Augmenting Frame-Based Vision With Temporal Context

by

Matthew Dutson

A dissertation submitted in partial fulfillment of
the requirements for the degree of

Doctor of Philosophy

(Computer Sciences)

at the
UNIVERSITY OF WISCONSIN-MADISON

2025

Date of final oral examination: 10/31/2025

The dissertation is approved by the following members of the Final Oral Committee:
Mohit Gupta, Professor, Computer Sciences
Yin Li, Associate Professor, Biostatistics and Medical Informatics
Xiaojin Zhu, Professor, Computer Sciences
Josiah Hanna, Assistant Professor, Computer Sciences

© Copyright by Matthew Dutson 2025
All Rights Reserved

Maggie? Albert Schellenberg?

ii

Acknowledgments

The work in this dissertation would not have been possible without the support
of many people—perhaps most notably my advisor Mohit Gupta. I am grateful
for Mohit’s kindness toward his students, and for being my ally and advocate
throughout my doctorate studies. It is unlikely I would have made it this
far without an advisor who treats his students first and foremost as human

beings.

Likewise, I would like to thank Yin Li for his collaboration over the last few
years, acting as an informal co-advisor. His perspective and expertise has been
incredibly valuable. If it’s any indication, our paper acceptance rate went
from zero to 100% after he joined us as a collaborator.

I would also like to thank my student co-authors, including Varun Sundar,
Tianyi Zhang, and Nathan Labiosa. Working with each of them has been
a tremendous learning opportunity. Sometimes, you don’t know there is a
better way to do something until you see sommeone else’s process up close.

I am grateful to my other fellow lab members, including Sacha, Carter, Shan-
tanu, Bhavya, and Aryan. As they say, misery loves company—being in the
company of these friends has made the challenging periods much more toler-
able.

Thanks to the team at Ubicept—who are both talented and a pleasure to work
with. A particular thanks to Felipe Gutierrez-Barragan for his mentorship
and friendship.

I am gratful to my parents, Emily and Joseph, for their deep goodness and
integrity, and for consistently encouraging my curiousity. Finishing a PhD
has more to do with resilience than with IQ points—I am fortunate to have
parents who taught the value of effort and struggle.

iii

Thanks to my siblings: Marie, John, Esther, Sam, Hannah, and Isaac. They
are some of my best friends and supporters, and are all exemplary human
beings.

I would like to thank my doctors—in particular, Drs. Morgan, Goulding,
and Draper—for their compassionate care through recent health challenges.
Without their help, finishing this dissertation would not have been possible.

Although they will (probably) never read this, my gratitude goes out to the
dogs, Maggie and Marzipan. They have a special way of making you feel like
the most important person in the world, even if your paper didn’t get accepted.
They give me an excuse to break from work and take walks around the park,
and having them around does wonders for my blood pressure.

Last and most importantly, I would like to thank my wonderful wife Itzel.
The stress of a doctorate can be contagious, and I appreciate her patience in
shouldering some of that burden with me. I admire her perspective—she has
a knack for pulling my head out of the clouds and down to the meaningful
things happening in the real world. More than anything else, I am looking
forward to spending more time with her after graduation.

The research in Chapters 3, 4, and 2 was supported by NSF CAREER Award
1943149. The work in Chapter 2 was further supported by NSF award CNS-
2107060 and Swiss National Science Foundation grant 200021_166289.

iv

Contents
List of Tables vii
List of Figures viii
Abstract xii
1 Introduction 1
1.1 Frame-Based Vision, 1
1.2 Bandwidth 4
1.3 Compute 6
1.4 Stabilityand Robustness, 9
1.5 Recap o e 12
2 Bandwidth: Generalized Event Cameras 13
2.1 Introduction 14
2.2 RelatedWork 17
2.3 Whatisan Event Camera? 18
2.4 Single-Photon Generalized Event Cameras 24
2.5 ExperimentalResults 29
2.6 Limitations and Discussion 37
3 Compute: Event Neural Networks 39
3.1 Introduction 40
3.2 RelatedWork 43
3.3 EventNeurons @ i e 45
34 EventNetworks 50
3.5 Experimentso 54
3.6 Discussion e 64
4 Compute: Eventful Transformers 65

41 Introduction
42 RelatedWork
4.3 Background: Vision Transformers
4.4 Eventful Transformers
4.5 Experiments o
4.6 DiSCUSSION e e e e e e

Stability and Robustness: Instant Video Models

51 Introduction,
52 RelatedWork
5.3 Defining Stability and Robustness
5.4 Learning to Balance Stability and Robustness
5.5 Designing Stabilization Adapters
5.6 Experiments
57 Discussion e e

Discussion and Outlook

6.1 Trends. e
6.2 Tradeoffs,
6.3 Why?

Bandwidth: Generalized Event Cameras

A.1 Pipeline Overview
A2 MethodDetails
A.3 Extended Discussion
A.4 Restoration Model Details
A.5 BaselineDetails
A.6 Camera Motion Experiments
A.7 Plug-and-Play Event Inference
A.8 Rate-Distortion Evaluation
A.9 UltraPhase Experiments

66
69
71
73
83
91

93
93
96
98
99
101
104
111

113
113
113
113

B Compute: Event Neural Networks
B.1 Resultson Low-Level Tasks
B.2 Additional Analysis Experiments
B.3 HRNet Experiments
B4 ExperimentDetails.
B.5 Derivation of Equation3.4.
B.6 Thoughts on Theoretical Guarantees

C Compute: Eventful Transformers
C.1 FurtherDiscussion
C.2 Additional Experiments
C.3 ExperimentDetails.

D Stability and Robustness: Instant Video Models
D1 Proofs
D.2 Transport Metric
D.3 Composing Stabilizers
D4 MethodDetails,
D.5 ExperimentDetails.
D.6 AdditionalResults
D.7 Licenses and Copyright

Bibliography

vi

144
144
145
148
149
149
150

151
151
152
153

156
156
162
163
164
166
169
186

187

vii

List of Tables

2.1 Summary of generalized event cameras 21
3.1 Accuracy and computation 56
32 Overhead 57
4.1 Adding spatial redundancy to ViTDet 88
42 Runtimes(msS) v v i i e e 90
51 Corruptionrobustness oL 109
5.2 Adverse weather robustness on RobustSPRING 112
A.1 UltraPhaseresults 143
B.1 Resultsonlow-leveltasks 146
B.2 Camera motion for low-level tasks 146
B.3 Varying granularity 146
B4 HRNetResults 148
C.1 Kinetics-400 video action recognition 153
C.2 Athresholdpolicy 155
D.1 Stabilizer compositiono oL 170
D.2 Segmentationrobustness 172
D.3 Image enhancementresults 183
D.4 Denoisingresults,part1/2. 184
D.5 Denoisingresults, part2/2. 185

viii

List of Figures

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8
2.9
2.10

3.1
3.2
3.3
34
3.5
3.6
3.7
3.8
3.9
3.10

4.1
4.2
4.3
4.4
4.5
4.6

Generalized eventcameras 15
Altering “what to transmit” L. 20
Bayesian- vs. EMA-based change detector 26
Spatiotemporal chunkevents 28
High-speed videography of a stress ball hurled at a coffee mug . . 30
Event imaging in urban nighttime (7 lux, sensor side) 31
Plug-and-play inference on a tennisscene 32
Rate-distortion evaluation 36
On-chip compatibility. 37
Limitations and failuremodes 37
Event Neural Networks 41
Sparse, delta-based transmission 46
Building eventneurons 47
Buildingeventnetworks oL 51
Policy design and quantization 53
Paretocurves Lo o 57
Versatilityof EvNets 59
Ablation of long-term memory L. L. 60
Operation costsbylayer 62
Temporal variation in operationcost 63
Eventful Transformers 67
Tokengating 74
Accelerating token-wise operations 76
An Eventful Transformerblock 77
The query-keyproduct 80

The attention-value product 82

ix

4.7 Video objectdetectionresults L. 84
4.8 Video object detection comparison and ablation 86
4.9 Video action recognitionresults. oL 87
410 Update visualization 91
5.1 Stabilizing image-based networks 95
5.2 Unified loss for one-dimensional predictions 100
5.3 Stabilizationcontrollers oL 103
5.4 Image enhancementresults 105
5.5 Denoisingresults o o 107
A.1 Algorithmic overview of generalized event cameras 116

