
Pre-class Slide

1

N Years of
Reliability Research

(where N > 5)

Remzi H. Arpaci-Dusseau
Professor @ Wisconsin-Madison

2

Why Storage Systems Are Broken
(and What To Do About It)

Remzi H. Arpaci-Dusseau
Professor @ Wisconsin-Madison

3

What is a File System?
Persistent storage for data

Methods to name and organize data

Used in many settings

• Desktop

• Server

What is the state of the art?

• From FFS to modern systems

4

File System Innovations
Performance

• Caching, buffering, scaling, ...

Crash consistency

• Logging, copy-on-write, soft updates, ...

Functionality

• Search, ...

But what about Reliability?

5

This Work Began When...

We noticed the following:

• Disks seemed to be failing in new and
interesting ways

• File systems seemed to be reacting to
these failures in an odd manner

6

And thus...

An area of ignorance for us:
How do file systems react to disk failures?

7

Outline

Part I: How do disks actually fail?

Part II: How do systems react to failure?

Part III: Why is fault-handling so difficult?

Part IV: How can we do better?

8

Part I:
How Disks Fail

9

State of the art
Anecdotal

• Academics: Little information

• Web: Bad motherboard problem, etc.

• Industry: Depends whom you ask

Most sources agreed

• Disks failed in interesting ways

• But little hard data

10

Method

NetApp AutoSupport database

• Filers phone home periodically

• Huge amount of data on disk failures

Snapshot studied: [Bairavasundaram ’07, ’08]

• ~1.5 million disks in many environments

• 3 years of data

11

Types of Errors

Latent Sector Errors (LSEs)

• A single block read/verify/write returns
a failure, whereas rest of disk is “working”

• Causes? Media scratch, bits flipped, etc.

Block corruption

• Disk returns wrong contents for block

• Causes? Faulty controller, bad bus, etc.

12

Result summary
Number of problems during period of study:

• Latent sector errors cheap: 9.4% - costly: 1.4%

• Block corruption cheap: 0.5% - costly: 0.05%

Also observed

• Spatial and temporal locality

• LSEs increase over time, with size

• Corruption not independent across disks in RAID

And some interesting other behaviors

• The block number problem, the cache-flush bug

13

Errors: Full Summary

SCSI with >=1 error are as likely to
develop additional errors as SATA

Most models: annual error rate increases in year 2
(for SATA, sharp increase)

LSEs increase with disk size

Most disks have <50 errors

Not independent: disk with errors more likely
to develop additional errors

Significant amount of spatial and temporal locality

Disk scrubbing useful (60% LSEs discovered this way)

Enterprise: high correlation between
recovered errors and LSEs

SATA: high correlation with not-ready errors

Probability of checksum errors varies greatly across
models within same disk class

Age affects are different (but fairly constant with age)

Disk size: little effect

Workload: little effect

Most with corruptions only have a few
(a small # have many)

Corrupt SCSI develop many more corruptions
than corrupt SATA

Not independent within disks

Not independent ACROSS disks in RAID

Spatial locality (but for consecutive blocks)

Some temporal locality

Weak correlation with LSEs, not-ready errors

Scrubbing detects most checksum mismatches

LSEs Corruption

14

Conclusions

Partial failures are reality

• Not just whole-disk failure anymore

Fail-partial failure model [Prabhakaran ’05]

• Entire disk may fail

• Single block may fail

• Single block may become corrupt

15

Part II:
How File Systems
React To Failure

16

Type-Aware Fault Injection
Observation: File systems comprised of
many different on-disk structures

• Superblocks, inodes, etc.

Idea: Make fault injecting layer aware of them

• Inject faults across all block types

Inodes Data

S
u

p
e
r

17

The File Systems
Linux ext3

• Most popular, “FFS-like” + journaling

ReiserFS

• Entirely different lineage, lots of trees

IBM JFS

• IBM’s journaling file system

Windows NTFS

• Commercial, not Linux

18

Result Matrix

N/A: File System does not
Access data structure
during this operation

R
e
a
d

()

Inode

D
a
ta

S
tr

u
c
tu

r
e
s Super

Inode

Data

Indirect

...

Zero

Stop

Propagate

Retry

Redundancy

Possible
Behaviors

Micro-Workloads

O
p
e
n

()

C
l
o

s
e
()

..
.

