UNIVERSITY of WISCONSIN-MADISON
Computer Sciences Department

Cs 739 Andrea C. Arpaci-Dusseau
Distributed Systems

Two papers:

* Time, Clocks, and the Ordering of Events in a
Distributed System

* Distributed Snapshots: Determining Global States
of Distributed Systems

If want to develop distributed algorithm (and
have all participants come to same conclusion),
it helps if all see inputs in same order

Questions
* How to know when an event precedes another in a
distributed system?
 Sometimes impossible to tell; sometimes it doesn’t
matter

- If event A occurs on machine A,
and event B occurs on machine B,

then did event A or event B happen first???

A collection of distinct
processes which are spatially separated and
which communicate with one another by
exchanging messages
* How does this differ from our previous definitions?

A sequence of events (instructions,
sending messages, receiving messages)
* The events within a process have a total ordering

Happened before: ->

Rules

1) if a and b are events in the same process, and a comes before
b, then a->b

2) if ais the sending of a message by a process and b is
receiving that message, then a->b

3) if a->b and b->c then a->c

a->b: It is for a to causally affect b

Concurrent: #>

e if a#% bandb # a, then do not know ordering between a
and b

e It is not possible for a to causally affect b

Time

p4 q7 r4
q6
3
p3 q5 i
q4 r2
q3
p2
q2
pl Al rl

What is the relationship between (p3,93)? (p1,93)? (p2,93)? (q3,r4)?

Abstract view: Logical clock is a way of assigning a
number to an event to express ordering
* No relation between logical clock and physical time
Clock Ci for process Pi is a function which assigns a
number Ci(a) to any event a in Pi
Clock condition: For any events a, b:
if a->b, then C(a) < C(b)
Converse condition does not hold

* (Can't say concurrent events have same logical time)

IRL.

* Each process Pi increments Ci between any two
successive events

IR2.
* (a) If event a is the sending of message m by
process Pi, then m contains a timestamp Tm=Ci(a)
* (b) Upon receiving m, process Pj sets Cj greater

than or equal fo its presents value and greater than
Tm.

p4 q7 r4
q6
3
p3 q5 i
94 r2
q3
p2
q2
pl Al rl

What logical clock values are possible?
Assume initial C(p1)=5, C(ql1)=50, C(r1)=2

Use logical clocks to obtain total ordering across all
processes and events
a => b if and only if:
e 1) Ci(a) < Cj(b) OR
* 2) Ci(a) = Cj(b) and Pi < Pj (i.e., use process ids to break ties)
Partial ordering is unique, but total ordering is not!
e Concurrent operations can go in any order
* Depends upon implementation of each Ci()
e Depends upon tie breaking rules

Example: Mutual exclusion
Each process runs same distributed algorithm

Relies upon total ordering of requests
e Agreed upon by all participants
* Can be used to ensure all see events (inputs) in same order and
therefore make same decisions
Idea:
* Send timestamped request to all processes
¢ Handle next request in total order

- To know next request, must have received request from all
possible participants

- Problems?

Motivation: Can observe anomalous behavior if other
communication channels exist between processes
* Useful to have physical clock with meaning in physical world

Synchronize independent physical clocks, each running at
slightly different rates (skew)

Implementation Idea:
e Send timestamp with each message
* Receiver may update clock to timestamp+minimal network delay

- Clock must always increase

Lots of work in this area

Goal

* Want to record global state of distributed system (i.e., state
of each process, state of each communication channel)

* Useful so can observe system properties
- Computation terminated?
- System deadlocked?
- Number of tokens?
- Amount of money?
Complication:
¢ Distributed system has no shared state nor shared clock
e Cannot record global state simultaneously everywhere
Distributed snapshot: Record local state at different
times and combine into meaningful picture

e Obtain cut in logical time, remain consistent by preserving
logical ordering (if not ordering in physical time)

Distributed system: Finite set of processes and
channels; described by graph

Processes
e Set of states, initial state, set of events
Channels
e FIFO, error-free, infinite buffers, arbitrary but
finite delay

Goal: Record local state (each process plus adjoining
channels) that produces a “meaningful” global system
state

Idea:

e Send marker along channels to show which messages were sent
before snapshot taken

* Receiver records messages in channel before marker
Initial: Some process decides to initiate snapshot
(performed periodically)

Marker-sending rule for p:
* Send marker along each channel (after recording state of p)
before sending more messages
Marking-receiving rule for q on channel c:
* if q has not recorded state yet:
- record state of q
- record state of ¢ as empty
* if q has recorded state already:

- record state of ¢ as the msg sequence that arrived since it
recorded its state

Termination
* When state recorded of all processes and all channels
* Must have algorithm to collect and assemble information too

pl: $10 p2: $20 p3: $30
ﬁ\b $2
3
$

Stable property?

20

p2 state: $20+1-3 = 18, empty channels

pl st

ite: $10-1-3=6, empty chdnnels

20 p3: $30

p3 state: $30-2-5-4+3=22, empty channels

Total

money?

pl: $10 p2: $20 p3: $30
ﬁ\b $2
3
$
%\\/ >
_ />>*€
/ L/

00 oo

: p2 from pl: notHing

1p2 fp3:4+2
:p3 fpl:3
:pl fp3:5

Actual state?
pl: 6, p2: 18, p3: 22

c p2 from p3: Never $2 and $4 simultaneously

Recorded global state, S*, may not have occurred

If it bothers you that S* doesn’t actually exist...
* Given a permutation of the actual sequence of events
» S*is reachable from Sinit
* Sfinal is reachable from S*
 Stable properties will hold in S* as well

How to permute sequence of events?

Goal: Want snapshot to correspond to single logical cut
* Slide events so snapshots taken at same “logical time”
* Some events across processes will switch order with others
- Specifically, postrecorded events and prerecorded events
- prerecorded events occurred before state of p was recorded

pl: $10 p2: $20 p3: $30
ﬁ\b $2
3
$
“\\K’r g
] % pre

Example: Need to swap sending $4 from p3 and receiving $2
Still logically consistent; could not observe difference