A.2 Intermediate outputs and recovered intensity from adaptive-EMA 118
A.3 Intermediate outputs and recovered intensity from adaptive-Bayesian119
A.4 Intermediate outputs and recovered intensity from the spatiotem-

poral chunk method 120
A.5 Intermediate outputs and recovered intensity from (two-bucket)

coded-exposureeventso 123
A.6 Ego-motion results on the “building” sequence 134
A.7 Ego-motion results on the “Ramanujan bust” sequence 135
A.8 Ego-motion results on the nighttime driving sequence 136
A.9 Expanded plug-and-playresults. 137
A.10 Extended rate-distortion evaluation 141
D.1 VisionSimsequences. 167
D.2 Elastictransform 0oL 168
D.3 DAVISdenoising 175
D.4 Denoising under extreme noise 177
D.5 mage enhancementrobustness 178
D.6 Denoisingrobustness 179
D.7 Depth estimation robustness 180

D.8 Segmentationrobustness 181

D.9 Adverse weather robustness

AUGMENTING FRAME-BASED VISION WITH TEMPORAL
CONTEXT

Matthew Dutson

Under the supervision of Professor Mohit Gupta
At the University of Wisconsin-Madison

An evolving scene can be represented as a series of instantaneous snapshots,
i.e., frames. In fact, this is often the most natural representation, as it cor-
responds directly to the manner in which images are captured by a sensor.
Many vision systems operate in a frame-based manner, processing each time
slice independently. For example, an object detection model might be applied
to each frame of a video to produce a series of predictions. There are some
practical benefits to frame-based processing—for example, training a single-
image model requires fewer computational resources than training a video

model.

However, frame-based processing also has several drawbacks. First is band-
width: transmitting a series of independent frames ignores temporal redun-
dancy, limiting opportunities for compression. Although this problem has
been explored extensively in prior work, existing compression methods fail
under high-speed conditions, where bandwidth is especially critical. The
second problem is compute cost. Temporal redundancy also implies repeti-
tive, unnecessary computation—e.g., recomputing features for a static image
region. Third and finally, frame-by-frame processing can lead to temporal
consistency, and limit a vision system’s robustness against intermittent image

corruptions.

In this thesis, we mitigate these drawbacks by augmenting frame-based ap-
proaches with recent temporal context. This allows us to avoid redundant
bandwidth and compute, and to improve the temporal coherence of the vision
system. We emphasize compatibility with existing frame-based architectures,

xi

retaining the advantages of frame-based vision (e.g., ease of training) while

leveraging the information present in recent context.

Mohit Gupta

xii

Abstract

An evolving scene can be represented as a series of instantaneous snapshots,
i.e., frames. In fact, this is often the most natural representation, as it cor-
responds directly to the manner in which images are captured by a sensor.
Many vision systems operate in a frame-based manner, processing each time
slice independently. For example, an object detection model might be applied
to each frame of a video to produce a series of predictions. There are some
practical benefits to frame-based processing—for example, training a single-
image model requires fewer computational resources than training a video

model.

However, frame-based processing also has several drawbacks. First is band-
width: transmitting a series of independent frames ignores temporal redun-
dancy, limiting opportunities for compression. Although this problem has
been explored extensively in prior work, existing compression methods fail
under high-speed conditions, where bandwidth is especially critical. The
second problem is compute cost. Temporal redundancy also implies repeti-
tive, unnecessary computation—e.g., recomputing features for a static image
region. Third and finally, frame-by-frame processing can lead to temporal
consistency, and limit a vision system’s robustness against intermittent image

corruptions.

In this thesis, we mitigate these drawbacks by augmenting frame-based ap-
proaches with recent temporal context. This allows us to avoid redundant
bandwidth and compute, and to improve the temporal coherence of the vision
system. We emphasize compatibility with existing frame-based architectures,
retaining the advantages of frame-based vision (e.g., ease of training) while

leveraging the information present in recent context.

1 Introduction

1.1 Frame-Based Vision

In the days of analog cameras (not too far past), video was stored as a sequence
of still frames. At the time, this was impossible to avoid. The camera optics
directly mapped incoming rays onto the physical layout of the film; “image

processing” occurred in the realm of lenses and photons.

The advent of digital photography opened a new world of possibilities. Digital
capture allows us to represent video not as molecules arranged on a sheet of
paper, but as an easily-manipulable data stream. This paradigm shift enabled
innovations including modern video codecs, which achieve remarkable com-
pression ratios in part through temporal modeling. A video is not stored as a
sequence of independent time slices, but rather as a series of evolutions from
an initial state.

Despite these changes, the frame-oriented perspective continues to inform
the way we design algorithms and systems. For example, visual perception
systems (e.g., for object detection or image segmentation), are commonly

trained and deployed for frame-by-frame operation.

The continued prevalence of this mindset is not just a historical artifact. Com-
pared to video, single-frame data is available at greater scale and variety,

supporting the training of more accurate and robust perception models. In a

similar vein, training a single-image model is less computationally burden-
some than training a video model; the cost of time-domain training generally
scales with the size of the temporal window. Finally, frame-based models offer
greater flexibility than video-centric models, supporting both single-image

operation and frame-by-frame video processing.

The question is, can we leverage temporal reasoning to improve the perfor-
mance of vision systems, while retaining the aforementioned advantages
of frame-based processing? In this work, we consider three candidates for

improvement: bandwidth, compute, and stability.

Bandwidth. Of these threads, bandwidth is the arguably the most well-
explored. Sequential video frames are highly redundant; this redundancy is a
prime candidate for compression. By detecting repetition and not re-encoding
repeated patterns, video codecs can compress orders of magnitude beyond
single-image methods. Compared to image codecs, which only account for
spatial structure, video codecs consider both spatial and temporal context.

If existing methods are so mature and effective, what is left for us to do? The
cracks begin to show at high capture rates, such as those obtainable using
emerging image sensors (Chapter 2). At these speeds, we run up against
fundamental photon noise, which causes the heuristics employed by con-
ventional codecs to break down. In effect, this reduces the codec’s ability to
recognize temporal redundancy and makes compression much less effective.
Further, encoding video with conventional methods is relatively expensive;
at high speeds, the encoder may not be able to keep up with the torrent of
incoming data.

Our goal in Chapter 2 is to develop novel compression mechanisms that are
noise-tolerant, lightweight, and retain relevant high-speed information.

Compute. In the same way that temporal redundancy leads to increased
bandwidth, it can also lead to unnecessary computation. In the case of (widely-

deployed) single-frame neural networks, this means re-computing deep fea-
tures for parts of the scene that have changed very little. This waste is amplified
at high frame rates. At higher frame rates, amount of visual information and
scene content change does increase, but the computational cost scales lin-
early with frame rate. In Chapters 3 and 4, we propose methods for making
existing neural network models “redundancy aware,” so that the amount
of computation scales with the amount of scene change, not the number of

frames.

Stability and robustness. Finally, in Chapter 5, we consider how we might
use temporal context to improve the quality of model predictions. This takes
the form of two closely related objectives: stability and robustness. By stability,
mean the consistency of the model’s predictions over time. Robustness refers
to the model’s accuracy when the inputs are influenced by some corruption,
for example, adverse weather or noise. Frame-by-frame models lack temporal
context—therefore, when they inevitably make errors, those errors will tend
to be incoherent over time, producing outputs with jarring flickering artifacts.
In this situation, considering recent temporal context can greatly improve the
stability of the outputs. Likewise, in cases where the input is affected by a
time-varying image corruption, we can produce more accurate predictions by
combining information from recent frames.

Overview. In the broadest terms, our objective is this: to improve the per-
formance of imaging systems by adding temporal context, without entirely
abandoning the abstraction of frames. Especially for post-capture processing,
where single-frame neural network models are prevalent, there are good rea-
sons to start with frames—convenience, data availability, and compute costs,
to name a few. Rather than replacing these models with entirely new architec-
tures, we propose methods that lift frame-based vision into the video domain.
Specifically, we find ways to inject lightweight logic that accounts for tempo-
ral dynamics and changes. In many cases, these modifications do not even
require re-training the existing network. Our hope is that these approaches

can serve as a general toolbox for practitioners deploying vision systems in
challenging scenarios where bandwidth and compute may be limited, and
where inputs may be noisy or otherwise unreliable.

In the remainder of this chapter, we continue our exploration of these three
threads, before diving into technical details in subsequent chapters.

