
A. Arpaci-Dusseau Department of Computer Science
CS739: Distributed Systems University of Wisconsin, Madison

section*

Towards Transparent and Efficient Software Distributed Shared Memory – SOSP’97

1 Introduction

• What is the appeal of programming with shared memory (compared to message passing)?
What are the drawbacks?

• What is the motivation for Shasta? (i.e., what is wrong with previous DSM approaches?)

• At a high-level, what are the challenges of transparently executing existing binaries? At a
(very) high-level, what is the approach of Shasta?

• What does Shasta assume about their environment? What workloads do they target?

2 Basic Design of Shasta

• What are the basic data structures that Shasta maintains to support distributed shared mem-
ory?

• Shasta adds protocol code for most read operations. What is the simplest case for a read?
What are the different states that the data can be in and how does that impact the protocol?

• What happens on a write? (Can the optimization with checkingthe flag value instead of the
state table be used for writes?)

• Shasta explicitly polls the network so that a process can handle a message. What are the pros
and cons of polling (versus using interrupts)?

• Shasta wants to be able to run on clusters of SMP nodes. What iswrong with the previous
protocol when run on an SMP node? One way to fix this problem is to add synchronization
around the Shasta protocol; why isn’t this a good idea? How dothey fix the problem instead?

3 Fully Supporting an Instruction Set Architecture

• To provide full transparent execution of binaries, the developers of Shasta felt it was essential
to support instructions like load-locked and store-conditional (which are used to implement
synchronization). How are the load-locked and store-conditional instructions used to imple-
ment a binary lock (Figure 1)? How are these instructions often implemented in hardware
and why doesn’t Shasta emulate this implementation? Shastamakes the observation that
the state of the line (invalid, exclusive, shared) can be used to indicate whether the store-
conditional should succeed; how is this done?

1



• Background: Different architectures support different consistency models. What isstrict
consistency? What issequential consistency? What isprocessor consistency? What isweak
consistency? What isrelease conistency?

• Why are page-based DSM systems unable to provide the consistency model required by
most architectures? What does the memory barrier (MB) instruction in the Alpha ensure?
What are the allowable values for r1 and r2 in the code of Figure 2? How does Shasta ensure
the Alpha memory model? How does it implement sequential consistency?

4 Providing OS Functionality

• Why is invoking a system call a special case? How does Shasta validate data for system call
arguments?

• Shasta wants to support applications that have a dynamic number of processes over its life-
time. What is the concern here? What is their solution?

5 Performance Results

• What size cluster do they run on? What is their network?

• What do they show in Table 1? Table 2?

• How significant are the SPLASH-2 applications? What type of performance do they see with
Shasta?

6 Conclusions

• Do you think DSM is a good match for the distributed systems oftoday?

2


