A. Arpaci-Dusseau Department of Computer Science
CS739: Distributed Systems University of Wisconsin, Madisn

A Low-Bandwdith Network File System — SOSP’01

1 Introduction
e What is the motivation for LBFS? Why do they feel a network $istem is needed?
e What workloads/usage patterns does LBFS target?
2 Related Work
e The authors state that a number of file systems have propdntd help them tolerate high
network latency and go on to describe AFS, leases, NFS4, add,@ll of which we have
read in class. Do you agree with their characterization ohed these systems?
3 Design
Basics

e The main idea behind LBFS is to not send chunks of files thaadly exist on the other
side of the slow network (whether that is the client or thevegr Chunks are identified by
a SHA-1 hash over their content. If both the client and semae a chunk with the same
SHA-1 hash, they then assume they are the same chunk.

One challenge is to figure out how a file should be divided itmonks. What are the two
“strawman” proposals described in the paper? What are thegmd cons of each?
e What is the related work of Rsync and how does it work? Whattad@nitations?

e How does LBFS define a chunk? What is the expected size of &@hiny is this method
attractive for this domain (that is, can you explain the sad®wn in Figure 1)?

e What pathological cases can occur and how does LBS handte’the

e The LBFS protocol performs whole file caching and attemptmitoimize when a file is
fetched from the server using close-to-open consistenty keases. What happens when a
client opens a file? What happens when a client closes a file? ddes this compare to
AFS?

e Figure 2 shows the protocol for how an LBFS client fetcheseaffdm the server. What do
each of the steps mean? What work does the server need to doalddt be avoided with
different assumptions? Under what conditions might LBFB8goe worse than AFS?

1

e Figure 3 shows the protocol for how an LBFS client writes a filehe server. What do
each of the steps mean? Why does the server write to a tergdded Why does it help
performance that the client gets to pick the file descrippotiie temporary file?

e Does the LBFS client need to try sending the whole file as imfe@@? Could it track which
chunks are dirty locally and only worry about sending thoaek?

Implications and Extensions

e LBFS keeps the mapping of each SHA-1 hash to its chunk (file aifs#t) in a chunk
database. However, this database is treated only as a lnti{ican be wrong). What
is attractive about using the contents of the SHA-1 hashbdatas simply a hint? What
extra work do the client and server need to do because of isfou think this is a good
trade-off?

e Will the LBFS protocol work for finding identical chunksgthin a single file?

e LBFS assumes that there are never collisions of SHA-1 hastkat would happen if there
was a collision? Could a malicious user exploit this in anyWwa

e The paper explains that a covert channel exists that canitdaknation; specifically, a
malicious client could learn that a server has specific adaten some file by measuring
timing differences for the CONDWRITE operation (even though the operation still fails if
the user does not have permission to access that file).

What exactly can the malicious client learn? Does this imfatron leak seem worrisome to
you? Should they instead allow sharing across these chunks?

Evaluation

e What questions do you think they should answer to evaluateS’B

e What is the point of the experiments in Table 1? Is anythirsgaliraging? What do the
results in Figure 5 mean?

e What are the workloads used for Figure 6? What is similar aldiwof their workloads?
What is bandwidth normalized to? Are there significant badtiwsavings? Are the results
in Figure 7 any different? Any other comparisons you wouldehizked to have seen?

e Conclusion from Figures 8-10?

Conclusions

e What are the strengths of LBFS and the paper?

e What are the weaknesses of LBFS and the paper?