1.2 Bandwidth

Conventional video pipelines, combining CMOS sensors and compression
algorithms such as h264, perform strongly in ordinary conditions with typical
motion speeds. However, these components exhibit failures in more challeng-
ing high-speed conditions. CMOS sensors are subject to read noise—a noise
penalty paid each time a frame is recorded. As we increase the frame rate,

this read noise can overwhelm the underlying signal.

We consider an emerging type of image sensor, the SPAD (single-photon
avalanche diode), that is not subject to read noise and thus can faithfully
capture scenes at very high frame rates. SPADs record the arrival of individual
photons; each pixel in a SPAD frame has a binary value, with value of 1 indicat-
ing that a photon was observed during the frame. Due to the random nature
of photon arrivals, individual SPAD frames are extremely noisy. However, a
sequence of SPAD frames provides a complete picture of a scene’s evolution
over time.

Due to their high frame rates, the raw output of a SPAD requires significant
bandwidth and storage. Therefore, a key practical challenge in unlocking the
power of these sensors is compression. Intuitively, we would expect high-speed
data to be more compressible along the time axis. Most scene content is either
static or changes relatively slowly—we would like to compress (average) this

content while preserving precise measurements of high-speed phenomena.

Our first thought might be to apply a mainstream video compression algorithm.
However, there are two problems with this idea. First, conventional codecs
are ineffective at detecting redundancy under heavy noise (like that found in
SPAD frames). This negates many of the compression gains we see on typical,
less-challenging video. Second, these methods have a relatively high compute
cost. Because this cost scales with the number of frames we are compressing,
it would be impractical to run these codecs at the frame rate of a SPAD.

To tackle these challenges, we turn to event-based sensing. Instead of measur-
ing scene intensity at regular intervals, event cameras on transmit information
when a change has been detected. This behavior allows them to preserve
high time resolution without exorbitant bandwidth costs. Event detection is
lightweight and can be computed near-sensor, and can be tuned for robustness

against noise.

Despite commercial availability, existing event cameras have failed to gain
widespread adoption. We believe this is due to a key technical limitation:
current event cameras are not capable of capturing “normal” (i.e., intensity)
images. Because they only transmit information when a change is detected,
static and background objects are effectively invisible. Modifying event cam-
eras to enable intensity reconstruction is non-trivial, due to the analog nature
of the event-detection circuitry.

This is where single-photon sensors (SPADs) come to the rescue. SPADs pro-
vide digital access to high-speed photon arrivals. This digital representation
is inherently flexible—harkening back to the revolution in image representa-
tions enabled by the advent of digital photography. This flexibility enables us
to define a new space of generalized event cameras.

In Chapter 2, we describe the space of generalized event cameras and propose
several concrete designs. Our methods compress raw single-photon data
by 2-3 orders of magnitude, while producing high-quality intensity images
and faithfully capturing high-speed phenomena. As an additional benefit,

by compressing out noise, our approach makes single-photon data more
easily digestible by downstream restoration and processing models. And
unlike conventional codecs, generalized events are lightweight enough to be
computed at high speed near (or in) the image sensor.

1.3 Compute

The idea of event-based vision naturally extends to downstream processing
models. In this case, our goal is not to reduce bandwidth, but rather to
reduce compute cost. There is a clear biological motivation here; mainstream
deep neural networks update neuron activations in lockstep. In the context of
frame-based video processing, this means the network activations and outputs
are recomputed from scratch on each frame. This approach stands in stark
contrast to biological neural networks, where neurons act as independent
processing nodes, and send messages asynchronously to each other via “spikes”
(synaptic transmissions). This sparse, as-needed processing is one of the
reasons the brain is so energy efficient.

This thinking is the driver behind an existing body of work on spiking neural
networks (SNNs). Neurons in an SNN emulate biological neurons by trans-
mitting one-bit spikes. Information is encoded in the timing and frequency of
spikes.

We were initially drawn to this idea, especially given the conceptual similari-
ties between one-bit neuron spikes and one-bit SPAD photon detections. In
fact, we published a paper that sought to improve the practicality and real-
world efficiency of SNNs. However, we eventually abandoned this thread, for
three reasons.

First, realizing efficiency gains with an SNN requires specialized compute
hardware supporting asynchronous spiking updates. This hardware is com-
peting with mature parallel architectures (GPUs and TPUs), and it is not at

all clear that it will ever outperform the alternatives in real terms (watts or

milliseconds per frame).

Second, training SNNs presents a significant challenge. Binary spikes are
not differentiable, so approximations and workarounds are required. In gen-
eral, the best we can hope is to match the performance of conventional neu-
ral networks (ANNs). Clearly, complex learning is possible in spike-driven
networks—biological brains demonstrate this. However, the underlying mech-
anisms are likely far more sophisticated than current SNN training approaches.
After all, a real biological neuron is not a mathematical abstraction (a lin-
ear function composed with a nonlinearity), but rather an intricate micro-
machine containing ~billions of functional units (proteins).

Third and finally, it is not clear to us that there is anything special about
“spiking,” in the same way that “wing flapping” is not integral to flying. Many
of the most accurate SNN models (including our work) encode floating-point
activations as a mean firing rate. Accurately representing the activation gen-
erally requires sending far more bits over the synapse than transmitting the
underlying floating-point value.

These failings aside, the core insight underlying SNNs—that sparse, as-needed
computation can lead to improved efficiency—still holds water. Our goal is
then to turn this insight into a practical method. Notably, we would like
networks that are compatible with mainstream machine learning processes
(making them less likely to be left behind as the field advances). This means
not using a bespoke training algorithm, and retaining compatibility with
general-purpose hardware (i.e., floating-point arithmetic).

In Chapters 3 and 4, we address this challenge by presenting novel event-based
processing methods for convolutional networks (Chapter 3) and vision Trans-
formers (Chapter 4). We refer to these methods broadly as event networks.
As the name implies, these models have many similarities with the event
cameras described in Section 1.2. Event networks skip temporally redun-

dant computation, analogous to the way that event cameras skip redundant

communication.

An event network applies event detection across its depth, creating event neu-
rons at each layer. This design is necessary because temporal redundancy
can occur at various levels of visual complexity. Early layers can detect re-
dundancy in low-level structures (e.g., pixel values or simple texture). Later
layers, which operate in a higher-level space, can detect repetition in more
complex patterns.

Frame-based networks update masses of neurons in lockstep. An event net-
work is a “network” in perhaps a truer sense—event neurons can be viewed
as independent nodes that transmit asynchronous messages to one another.
When a neuron detects that its activation has changed, it sends a message
(event) to its synaptic neighbors, triggering cascading downstream updates.

Our event-based approach is applied on top of an existing frame-based net-
work. It does not require any changes to the original network’s weights or
representation, and makes minimal assumptions about the network architec-
ture. In this way, we ensure broad compatibility with mainstream machine
learning approaches, and increase the likelihood that our methods will remain
relevant through future innovations in the space.

Our methods can yield significant computation savings (approximately an
order of magnitude), while generally preserving the accuracy of the original
network. Further, event networks have the intriguing properties of adaptivity
and controllability. They are adaptive because the compute cost for each frame
varies according to the scene dynamics. When there is more change (less re-
dundancy), more computation is required, and vice versa. Event networks are
controllable because the compute cost can be configured at runtime, through
relatively simple parameter adjustments (e.g., by changing the event-firing
threshold).

However, there are still some unanswered questions here, primarily surround-
ing real hardware speedups. Although event networks are far more compatible
with conventional hardware than SNNss, there is still a gap between predicted
speedups (reduction in operation counts) and real time savings. Real runtime
depends on a multitude of factors—hardware sparsity support, cache sizes,
and memory access patterns—to name a few. A key question influencing the
long-term practicality of event networks is whether hardware manufacturers
will continue to optimize for monolithic operations (matrix multiplications),

or whether they will turn to more flexible, sparsity-aware design patterns.

1.4 Stability and Robustness

Converting a model to an event network has an unexpected side-effect: in
many cases, it increases the temporal stability of the predictions. For example,
in our experiments with pose estimation (Section 3.5.1), we observed less
frame-to-frame jittering in the predicted joint positions. Event truncation can
be seen as a type of temporal smoothing, where small variations around a

constant value are ignored.

