0x9cd4: 102
%eax: 102
%rip = 0x1a2

process
control
blocks:

T2

%eax: 101
%rip: 0x1a2

%eax: ?
%rip: 0x195

0x195 mov 0x9cd4, %eax

0x19a add $0x1, %eax

0x19d mov %eax, 0x9cd4A

Desired Result!

Another schedule

10/11/16

13

Thread SchedulE #2

Thread 1 Thread 2

%eax: ?
%rip: 0x195

State:
0x9cd4: 100
%eax: ?
%rip = 0x195

process
control
blocks:

T1

%eax: ?
%rip: 0x195

0x195 mov 0x9cd4, %eax

0x19a add $0x1, %eax

0x19d mov %eax, 0x9cd4A

Thread SchedulE #2

Thread 1 Thread 2

%eax: ?
%rip: 0x195

State:
0x9cd4: 100
%eax: 100
%rip = 0x19a

process
control
blocks:

T1

%eax: ?
%rip: 0x195

0x195 mov 0x9cd4, %eax

0x19a add $0x1, %eax

0x19d mov %eax, 0x9cd4A

10/11/16

14

Thread SchedulE #2
Thread 1 Thread 2

%eax: ?
%rip: 0x195

State:
0x9cd4: 100
%eax: 101
%rip = 0x19d

process
control
blocks:

T1

%eax: ?
%rip: 0x195

Thread Context Switch

0x195 mov 0x9cd4, %eax

0x19a add $0x1, %eax

0x19d mov %eax, 0x9cd4A

Thread SchedulE #2
Thread 1 Thread 2

%eax: 101
%rip: 0x19d

State:
0x9cd4: 100
%eax: ?
%rip = 0x195

process
control
blocks:

T2

%eax: ?
%rip: 0x195

0x195 mov 0x9cd4, %eax

0x19a add $0x1, %eax

0x19d mov %eax, 0x9cd4A

10/11/16

15

Thread SchedulE #2

Thread 1 Thread 2

%eax: 101
%rip: 0x19d

State:
0x9cd4: 100
%eax: 100
%rip = 0x19a

process
control
blocks:

T2

%eax: ?
%rip: 0x195

0x195 mov 0x9cd4, %eax

0x19a add $0x1, %eax

0x19d mov %eax, 0x9cd4A

Thread SchedulE #2

Thread 1 Thread 2

%eax: 101
%rip: 0x19d

State:
0x9cd4: 100
%eax: 101
%rip = 0x19d

process
control
blocks:

T2

%eax: ?
%rip: 0x195

0x195 mov 0x9cd4, %eax

0x19a add $0x1, %eax

0x19d mov %eax, 0x9cd4A

10/11/16

16

Thread SchedulE #2

Thread 1 Thread 2

%eax: 101
%rip: 0x19d

State:
0x9cd4: 101
%eax: 101
%rip = 0x1a2

process
control
blocks:

T2

%eax: ?
%rip: 0x195

0x195 mov 0x9cd4, %eax

0x19a add $0x1, %eax

0x19d mov %eax, 0x9cd4A

Thread Context Switch

Thread SchedulE #2

Thread 1 Thread 2

%eax: 101
%rip: 0x19d

State:
0x9cd4: 101
%eax: 101
%rip = 0x19d

process
control
blocks:

T1

%eax: 101
%rip: 0x1a2

0x195 mov 0x9cd4, %eax

0x19a add $0x1, %eax

0x19d mov %eax, 0x9cd4A

10/11/16

17

Thread SchedulE #2

Thread 1 Thread 2

%eax: 101
%rip: 0x1a2

State:
0x9cd4: 101
%eax: 101
%rip = 0x1a2

process
control
blocks:

T1

%eax: 101
%rip: 0x1a2

0x195 mov 0x9cd4, %eax

0x19a add $0x1, %eax

0x19d mov %eax, 0x9cd4A

Thread SchedulE #2

Thread 1 Thread 2

%eax: 101
%rip: 0x1a2

State:
0x9cd4: 101
%eax: 101
%rip = 0x1a2

process
control
blocks:

T1

%eax: 101
%rip: 0x1a2

WRONG Result! Final value of balance is 101

0x195 mov 0x9cd4, %eax

0x19a add $0x1, %eax

0x19d mov %eax, 0x9cd4A

10/11/16

18

Timeline View

Thread 1 Thread 2

mov 0x123, %eax

add %0x1, %eax

mov %eax, 0x123

mov 0x123, %eax

add %0x2, %eax

mov %eax, 0x123

How much is added to shared variable? 3: correct!