19

Read Errors:
Recovery

Ext3: Stop and propagate
(don’t tolerate transience)
ReiserFS: Mostly propagate

JFS, NTFS (not shown)

All: Some cases missed

Ext3

ReiserFS

pa
th

op
en

/s
ta

t
ch

m
od

+
re

ad
re

ad
lin

k
ge

td
ir

en
t

cr
ea

t
lin

k
m

kd
ir

re
na

m
e

sy
m

lin
k

w
ri

te
tr

un
ca

te
rm

di
r

un
lin

k
m

ou
nt

sy
nc

um
ou

nt
re

co
ve

r
lo

g
w

ri
te

inode
directory
d-bitmap
i-bitmap
indirect

data
super

group desc
journal-super

journal-revoke
journal-desc

journal-commit
journal-data

pa
th

op
en

/s
ta

t
ch

m
od

+
re

ad
re

ad
lin

k
ge

td
ir

en
t

cr
ea

t
lin

k
m

kd
ir

re
na

m
e

sy
m

lin
k

w
ri

te
tr

un
ca

te
rm

di
r

un
lin

k
m

ou
nt

sy
nc

um
ou

nt
re

co
ve

r
lo

g
w

ri
te

stat item
directory item

bitmap
indirect

data
super

journal-header
journal-desc

journal-commit
journal-data
root of tree
internal tree

Zero

Stop

Propagate

Retry

Redundancy

20

Write Errors:
Recovery

Ext3/JFS: Ignore write faults

• No detection no recovery

• Can corrupt entire volume

ReiserFS always calls panic

• Exception: indirect blocks

Zero

Stop

Propagate

Retry

Redundancy

pa
th

op
en

/s
ta

t
ch

m
od

+
re

ad
re

ad
lin

k
ge

td
ir

en
t

cr
ea

t
lin

k
m

kd
ir

re
na

m
e

sy
m

lin
k

w
ri

te
tr

un
ca

te
rm

di
r

un
lin

k
m

ou
nt

sy
nc

um
ou

nt
re

co
ve

r
lo

g
w

ri
te

inode
directory
d-bitmap
i-bitmap
indirect

data
super

group desc
journal-super

journal-revoke
journal-desc

journal-commit
journal-data

pa
th

op
en

/s
ta

t
ch

m
od

+
re

ad
re

ad
lin

k
ge

td
ir

en
t

cr
ea

t
lin

k
m

kd
ir

re
na

m
e

sy
m

lin
k

w
ri

te
tr

un
ca

te
rm

di
r

un
lin

k
m

ou
nt

sy
nc

um
ou

nt
re

co
ve

r
lo

g
w

ri
te

stat item
directory item

bitmap
super

indirect
data

journal-header
journal-desc

journal-commit
journal-data
root of tree
internal tree

Ext3

ReiserFS

21

File System Results
Ext3: Simple (but hypersensitive)

• Overreacts on read faults (halt)

• Write faults: ignored

ReiserFS: First do no harm

• Write fault means panic()

• Integrity but at loss of availability

JFS: The kitchen sink

• If it can be done, JFS tries to do it

NTFS: Try, try again

• Liberal retry policy
22

More Generally
Illogical inconsistency

• Hard to make sense of policies
(not easy to specify; scattered through code)

Bugs are common

• Lots of missed cases, code is rarely run
(getting recovery right is hard)

It’s the file system, not the disks

• Even though disks misbehave, the
software in charge of them was worse

23

Part III:
Why Fault-handling

is Challenging

24

Part III: Outline

Static analysis [FAST-08, PLDI-09]

• Linux file systems

Modeling failure [FAST-08]

• Commercial RAID designs

25

Error Propagation

26

EDP: Tool To Analyze
Error Propagation

Static analysis: Built using CIL [Necula ‘02]

• Start with error codes

• Use dataflow analysis to trace
where integer codes are “handled”

• Mark broken channels
(where error is lost or overwritten)

27

b()

Results: Annotated CFGs

F()

a()

c()

b()
EIO: b() calls c(),
but handles error
code improperly

28

ext3

29

ReiserFS

30

SGI XFS

Anonymous reviewers said:

“What else to do but to stare in slack-jawed awe?”

“I asked a colleague in software engineering about
his thoughts about the XFS graph, and he said you

can’t conclude much from it, except perhaps
to say that XFS sucks.”

31

EDP Summary

Our study

• Static analysis: Can find error-flow problems

• Ran tool on 51 Linux “file systems”

Sloppy error handling yields sloppy FS

• About 10% of calls drop errors

32

Part III: Outline

Static analysis [FAST-08, PLDI-09]

• Linux file systems

Modeling failure [FAST-08]

• Commercial storage designs

33

Data Integrity Techniques
Scrubbing scans data+parity in background

• To find and fix errors ASAP

Checksums for integrity

• Per sector, per block, in parent

Write verification

• After write, read back to ensure on disk

Extra ID

• Logical, physical

34

RAID Designs

System

Adaptec 2200S
Linux Software

Pilot
Tandem NonStop
Dell Powervault

Hitachi Thunder 9500
NetApp Data ONTAP

ZFS + RAID-4

sc
ru

bb
in

g
se

ct
or

 c
su

m
bl

oc
k

cs
um

pa
re

nt
 c

su
m

w
ri

te
 v

er
ify

ph
ys

ic
al

 ID
lo

gi
ca

l I
D

ot
he

r

R
A

ID

x
x x

x x
x x x

xx x x
xx x

x x x
x x x x x x

Every design had corner cases where data was lost
35

Example: Parity
Pollution

Problem:

• Corrupt block

• Scrub reads in block;
computes parity using corrupt value

• End result: Parity block also corrupt!