This result points to additional drawbacks of frame-by-frame processing: tem-
poral inconsistency. If our models were error-free, then temporal inconsis-
tency would not be a concern—predictions would exactly match the true
world dynamics. However, current models are far from perfect. Under frame-
wise processing, there is nothing keeping model errors from varying wildly
between frames, with small variations in the inputs leading to disproportion-
ate changes in the outputs. Although the individual predictions may be mostly
correct, the dynamics of those predictions are often completely unrealistic.

Temporal incoherence is a clear problem in applications where model outputs
are intended for human consumption. Human vision is highly sensitive to

change and motion—introducing motion where it is not expected can be very

10

perceptually jarring.

For example, consider the task of denoising, where a noisy (e.g., low-light)
image is used to infer a high-quality image. This is an ill-posed problem,
meaning the best a denoising model can do is make an “educated guess” as to
the correct image. If we naively apply a single-frame denoising model to a
video, the model will not necessarily make consistent guesses between frames.
The resulting output video will have noticeable flickering artifacts, including
in regions with little to no motion (background). These artifacts significantly
reduce the perceived quality of the video, even if the single-image predictions
are generally correct.

Temporal stability is closely related to the property of robustness under time-
varying image corruptions (robustness here equates to accurate predictions
under corruptions). Consider, for example, a segmentation model operating
under adverse weather conditions. Rain or snow occlude portions of the scene,
making accurate predictions more challenging. However, this occlusion is
transient—if we consider a few recent frames, we are likely to find an occlusion-
free version of the same image patch. By the same token, we can improve
performance under noise by considering more “samples” (frames) from recent

history.

A key conceptual question here is whether we can improve stability without
harming accuracy. After all, our eventual goal is a perfectly accurate model;
altering such a model for improved stability would constitute “over-smoothing
reality.” As part of our work in Chapter 5, we propose an objective function
that does not disturb correct (“oracle”) predictions, thereby ensuring the
desired behavior in the limiting case of a perfect model. We also discover
a failure mode, which we refer to as “collapse,” where an overly-aggressive
smoothing objective causes a model to repeat its initial predictions indefinitely,
regardless of its input. We use these theoretical findings to develop practical
guidelines for developing stabilization methods.

11

Now that we have laid out our objective, we come to the question of imple-
mentation. Our goal is to take any off-the-shelf frame model, and inject it
with some additional logic to improve its temporal consistency and robustness.
Event networks are in fact a good starting point—they are compatible with
existing models, and already show signs of improving temporal consistency.
However, here we can consider designs beyond those based on change trun-
cation. In doing so, we can unlock new benefits such as differentiability in

time, allowing us to train our stabilization mechanisms if desired.

Many stabilizer implementations would be compatible with our overall design
goals. We propose a particular family of designs based on an exponential
smoothing mechanism. The stabilized activation is a weighted combination
of the current unstabilized activation and previous stabilized activations. This
mechanism has several advantages: it does not disturb the original feature
representation, has low memory overhead, and is straightforward to train.

We then introduce a controller network, which dynamically predicts the
degree of smoothing (the exponential weighting) for each activation value.
We provide the controller with the current and previous input frames, which
allows it to adjust the stabilization depending on the scene content and amount
of motion. For example, the controller can apply less-aggressive smoothing
along a moving edge in order to prevent motion blur.

By adding controlled stabilizers and training them using our proposed ob-
jective function, we achieve significant improvements in temporal stability
and robustness. These improvements come without an accuracy cost—in
fact, we see significant improvements in accuracy for many tasks. Unsurpris-
ingly, these accuracy gains are most pronounced in tasks like denoising where
temporal context contains information directly relevant to predictions.

In summary, we show that by injecting temporal context into a frame-based
model, we can make predictions better (more accurate), more stable, and more

reliable. We achieve this while retaining broad compatibility with existing

12

single-image models. In this way, we retain the advantages of the frame-based
approach, including more readily-available training data, a greater selection
of models, and less resource-intensive training and inference.

1.5 Recap

Frame-centric approaches are still prevalent in deployed vision systems. How-
ever, emerging technologies, including single-photon cameras and large neu-
ral networks, push frame-based methods to their limits—inspiring us to de-
velop new strategies.

On the sensing side (Chapter 2) we consider emerging single-photon sensors,
which provide highly noisy data at extreme frame rates. Representing this
data in its raw form is completely impractical, quickly surpassing the limits
of downstream memory and storage. Instead, we propose a family of event-
based codecs that leverage temporal context to reduce bandwidth. Unlike
conventional codes, our methods are lightweight and noise-tolerant, providing
significant compression while producing high-quality images.

On the processing side, we leverage temporal context to achieve both com-
putation savings (Chapter 3 and 4) and improved stability and robustness
(Chapter 5). A major theme in these works is injecting recurrences into ex-
isting single-frame models to impart a desired property. By injecting these
recurrences at all depths of the network, we enable reasoning in both the
low-level input space and the abstract feature space. Because we are not
proposing a specific architecture but rather a family of techniques, our meth-
ods have the potential for broad impact and continued relevance through
future architectural advancements.

In the following chapters, we provide the complete details of our methods and
experiments demonstrating their effectiveness. In the last chapter (Chapter 6),
we provide some final discussion and directions for future work.

13

2 Bandwidth: Generalized
Event Cameras

In Chapters 3 and 4, we leveraged repetition between frames to reduce com-
putational costs. In this chapter, we explore another potential benefit of
redundancy-aware vision: data compression. This idea has been explored
extensively in the context of mainstream video codecs (e.g., h264), which
achieve impressive compression ratios on video from conventional cameras.
However, data from emerging single-photon sensors presents unique chal-
lenges: it is computationally infeasible to run conventional codecs at high
single-photon frame rates, and the extreme noise in individual frames makes
codec heuristics less effective.

We explore an alternative compression approach based on event-based sensing.
Existing event cameras capture the world at high time resolution and with
minimal bandwidth requirements. However, their event streams, which only
encode changes in brightness, do not contain sufficient scene information to
support a wide variety of downstream tasks. In this chapter, we design gener-
alized event cameras that preserve scene intensity in a bandwidth-efficient
manner. We generalize event cameras in terms of when an event is generated
and what information is transmitted. Single-photon sensors, by providing
digital access to individual photon detections, give us the flexibility to realize
arich space of generalized event cameras.

14

Our single-photon event cameras are capable of high-speed, high-fidelity
imaging at low readout rates. Consequently, they can support plug-and-play
downstream inference, without capturing new event datasets or designing
specialized event-vision models. As a practical implication, our designs, which
involve lightweight and near-sensor-compatible computations, provide a way

to use single-photon sensors without exorbitant bandwidth costs.

2.1 Introduction

Event cameras [135, 181, 13] sense the world at high speeds, providing visual
information with minimal bandwidth and power. They achieve this by trans-
mitting only changes in scene brightness, when significant “events” occur.
However, there is a cost. Raw event data, a sparse stream of binary values, does
not hold sufficient information to be used directly with mainstream vision
algorithms. Therefore, while event cameras have been successful at certain
tasks (e.g., object tracking [61, 127], obstacle avoidance [77, 16, 199], and
high-speed odometry [31, 276, 81]), they are not widely deployed as general-
purpose vision sensors, and often need to be supplemented with conventional
cameras [61, 81, 60]. These limitations are holding back this otherwise pow-
erful technology.

Is it possible to realize the promise of event cameras, i.e., high temporal reso-
lution at low bandwidth, while preserving rich scene intensity information?
To realize these seemingly conflicting goals, we propose a novel family of gen-
eralized event cameras. We conceptualize a space of event cameras along two
key axes (Figure 2.1 (top)): (a) “when to transmit information,” formalized
as a change detection procedure A; and (b) “what information to transmit,”
characterized by an integrator X that encodes incident flux. Existing event
cameras represent one operating point in this (£, A) space. Our key observa-
tion is that by exploring this space and considering new (X, A) combinations,
we can design event cameras that preserve scene intensity. We propose more

15

Conventional event camera

Integrator Change detector Sensor output Intensity imaging

Low-pass filtered Threshold-based detector Stream of E2VID+, 1000 FPS
brightness Analog comparator change polarites 20 FPS bitrate

Generalized event camera

Integrator

Motion adaptive, Spatiotemporal support Stream of 3025 FPS
spatial, coded Noise-aware thresholding integrator values 30 FPS bitrate

Plug-and-play event vision

B
=
Tennis shot Tracking at 0.3 lux Night detection =~ High-speed OCR Segmentation
Reconstruction CoTracker DETR Tesseract Segment Anything

Figure 2.1: Generalized event cameras. (top) Event cameras generate
outputs in response to abrupt changes in scene intensity. We describe this
as a combination of a low-pass integrator and a threshold-based change de-
tector. (middle) We generalize the space of event cameras by designing
integrators that capture rich intensity information, and more reliable change
detectors that utilize larger spatiotemporal contexts and noise-aware thresh-
olding (Sections 2.4.1, 2.4.2, and 2.4.3). Unlike existing events, our generalized
event streams inherently preserve scene intensity, e.g., this ping-pong ball
slingshotted against a brick wall backdrop. (bottom) Generalized event cam-
eras enable high-fidelity bandwidth-efficient imaging: providing 3025 FPS
reconstructions with a readout equivalent to a 30 FPS camera. Consequently,
generalized events facilitate plug-and-play inference on a multitude of tasks
in challenging scenarios (insets depict the extent of motion over 30 ms).