Timeline View

Thread 1 Thread 2
mov 0x123, %eax

add %0x1, %eax

mov 0x123, %eax

mov %eax, 0x123

add %0x2, %eax

mov %eax, 0x123

How much is added? 2: incorrect!

10/11/16

19

Timeline View

Thread 1 Thread 2
mov 0x123, %eax

mov 0x123, %eax

add %0x2, %eax

add %0x1, %eax

mov %eax, 0x123

mov %eax, 0x123

How much is added? 1: incorrect!

Timeline View

Thread 1 Thread 2
mov 0x123, %eax

add %0x2, %eax

mov %eax, 0x123

mov 0x123, %eax

add %0x1, %eax

mov %eax, 0x123

How much is added? 3: correct!

10/11/16

20

Timeline View

Thread 1 Thread 2
mov 0x123, %eax

add %0x2, %eax

mov 0x123, %eax

add %0x1, %eax

mov %eax, 0x123

mov %eax, 0x123

How much is added? 2: incorrect!

Non-Determinism

Concurrency leads to non-deterministic results
• Not deterministic result: different results even with same inputs
• Race conditions

Whether bug manifests depends on CPU schedule!
• Passing tests means little

How to program well for concurrency?
• Imagine scheduler is malicious

• Assume scheduler will pick bad ordering at some point…

10/11/16

21

What do we want?

Want 3 instructions to execute as an uninterruptable group
That is, we want them to be atomic

mov 0x123, %eax
add %0x1, %eax
mov %eax, 0x123

critical section

More general:
Need mutual exclusion for critical sections Ci and Cj
• if process A is in critical section Ci, process B can’t execute Cj

(okay if other processes do unrelated work)

Specific: Any code that modifies “balance” variable

Break

• What is your spirit animal?

• Did you have a favorite pet growing up?

• If you could have any type of pet, what would it be?

10/11/16

22

Synchronization

Build higher-level synchronization primitives in OS
• Operations that ensure correct ordering of instructions across threads

Motivation: Build them once and get them right

Monitors Semaphores
Condition Variables

Locks

Loads Stores Test&Set
Disable Interrupts

Locks

Goal: Provide mutual exclusion (mutex)

Three common operations:

• Allocate and Initialize()
• Pthread_mutex_t mylock = PTHREAD_MUTEX_INITIALIZER;

• Acquire
• Acquire exclusion access to lock;

• Wait if lock is not available (some other process in critical section)
• Spin or block (relinquish CPU) while waiting (implementation later)
• Pthread_mutex_lock(&mylock);

• Release
• Release exclusive access to lock; let another process enter critical section
• Pthread_mutex_unlock(&mylock);

10/11/16

23

More Demos
main-thread-1.c
main-thread-2.c

Lessons from Demos

Mutex interface is very easy to use

Tricky to get best performance; trade-off…

Acquiring and releasing locks has significant overhead
• Implication: Don’t want to do “too often”

Shorter critical sections mean more concurrency
• Utilize more cores effectively
• Implication: Put locks around smallest portion of code possible

Extreme scenarios for correctness:
• Single big lock around all code; poor performance but works!

10/11/16

24

Conclusions

Concurrency is needed to obtain high performance by utilizing
multiple cores

Threads are multiple execution streams within a single process
or address space

Share PID and address space

Separate registers and stack

Context switches within a critical section can lead to
non-deterministic bugs (race conditions)

Use locks to provide mutual exclusion