D D D PX X

36

A B C D E F

start clean

Disk x
Error

FLOST (x) | FMISDIR (x)

Parity
Error

FLOST(P) | FMISDIR (P)

Disk x
Torn
Write

FTORN (x)

Parity
Torn
Write

FTORN(P)

Disk x
Corrupted

FCORRUPT (x)

Parity
Corrupted

FCORRUPT(P)

Disk x
LSE

LSE(Dx)

Parity
LSE

LSE(P)

WADD (x+)

WSUB (x+)

Polluted
Parity

S | WADD (!x)

Corrupt
Data

R(x)

S | WADD ()

W(x+)
R(x)

S | R(x) | WADD () | WSUB (x+)

S | W()

S | R(x) | WADD () | WSUB (x+)

S | W()

S | R(x) | WADD () | WSUB (x+)

S | W()

37

Part IV:
Towards Robust

File and Storage Systems

38

Outline for Part IV
Approach #1: Higher-level Design

• SQCK [OSDI-08]

• I/O Shepherding [SOSP-07]

Approach #2: Assume Bugs Exist & Cope

• EnvyFS [USENIX-09]

• Membrane [FAST-10]

• AMA [FAST-11]

39

File System Checking

Check and repair (aka fsck)

• Turn corrupt image into consistent image

• Virtually all FS’s (eventually) have one

Tough properties

• Rarely run

• Absolutely has to work correctly

40

Building fsck:
State of the Art

Write lots of C code
Test it
Tell customers to take frequent backups

First step: Measure existing ext* checker

41

Misordered Repair

Typical fix: Clear bad pointers

• “bad”: outside of valid range indirect p
tr direct ptrs

inode

?
Problem: Misordered repair

• Trusts indirect pointer

• Clears pointed-to block

42

Kidnapping Problem
Corrupt single inode number (in d1)

d2d1

/

d4d3

L+F

Information-incomplete repair

• Doesn’t use all info to
make best possible repair

But result is surprising

• Child d3 is lost, d4 kidnapped!

43

SQCK (squeak)

Declarative checker [OSDI ’08]

• 100s of SQL queries
(not 1000s of lines of C)

• Simpler to understand,
simpler to modify

• Not too slow (~same as fsck)

44

Simple

SELECT *

FROM GroupDescTable G

WHERE G.blkBitmap NOT BETWEEN
 G.start AND G.end

Finds block bitmap pointers that point
outside the group (and are thus invalid)

45

Slightly Complex

SELECT *

FROM ExtentTable X, SuperTable S

WHERE S.copyNum = 1 AND
 X.type = INDIRECT_PTR AND
 (X.start < S.firstBlk OR
 X.end >= S.lastBlk)

Check for illegal indirect blocks

46

Is That My Child?

SELECT *

FROM DirEntryTable P, DirEntryTable C

WHERE P.entryIno = C.ino AND
 C.entryNum = PARENT AND
 C.entryIno <> P.ino

Check that parent/child agree on relationship
(P says C is its child, but C says otherwise)

47

Results

48

Complexity

Complexity: 121 repairs

• ~1100 lines of SQL code

Comparison: ~20-30K lines in e2fsck

49

Performance

0

0.25

0.50

0.75

1.00

1.25

1.50

1 10 100 800

N
or

m
al

iz
ed

 R
un

 T
im

e

Partition Size (GB)

e2fsck SQCK
7.

0

65
.0

22
4.

0

18
47

.0

Linux 2.6.12

MySQL 5.0.51a

2.2 GHz AMD Opteron

1 GB DRAM

1 TB WDC disk

50

Outline for Part IV

Approach #1: Higher-level Design

• SQCK [OSDI-08]

• I/O Shepherding [SOSP-07]

Approach #2: Assume Bugs Exist & Cope

• EnvyFS [USENIX-09]

• Membrane [FAST-10]

51

File system bugs:
Here to stay

Could try to write a perfect file system

• Hard to do, even with modern tools

Likely reality: Imperfect file systems live on

52

Solution: N-versioning
Old idea [Avizienis ’77]

EnvyFS: For local FS

• Key: Can leverage
Linux file systems

Problem: Overheads

• Time & Space

SubSIST: Single-instance
store for EnvyFS

FS1FS2 FS3

VFS

SubSIST

EnvyFS

53

Technique: Comparator
Compare results from each FS operation

• Data struct comparison:
inodes, superblocks, data, etc.