16

general integrators, e.g., that represent flux according to motion levels, that
span spatial patches, or that employ temporal coding (Figure 2.1 (middle)).
We also introduce robust change detectors that better distinguish motion from
noise, by considering increased spatiotemporal contexts and modeling noise

in the sensor measurements.

Despite their conceptual appeal, physically implementing generalized event
cameras is a challenge. This is because the requisite computations must be
performed at the sensor to achieve the desired bandwidth reductions. For
example, existing event cameras perform simple integration and thresholding
operations via analog in-pixel circuitry. However, more general (£, A) combi-
nations are not always amenable to analog implementations; even feasible
designs might require years of hardware iteration and production scaling. To
build physical realizations of generalized event cameras, we leverage an emerg-
ing sensor technology: single-photon avalanche diodes (SPADs) that provide
digital access to photon detections at extremely high frame rates (~100 kHz).
This allows us to compose arbitrary software-level signal transformations, such
as those required by generalized event cameras. Further, we are not locked to
a particular event camera design and can realize multiple configurations with

the same sensor.

Implications: extreme, bandwidth-efficient vision. Generalized event
cameras support high-speed, high-quality image reconstruction, but at low
bandwidths quintessential of current event cameras. For example, Figure 2.1 (mid-
dle, bottom) shows reconstructions at 3025 FPS that have an effective readout
of a 30 FPS frame-based camera. Further, our methods have strong low-
light performance due to the SPAD’s single-photon sensitivity. As we show
in Figure 2.1 (bottom), preserving scene intensity facilitates plug-and-play
inference in challenging scenarios, with state-of-the-art vision algorithms.
Critically, this does not require retraining vision models or curating dedicated
datasets, which is a significant challenge for unconventional imagers. This

plug-and-play capability is vital to realizing universal event vision that retains

17

the benefits of current event cameras.

Scope. We consider full-stack event perception: we conceptualize a novel
space of event cameras, provide relevant single-photon algorithms, analyze
their imaging capabilities and rate-distortion trade-offs, and show on-chip
feasibility. We demonstrate imaging capabilities in Sections 2.5.1 and 2.5.2
using the SwissSPAD2 array [223], and show viable implementations of our
algorithms for UltraPhase [7], a recent single-photon compute platform. All
of these are critical to unlocking the promise of event cameras. However, our
objective is not to develop an integrated system that incorporates all these
components; this work merely takes the first steps toward that goal.

2.2 Related Work

Event camera designs. Perhaps most widespread is the DVS event cam-
era [135], where each pixel generates an event in response to measured
changes in (log) intensity. The DAVIS event camera [20, 13] couples DVS
pixels with conventional CMOS pixels, providing access to image frames.
However, the frames lack the dynamic range of DVS events. A recent de-
sign, Celex-V [89], provides log-intensity frames using an external trigger.
ATIS [181], a less prevalent design, features asynchronous intensity events,
but its sophisticated circuitry reduces pixel fill factor. The above designs are
based on analog processing; we instead design event cameras on digital photon
detections.

Intensity imaging with event cameras. Several approaches have been
explored to obtain images from events, including Poisson solvers [11], man-
ifold regularization [163], assuming knowledge of camera motion [111, 42]
or optical flow [270], and learning-based methods [188, 201, 277, 213, 174].
However, because events often lack sufficient scene information, they are
often supplemented by conventional frames [200, 21, 205, 171], either from

18

sensors such as DAVIS or using a multi-camera setup. Fusing events and
frames presents challenges due to potential spatiotemporal misalignment and
discrepancies in imaging modalities. Even when these challenges are over-
come, we show that fusion methods produce lower fidelity than our proposed

generalized event cameras.

Passive single-photon imaging. In the past few years, SPADs have found
compelling passive imaging applications; this includes high-dynamic range
imaging [95, 94, 144, 164], motion deblurring [96, 150, 151, 119, 120], high-
speed tracking [71], and ultra wide-band videography [241]. A particularly
relevant method is proposed by Seets et al. [203], which uses flux changepoint
estimation to perform burst photography on single-photon sequences. This
approach uses flux changepoints to estimate motion, then integrates along
spatiotemporal motion trajectories to circumvent the noise-blur tradeoff. This
spatiotemporal integration allows for high-quality reconstructions under chal-
lenging lighting and motion conditions. In contrast, our work emphasizes
changepoint estimation as a means to compress single-photon data. Further,
since we aim to run our proposed techniques near sensor, where there are
limited memory and compute capabilities, we focus on online changepoint

estimation that processes photon detections in a single pass.

The fine granularity of passive single-photon acquisition makes it possible to
emulate a diverse set of imaging modalities [216], including event cameras,
via post-capture processing. In this work, we go beyond emulating existing
event cameras and design alternate event cameras that preserve high-fidelity
intensity information.

2.3 Whatis an Event Camera?

The defining characteristic of event cameras is that they transmit information
selectively, in response to changes in scene content. This selectivity allows

19

event cameras to encode scene information at high time resolutions required
to capture scene dynamics, without proportionately high bandwidth. This is
in contrast to frame-based cameras, where readout occurs at fixed intervals.

We characterize event cameras in terms of two axes: what the camera transmits
and when it transmits. As a concrete example, consider existing event cameras.

They trigger events (“when to transmit”) based on a fixed threshold:
|(D(Xa t) - q)ref(x)l 2T, (21)

where ®(x,t) is a flux estimate at pixel x and time ¢, and 7 is the thresh-
old. Event cameras such as the DVS [20] measure a temporally low-pass
filtered estimate of log-flux; we absorb this into ®(x, t) for brevity. ®,(x) is a
previously-recorded reference, set to ®(x,) whenever an event is triggered.
Each event consists of a packet

(X’ [Sigl’l(q)(X, t) - q)ref(x))) (22)

that encodes the polarity of the change (“what to transmit”).

Event polarities, although adequate for some applications, do not retain suffi-
cient information to support a general set of computer vision tasks. A stream
of event polarities is an extremely lossy representation. Notably, it only de-
fines scene intensity up to an initial unknown reference value, and it does not
encode any information in regions not producing events, i.e., regions with

little or no motion.

Our key observation is that existing event cameras represent just one operating
point in a broader space of generalized event cameras, which is defined by two
axes: “what to transmit” and “when to transmit.” By considering alternate
points in this space, we can design event cameras that preserve high-fidelity
scene intensity. This enables plug-and-play inference with a host of algorithms
developed by the mainstream vision community.

20

1-bit events Flux levels Adaptive exposures
Figure 2.2: Altering “what to transmit.” (left) We sum the events generated
by a jack-in-the-box toy as it springs up. This sum gives a lossy encoding of
brightness changes in dynamic regions. (middle) Transmitting levels instead
of changes helps recover details in static regions. (right) Adaptive exposures,
which accumulate flux between consecutive events, provide substantial noise

reduction.

We begin with a conceptual exploration of this generalized space, before
describing its physical implementation.

Table 2.1: Summary of generalized event cameras. Our designs integrate photon detections (Z) and detect
scene-content changes (A) in distinct ways. We compare our designs to existing DVS event cameras based on
their event streams, latencies, and intensity-preserving nature. While providing a direct power comparison to
DVS is difficult, we compare the power characteristics among our designs in Section 2.5.4.

