
A. Arpaci-Dusseau Department of Computer Science
CS739: Distributed Systems University of Wisconsin, Madison

Transparent Process Migration: Design Alternatives and the
Sprite Implementation – SP&E 1991

1 Motivation

• In what environment did the designers think Sprite migration would be used? How did these
assumptions impact their design?

• What was the primary motivation for migration in Sprite?

• What are some of the drawbacks of simpleremote invocation (e.g., using rsh) (or non-
preemptive load balancing) compared to migration? Which can be fixed relatively easily?

• Process migration systems need to make compromises betweenfour competing goals: trans-
parency, no residual dependencies, performance, and low complexity. For each goal: what
does each term mean? why is it desirable? Which did the authors emphasize?

2 The Overall Problem: Managing State

• Migration is hard because of process state, including virtual memory, open files, message
channels, execution state, and other kernel state. In termsof transparency, residual depen-
dencies, performance, and complexity, what are the pros andcons of transferring state?
forwarding requests? ignoring old state? Is there a fourth approach for dealing with state?

3 Mechanics of Migration

• Numerous approaches have been investigated in the literature for transferring virtual mem-
ory. What are the pros and cons of stop-and-copy? Pre-copy? Lazy copying? How does
Sprite migrate memory?

• Do you think the approach taken by Sprite makes sense given their assumptions?

• Interactions between file system state and migration are surprisingly complex. Why was
forwarding not used? Sprite instead chose to transfer the state (ref count, dirty blocks, and
access position) associated with open files. What went wrongwhen they tried to close the
file on the source and then reopen on the target? What went wrong when they tried to open
the file on the target before closing the file on the source? What did Sprite need to do to fix
these problems? How do they handle access position when it isshared between the source
and target?

1



• How is the process control block handled? Do you think there is something to generalize
here?

4 Migration Policies

• When does Sprite migrate jobs? How does Sprite determine where to migrate a job to?
When is a machine eligible to be a target?

• What do you think are the drawbacks of having your home machine (when idle) selected as
a target?

5 Performance

• What type of processes are expensive to migrate?

• Why does compile and link get far from linear speedup?

• What do you think of the threshold of 30 seconds of idle time?

6 History and Experience

• Anything interesting here?

• Do you think that a general, transparent migration service warranted?

7 Comparison to Remote Execution in the V-System

• Were the assumptions and goals of the two systems similar or not?

• How did the system architecture of V impact migration?

• What was most interesting about V migration?

2