Special cases

• Directory - order not specified by VFS
(thus read entire directory)

• Inode numbers - different across FSes
(thus assign and map at EnvyFS level)

Optimizations

• Data blocks - only read and compare two

54

Hard Part (I): Crashes
Child file system crash may take down system

Full solution: Isolate each FS (not done here)

EnvyFS lightweight approach: Fail fast

• Redirect panic, BUG, BUG_ON to
envyfs_child_panic()

• Simplest policy: Disable buggy child

55

Hard Part (II): Repair
Some simple repairs are automatic

• e.g., a child with one corrupt data block

• Solution: Overwrite bad block with correct value

• Result: Consistent file system

More complex repairs are challenging

• e.g., a branch of the FS tree is missing

• Current approach: Rebuild child from scratch

56

Hard Part (III): Overhead
Three file systems means three data copies

• Time - have to access disk three times

• Space - have to keep three copies

Solution: SubSIST

• Coalesce three copies into one
transparently under each file system

• Critical: Can still detect/correct single
faulty file system

57

SubSIST:
Writing to Disk

EnvyFS

C1 C2 C3

SubSIST

3 copies coalesced to 1

58

SubSIST:
Mistake Tolerance

EnvyFS

C1 C2 C3

SubSIST

Corrupt!

Important:
Majority still rules

59

Evaluation

60

Robustness

61

Performance
Re

ad

W
rit
e

Re
ad
-4
k

Re
ad
-1
m

W
rit
e

Re
ad

W
rit
e

O
pe
nS
SH

Po
st
m
ar
k-
10
k

Po
st
m
ar
k-
10
0k

Po
st
m
ar
k-
10
0k
-m
od

0

1

2

3

4

5
ext3 jfs reiser Envy Envy+SIS

Cached

Not Cached

Macrobenchmarks

Sequential Random

Pe
rf

or
m

an
ce

 (
N

or
m

al
iz

ed
)

In-memory costs:
Hard to avoid

Sequential reads:
Beware positioning costs

Random I/O:
SIS layout improves
write performance

Overall:
EnvyFS slows things down

SubSIST makes it reasonable

Memory pressure:
Can be a problem

(need two more slides for full bar)

8x23x

62

EnvyFS Conclusions

Old model

• Just fix bugs

New model

• Assume bugs exist,
cope with their constant presence

• Not without cost (but slow > lost data?)

63

Final Thoughts

64

Research Lessons
Details matter: Small observation led to broad inquiry

Talk to industry: Source of “real” problems, source of data

Work to gain open-source “street cred”: Linux ext4 story

Embrace ignorance: If you don’t know it, maybe no one does

Listen/read broadly: Ideas are hard to come by; look around

Easiest interesting problem: Explore ideas w/o overcommitting

Right problem: Think hard about what problem you are solving

Measure then build: Don’t solve before understanding it

Tell a story: And remember, story doesn’t need to match reality

65

Problem we found: Reliability is 2nd-class citizen

• Disks fail in interesting ways...

• ... but software is the main problem

• Design: Reliability added on, not built in

• Implementation: Lots and lots of bugs

Need to rethink approach

• Higher-level systems design (SQCK, Shepherd)

• Assume bugs exist & cope (Envy, Membrane, AMA)

N Years: A Summary

66

Credits

Students (Past and Present)
• Lakshmi Bairavasundaram (PhD ’08, NetApp)

• Haryadi Gunawi (PhD ’09, Postdoc @ UCB)

• Vijayan Prabhakaran (PhD ’07, MSR SV)

• Nitin Agarwal (PhD ’09, NEC Research)

• Andrew Krioukov (BS ’08, Grad @ UCB)

• Swetha Krishnan (MS ’07, Cisco)

• Meenali Rungta (MS ’07, Google)

• Abhishek Rajimwale (M.S., ’10, DataDom.)

• Swami Sundararaman (PhD ‘??)

• Cindy Rubio-Gonzalez (PhD ’12)

• Sriram Subramanian (PhD ’11)

Professors Andrea & Remzi Arpaci-Dusseau
(and Mike Swift and Ben Liblit)

67

Want to learn more?
www.cs.wisc.edu/adsl

68

Post-class Slide

69

This slide intentionally left blank, well, except for this writing

70