Event camera Integrator (%) Change detector (A) Event packets Min latency Intensity info? = Low light
Existing DVS [135] logarithmic comparator binary 10°t0 107 s X poor
Section 2.4.1 adaptive exposure Bayesian change detector [4] scalar 10° s v good
Section 2.4.2 adaptive exposure variance-aware differences patches 10*s v good
Section 2.4.3 coded exposure Binomial confidence interval vector 103 s v good

IcC

22

Generalizing “what to transmit.” As a first step, we can modify the event
camera such that it transmits n-bit values instead of one-bit change polarities.
When an event is triggered, we send the current value of ®(x, t); if a pixel
triggers no events, we transmit ® during the final readout. As we show in
Figure 2.2 (b), this simple change allows us to recover scene intensity, even
in static regions. It is important to note that, while the transmitted quantity
differs from conventional events, we retain the defining feature of an event
camera: selective transmission based on scene dynamics (where we transmit
according to Equation 2.1). Thus, the readout remains decoupled from the
time resolution.

If d(x,t) were a perfect estimate of scene intensity, then the changes thus
far would suffice. However, ® is fundamentally noisy: to capture high-speed
changes, ® must encompass a shorter duration, which leads to higher noise.
This is a manifestation of the classical noise-blur tradeoff.

To address this problem, we introduce the abstraction of an integrator (or X),
that defines how we accumulate incident flux and, in turn, what we transmit.
Ideally, we want the integrator to adapt to scene dynamics, i.e., accumulate
over longer durations when there is less motion, and vice versa. We observe
that event generation, which is based on scene dynamics, can be used to
formulate an adaptive integrator. Specifically, we propose an integrator X,
that computes the cumulative flux since the last event:

t
Yeum (X, t) = f d(x, s)ds, (2.3)
T,
where T, is the time of the last event. When an event is triggered at time T},
we communicate the value of X,,(x, T;), which we interpret as the intensity
throughout [T, T;] (we can either transmit values of £, or changes to Z.,.i;
we treat this as an implementation detail here). This approach yields a piece-
wise constant time series, with segments delimited by events. We note that a

23

similar idea, of virtual exposures beginning and ending with change points,
was also explored in [203] as part of a motion-adaptive deblurring pipeline.
Adaptive exposures significantly reduce noise while preserving dynamic scene
content, as we show in Figure 2.2 (right).

Generalizing “when to transmit.” The success of the adaptive integrator
crucially depends on the reliability of events; for example, triggering false
events in static regions causes unnecessary noise. We refer to the event-
generation procedure as the change detector, denoted by A. Current event
cameras detect changes by applying a fixed threshold to measured intensity
differences (Equation 2.1). This method has two key limitations: it only
considers the value of ® at pixel location x and time ¢ and is not attuned to
the stochasticity in ®.

We design more robust change detectors that (1) leverage enhanced spatiotem-
poral contexts, and (2) incorporate noise awareness, either explicitly by tuning
thresholds, or implicitly by modulating the detector’s behavior. Specifically,
we improve reliability by using temporal forecasters (Section 2.4.1), by lever-
aging correlated changes in patches (Section 2.4.2), or by exploiting integrator
statistics (Section 2.4.3).

Realizing generalized event cameras. The critical detail remaining is how
we implement our proposed designs in practice. We need direct access to flux
estimates at a high time resolution. Conventional high-speed cameras can
provide such access, however, they incur substantial per-frame read noise
(~20-40e~ [93]) that grows with frame rate [19].

We turn to an emerging class of single-photon sensors, single-photon avalanche
diodes (SPADs [193]), that has witnessed dramatic improvements in device
practicality and key sensor characteristics (e.g., array sizes and fill factors) in re-
cent years [223, 161]. SPADs can operate at extremely high speeds (~100 kHz)
without incurring per-frame read noise. Each ®(x, t) measured by a SPAD is
limited only by the fundamental stochasticity of photon arrivals (shot noise).

24

This allows SPADs to provide high timing resolution without a substantial
noise penalty. In the next section, we describe the image formation model of
SPADs and provide single-photon implementations of our designs.

2.4 Single-Photon Generalized Event Cameras

A SPAD array can operate as a high-speed photon detector, producing binary
frames as output. Each binary value indicates whether at least one photon
was detected during an exposure. The SPAD output response, ®(x, t), can be

modeled as a Bernoulli random variable, with
P(®(x,t)=1)=1—eN&D, (2.4)

where N(x, t) is the average number of photo-electrons during an exposure,
including any spurious detections. The inherently digital SPAD response
allows us to compute software-level transformations on the signal ®(x, t),
including operations that may be challenging to realize via analog processing.
These transformations can be readily reconfigured, which permits a spectrum
of event camera designs, not just one particular choice. However, there is one
consideration: our designs should be lightweight and computable on chip.
As we show in Section 2.5.4, this is vital to implementing generalized event
cameras without the practical costs associated with reading off raw SPAD

outputs.

We now describe a set of SPAD-based event cameras (summarized in Table 2.1),

beginning with the adaptive exposure method from the previous section.

Adaptive-exposure event camera. We obtain a SPAD implementation of
the adaptive exposure described in Equation 2.3 by replacing the integral with

a sum over photons:
t

Zeum(X, 1) = D (%, 5). (2.5)

s=T

25

To generate events, we can use a threshold-based change detector (Equa-
tion 2.1). Differences between individual binary values are not sufficiently
informative; therefore, we apply Equation 2.1 to an exponential moving aver-
age (EMA) computed on ®. We call this an “adaptive-EMA” event camera.

2.4.1 Bayesian Change Detector

A fixed-threshold change detector such as Equation 2.1 does not account for
the SPAD’s image formation model; it uses the same threshold irrespective
of the underlying variance in photon detections. As a result, such a detector
may fail to detect changes in low-contrast regions without producing a large
number of false-positive detections (see Figure 2.3 (left)).

In this section, we consider a Bayesian change detector, BOCPD [1], that is
tailored to the Bernoulli statistics of photon detections. BOCPD uses a series
of forecasters to estimate the likelihood of an abrupt change. At each time
step, a new forecaster v, is initialized as a recurrence of previous forecasters,

and existing forecasters are updated:

t—1

t = - ls s
v = J/)SZ:; v 2.6)

v, < yly, Vs <i,

where y € [0, 1] is the sensitivity of the change detector, with larger y resulting
in more frequent detections. L is the predictive likelihood of each forecaster,
which we compute by tracking two values per forecaster, a, and S, that
correspond to the parameters of a Beta prior. For a new forecaster, these
values are initialized to 1 each, reflecting a uniform prior. Existing («ay, 5,),
Vs < t, are updated as

a, < o; + D(x,t)

2.7
By < B+ 1—d(x,t). @7

26

Adaptive-EMA Adaptive-Bayesian
CO i-"\:, g
£ \;._‘1‘_»‘. . B d k= ’gjs‘y;.m !-\\\\ . ,; \\ wig L / .
& T S 9{) | ‘
Changes detected Changes detected Integrator values

Figure 2.3: Bayesian- vs. EMA-based change detector. (left) A fixed-
threshold change detector (used in adaptive-EMA) makes it difficult to seg-
ment low-contrast changes. (center) The Bayesian formulation attunes to
the stochasticity in incident flux and can detect fine-grained changes such as
the corners of the hole saw bit; (right) as a result, the integrator captures the
rotational dynamics.

l; is given by o /(o + B,) if ®(x,t) = 1, and B,/(a, + ;) otherwise. An
event is triggered if the highest-value forecaster does not correspond to T, the

timestamp of the last event; mathematically, if argmax, v, # T,,.

To make BOCPD viable in memory-constrained scenarios, we apply extreme
pruning by retaining only the three highest-value forecasters [239]. We also in-
corporate restarts, deleting previous forecasters when a change is detected [4].

Compared to an EMA-based change detector, the Bayesian approach more
reliably triggers events in response to scene changes while better filtering out
stochastic variations caused by photon noise—which we show in Figure 2.3.

2.4.2 Spatiotemporal Chunk Events

Section 2.4.1 leverages an expanded temporal context for change detection;
however, it treats each pixel independently and does not exploit spatial in-
formation. In this section, we devise an event camera with enhanced spatial
context that operates on small patches, e.g., of 4x4 pixels. It is difficult to
derive efficient Bayesian change detectors for multivariate time series; thus,
we adopt a model-free approach that does not explicitly parameterize the patch

27

distribution. To afford computational breathing room for more expensive
patch-wise operations, we employ temporal chunking. That is, we average
d(x, t) over a small number of binary frames (e.g., 32 binary frames) instead
of operating on individual binary frames; generally, this averaging does not
induce perceptible blur.

