
A. Arpaci-Dusseau Department of Computer Science
CS739: Distributed Systems University of Wisconsin, Madison

The Google File System - SOSP’03

1 Introduction

• What is the motivation for this work? What are their assumptions? What do you think is most impressive about
their goals?

2 Design Overview

• What is the overall architecture of their system? Does GFS provide functional homogeneity? Is a master the
right design decision?

• What are the interactions between the nodes on a read operation? Is the master likely to be a bottleneck for
reads?

• What data structures are kept on the master? Which data structures are kept persistently? What data is not
persistent? How does the master get this information about acrash? What are the pros and cons of keeping all
of that meta-data in main memory? (What is the size of the meta-data on the master??)

• GFS makes the design decision to not explicitly cache files oneither the clients or the chunkservers. Does this
seem like a good decision?

• GFS makes the design decision to use fixed sized chunks of 64 MB? What factors argue for large chunk sizes?
What factors argue for small chunk sizes? How does 64 MB interact with Map-Reduce applications? Does 64
MB seem reasonable?

3 Consistency Model

• GFS specializes its consistency model to its application domain. To understand Table 1: What does it mean
for replicas to beconsistent? What does it mean to bedefined? What is the difference between awrite? and a
record append? How do the different states occur? Why or why not are all of these states acceptable?

• Is it ever possible for a client to read an inconsistent (i.e., stale) replica? Do you think this is acceptable?

4 System Interactions

• What happens when a client wants to do a write? Why is it helpful to have a primary? Is the use of leases
appropriate here? How does the replica-update protocol achieve decent performance while ensuring that replicas
are kept consistent?

• Why might the write protocol lead to inconsistent regions? why undefined regions?

• How is the protocol for record appends different than ordinary writes? (Why must the the primary sometimes
pad the previous chunk?) Why might this protocol lead to someinconsistent entries? How do applications deal
with this model?

1



5 Master Operation

• How does the master organize the file namespace? What is the advantage of their approach compared to a
traditional Unix directory structure?

• Wherereplicas are placed is an important factor for both reliability and performance. What is the GFS policy
for placing replicas?

• What happens when a file is deleted? How is the physical space on disk actually freed? Do you think this is a
better approach than having the master explicitly tell the chunkservers to delete the space?

• What is the role ofchunk version numbersin the protocol?

6 Fault Tolerance and Diagnosis

• As discussed so far, what is the single point of failure in thesystem? How do they improve availability in GFS?

• How do they address the concern of data integrity? Given thatthey have multiple replicas, why don’t they just
compare the data across replicas and vote? Is their approachever inefficient?

7 Measurements

• What do you think of their throughput results in Figure 3?

• What do you think about the performance they report in Table 3?

• What do you think of the data presented in Tables 4 and 5?

8 Conclusions

• Contributions: Handling node failures so well (making location of chunks soft state and using checksums for
all data), pushing some complexity into map reduce framework (tuning to application semantics with appends),
simplifying system to use a single master that can handle allmetadata in memory.

2