Let vector @« (Y, t) represent the chunk-wise average of photon detections
at patch location y. Let vector ,.,(y,) be an integrator representing the
cumulative mean since the last event, but excluding ®,,,.. We want to
estimate whether ®,,,, belongs to the same distribution as X,,.;,. We do so
with a lightweight approach, that computes the distance between ®,,,,, and
2 atch in the linear feature space of matrix P. As we show in Figure 2.4, linear
features allow us to capture spatial structure within a patch. Geometrically,
P induces a hyperellipsoidal decision boundary, in contrast to the spherical
boundary of the L2 norm.

This method generates an event whenever

”P((i,chunk(Ya t) - ipatch(y’ t))”z 2T, (28)

where 7 is the threshold. When there is no event, we extend the cumulative
mean to include the current chunk. Before computing linear features, we
normalize @, and X, element-wise according to the estimated variance
in @y n — Zparecn; We annotate the normalized versions with a tilde. We
estimate the variance based on the fact that, in a static patch, the elements of
D, and X, are independent binomial random variables.

We train the matrix P on simulated SPAD data, generated from interpolated
high-speed video. We apply backpropagation through time to minimize the
MSE error of the transmitted patch values. To address the non-differentiability
arising from the threshold, we employ surrogate gradients. Please see Sec-
tion A.4 for complete details of this method.

28

Shuffled L2 norm B Features _ P-norm
3 . -
Wy ek — 137 — | [— 0.19
}‘, | |
i . & _.JT b |
| = oo |
.1 E
- h = — 13.7 — b — 0.68

Current Reference Difference — -

Figure 2.4: Spatiotemporal chunk events. We evaluate the difference
between the current chunk and a stored reference in a learned linear-feature
space. Unlike the L2 norm, which is permutation-invariant, the feature-space
norm is sensitive to spatial structure. Randomly shuffling the pixel values
reduces the transform-domain norm (the shuffled patch has a more “noise-
like” structure).

2.4.3 Coded-Exposure Events

In this section, we design a generalized event camera by applying change
detection to coded exposures [185, 82], which capture temporal variations by
multiplexing photon detections over an integration window. This is interesting
in two aspects. First, we are designing event streams based on an modality
not typically associated with event cameras. Second, we show that high-speed
information can be obtained even when the change detector operates at a
coarser time granularity. Coded-exposure events provide somewhat lower
fidelity than our designs in Sections 2.4.1 and 2.4.2, but are more compute-
and power-efficient, owing to less frequent execution of the change detector.

At each pixel, we multiplex a temporal chunk of T4 (~256-512) binary
values with a set of J (~2-6) codes C/(x,t)V1 < j < J, producing J coded

€xposures
t

Zioded(x,t)z Z ®(x,5)C/(x, s). (2.9)

s=t=Tcode

29

The codes C/ are chosen to be random, mutually orthogonal binary masks,

each containing T 4. /max(2,J) ones [216].

We exploit the statistics of coded exposures to derive a change detector. Ob-
J

coded
tributed (iid) binomial random variables. Thus, we can expect them to

serve that in static regions, X (x,t) are independent and identically dis-
lie within a binomial confidence interval of one another. If not, we as-
sume the pixel is dynamic and generate an event. We trigger an event if
Zi odeq & confi(n, p) for any j. Here, “conf” refers to a binomial confidence
interval (e.g., Wilson’s score), n = Tgoqe/J draws, and p = 3] (X, 5)/Tcoqe 1S

the empirical success probability.

If a pixel is static, we store the sum of the J coded exposures, which is a long
exposure, denoted by Z,,,. If the pixel remains static across more than one
temporal chunk, we extend %, to include the entire duration. Whereas, if

coded
sity encoded in Z,,,. Downstream, we can apply coded-exposure restoration

the pixel is dynamic, we transmit {Zj } as well as any previous static inten-
techniques [255, 206] to recover intensity frames from the coded measure-
ments.

2.5 Experimental Results

We demonstrate the capabilities of generalized event cameras using a SwissS-
PAD2 array [223] with resolution 512x256, which we use to capture one-bit
frames at 96.8 kHz. We show the feasibility of our designs on UltraPhase [7],
a recent single-photon computational platform (Section 2.5.4).

Refinement model. For each of our event cameras, we train a refinement
model that mitigates artifacts arising from the asynchronous nature of events.
This model takes a periodic frame-based sampling of integrator values and
outputs a video reconstruction. The sampling rate is configurable; in practice,
we set it ~16-64X lower than the SPAD rate. We use a densely-connected

30

High-speed camera Prophesee events SPAD events + frames

Infinicam at 500 FPS - E2VID+ EDI++
(3590 bps/pixel) (236 bps/pixel) (425 bps/pixel)

Generalized event cameras

Spatiotemporal chunk (Section 4.2, 431 bps/pixel, rendered at 3025 FPS)

Figure 2.5: High-speed videography of a stress ball hurled at a coffee
mug. (top row) This indoor scene is challenging for existing imaging systems,
including: high-speed cameras (SNR-related artifacts), event cameras (poor
restoration quality), and even hybrid event + frame techniques (reconstruction
artifacts). (bottom rows) In contrast, our generalized event cameras capture
the stress ball’s extensive deformations with high fidelity and an efficient
readout.

residual architecture [231], trained on data generated by simulating photon
detections on temporally interpolated [90] high-speed videos from the XVFI
dataset [211]. See Section A.4 for training details.

Frame-based cameras Events only Event + frame imaging Generalized events

;- i 20 T - x -
1 ms short exposure 80 ms long exposure E2VID+ Adaptive Bayesian
(120 bps/pixel at 10 FPS) (120 bps/pixel at 10 FPS) (121 bps/pixel) (315 bps/pixel) (Section 4.1, 315 bps/pixel)

Figure 2.6: Event imaging in urban nighttime (7 lux, sensor side). (left to right) Low-light conditions
necessitate long exposures in frame-based cameras, resulting in unwanted motion blur. The Prophesee EVK4
suffers from severe degradation in low light, causing E2VID+ to fail. Running EDI++ on perfectly aligned

SPAD-frames and -events improves overall restoration quality but still gives failures on fast-moving objects.

Our generalized events recover significantly more detail in low light, as seen in the inset of the motorcyclist.

1€

0.3 ms burst exposures

85 ms long exposure

120 bps/pixel at 10 FPS 15100 bps/pixel

Conventional events (Prophesee EVK4, 331 bps/pixel)

@ Y3

&/' '\ .

AR

Arc* corners E-RAFT flow DETR on E2VID+ SAM on E2VID+

Generalized events (spatiotemporal chunk, Section 4.2, 520 bps/pixel)

\
o |
-

ball >99%
person 97%

Harris corners RAFT flow DETR detection

HRNet pose SAM segmentation

Figure 2.7: Plug-and-play inference on a tennis scene. (middle) Conventional events encode temporal-
gradient polarities; this lossy representation limits performance on downstream tasks. (bottom) Generalized
events encode rich scene-intensity information, with a readout comparable existing event cameras. They
facilitate high-quality plug-and-play inference, without requiring dedicated algorithms. (top) Generalized event

cameras give image quality comparable to burst photography techniques that require much more bandwidth.

(43

33

2.5.1 Extreme Bandwidth-Efficient Videography

High-speed videography. In Figure 2.5, we capture the dynamics of a
deformable ball (a “stress ball”) using a SPAD, a high-speed camera (Photron
Infinicam) operated at 500 FPS, and a commercial event camera (Prophesee
EVK4). The high-speed camera suffers from low SNR due to read noise, which
manifests as prominent artifacts after on-camera compression. Meanwhile,
conventional events captured by Prophesee, when processed by “intensity-
from-events” methods such as E2VID+ [212] fail to recover intensities reliably,
especially in static regions. We also evaluate EDI [170], a hybrid event-frame
method. We consider an idealized variant that operates on SPAD events
(obtained via EMA thresholding), which gives perfect event-frame alignment
and a precisely known event-generation model. We refine the outputs of EDI
using the same model as for our methods. We refer to this idealized, refined
version of EDI as “EDI++.” While EDI++ recovers more detail than other
baselines, there are considerable artifacts in its outputs.

Our method achieves high-quality reconstructions at 3025 FPS (96800/32)
that faithfully capture non-rigid deformations, with only 431 bits per second
per pixel (bps/pixel) readout, which is a 227x compression (96800/431) of the
raw SPAD capture. Viewed differently, for a 1 MPixel array, we would obtain
a bitrate of 431 Mbps, implying that we can read off these 3025 FPS recon-
structions over USB 2.0 (which supports transfer speeds of up to 480 Mbps).

Event imaging in low light. Figure 2.6 compares the low-light performance
of frame-based, event-based, and a generalized event camera on an urban
night-time scene at 7 lux (lux measured at the sensor). For frame-based
cameras, a short exposure that preserves motion may be too noisy, while a long
exposure can be severely blurred. The Prophesee’s performance deteriorates in
low light, resulting in blurred temporal gradients. EDI++, benefiting from the
idealized SPAD-based implementation, can image this scene, but finer details
like the motorcyclist are lost. Our generalized event cameras, on the other

34

hand, provide reconstructions with minimal noise, blur, or artifacts—while
retaining the bandwidth efficiency of event-based systems. The compression
here is 307X with respect to raw SPAD outputs.

2.5.2 Plug-and-Play Inference

Generalized event cameras preserve scene intensity, which enables plug-and-
play event-based vision. We consider a tennis sequence (of 8196 binary frames)
containing a range of object speeds. We evaluate a range of tasks: pose estima-
tion (HRNet [215]), corner detection [74], optical flow (RAFT [220]), object
detection (DETR [29]), and segmentation (SAM [114]). We compare against
event-based methods applied to Prophesee events; we use Arc* [5] for corner
detection and E-RAFT [62] for optical flow. For the remaining tasks, which
do not have equivalent event methods, we run HRNet, DETR, and SAM on
E2VID+ reconstructions.

As Figure 2.7 (middle) shows, traditional events are bandwidth efficient
(331 bps/pixel), but do not provide sufficient information for successful infer-
ence. Generalized events (bottom) have a modestly higher readout (520 bps/pixel),
but support accurate inference without requiring dedicated algorithms. To
provide context for these rates, we compare them against frame-based methods
(top). A long exposure (120 bps/pixel) blurs out the racket. Burst methods [75]
recover a sharp image from a stack of short exposures, but with a large readout

of 15100 bps/pixel.

2.5.3 Rate-Distortion Analysis

Each method in Section 2.4 features a sensitivity parameter that controls
the sensor readout rate (event rate), which in turn influences image qual-
ity.In this subsection, we evaluate the impact of readout on image quality
(PSNR) by performing a rate-distortion analysis. For ground truth, we use
a set of YouTube-sourced high-speed videos captured by a Phantom Flex4k

35

at 1000 FPS; see the supplement to our paper [217] for thumbnails and links.
We upsample these videos to the SPAD’s frame rate and then simulate 4096
binary frames using the image formation model described in Equation 2.4.
When computing readout for our methods, we assume that events encode
10-bit values and account for the header bits of each event packet.

As baselines, we consider EDI++, a long exposure, compressive sensing with
8-bucket masks, and burst denoising [75] using 32 short exposures. As Fig-
ure 2.8 shows, generalized event cameras provide a pronounced 4-8 dB PSNR
improvement over baseline methods. Further, our methods can compress the
raw SPAD response by around 80X before a noticeable drop-off in PSNR is
observed.

Among our methods, the spatiotemporal chunk approach of Section 2.4.2
gives the best PSNR, followed by the Bayesian method (Section 2.4.1) and
coded-exposure events (Section 2.4.3). That said, all methods are fairly similar
in terms of rate-distortion (e.g., all three give comparable results for the scenes
in Sections 2.5.1 and 2.5.2). The methods are better distinguished by their
practical characteristics. The Bayesian method gives single-photon temporal
resolution; however, as we show in Section 2.5.4, it is the most expensive to
compute on-chip. The chunk-based method occupies a middle ground in
terms of latency and cost. Coded-exposure events have the highest latency—
events are generated only every ~256-512 binary frames—but the lowest
on-chip cost. This provides an end user the flexibility to choose from the
space of generalized event cameras based on the latency requirements and
the compute constraints of the target application.

2.5.4 On-Chip Feasibility and Validation

A critical limitation of single-photon sensors is the exorbitant bandwidth
and power costs involved in reading off raw photon detections. However,

the lightweight nature of our event camera designs allows us to sidestep this

36

36

—&— Chunk-based
34 1 /’.’l‘ —e— Bayesian
i Coded
o~ 327 N > —e— Adaptive EMA
% 0. —— EDI++
>o-0—0—¢ A Compressive sensing
28 B Longexposure
> Burst denoising
261 m
T T T T T
0 1000 2000 3000 4000 5000 6000

Bits per second (bps) per pixel

Figure 2.8: Rate-distortion evaluation. Our techniques feature a tunable
parameter that controls the output event rate. Generalized events offer a
4-8 dB improvement in PSNR over EDI++ (at the same readout), and can
compress raw photon data by 80x.

limitation by performing computations on-chip. We demonstrate that our
methods are feasible on UltraPhase [7], a SPAD compute platform. UltraPhase
consists of 3X6 compute cores, each of which is associated with 4x4 pixels.

We implement our methods for UltraPhase using custom assembly code.
Some methods require minor modifications due to instruction-set limitations;
see Section A.9 for details. We process 2500 SPAD frames from the tennis
sequence used in Section 2.5.2, cropped to the UltraPhase array size of 12x24
pixels. We determine the number of cycles required to execute the assembly

code and estimate the chip’s power consumption and readout bandwidth.

The coded-exposure method is particularly efficient; on most binary frames,
it only requires multiplying a binary code with incident photon detections.
Our proof-of-concept evaluation may pave the way for future near-sensor
implementations of generalized event cameras, which with advances in chip-
to-chip communication, could involve a dedicated “photon processing unit,”
similar to a camera image signal processor (ISP).

37

Bandwidth (kBps) Power (W)

I Processing
HEl Readout
Total

10!
) Ve > >
O\O’Q Q)® @Q‘b Q{géb Qobz
Q‘Q <& Q)qﬁ N
83 $
o o

Figure 2.9: On-chip compatibility. We validate the feasibility of our ap-
proach on UltraPhase [7], a computational SPAD imager. Compared to reading
out raw photon data, all of our approaches give marked reductions in both
bandwidth (left) and power (right).

Rigid dynamics Phone screen Camera motion
(200x compression) (11X compression) (130x compression)

Figure 2.10: Limitations and failure modes. (left) Our reconstructions
(yellow inset) on dynamic scenes with rigid objects can be inferior to burst
photography (green inset). (center) Modulated light sources, such as this
phone screen, can trigger a deluge of events (change points shown in the
inset). (right) Rapid camera motion can result in an event rate divergent
from scene dynamics.

2.6 Limitations and Discussion

Generalized events push the frontiers of event-based imaging; however, some
scenarios lead to sub-optimal performance. As seen in Figure 2.10 (left), if the

38

scene dynamics is entirely comprised of rigid motion, burst photography [150]
gives better image quality, albeit with much higher readout. (middle) Similar
to current event cameras, modulated light sources trigger unwanted events
that reduce bandwidth savings. However, it may be possible to ignore some
of these events, perhaps by modeling the lighting variations [207].

Ego-motion events. Camera motion can trigger events in static regions,
although our methods still yield substantial compression (130X over SPAD
outputs, Figure 2.10 (right)). We analyze the impact of ego-motion on band-
width savings further in Section A.6. However, single-photon cameras can
emulate sensor motion by integrating flux along alternate spatiotemporal
trajectories [216]. We can imagine a generalized event camera that is “ego-

motion compensated,” by computing events along a suitable trajectory.

Photon-stream compression. SPADs generate a torrent of data—e.g., 12.5 GBps
for a MPixel array at 100 kHz—that can easily overwhelm data interfaces.
Generalized event cameras reduce readout by around two orders of magni-
tude, by decoupling readout from the SPAD’s frame rate and instead basing

it on scene dynamics. This could pave the way for practical, high-resolution
single-photon sensors.

39

3 Compute: Event Neural
Networks

In this chapter, we present a method for modifying frame-based networks to
significantly reduce inference costs on video. We start with the observation
that video data is inherently repetitive. Further, this repetition occurs at
multiple levels of visual complexity, from low-level pixel values to textures and
high-level semantics. We leverage this multi-level redundancy by modeling
changes not only in the input images, but also in the intermediate features of
the network.

We propose Event Neural Networks (EvNets), in which neurons only transmit
an “event” (thereby triggering downstream computation) when they have
detected a sufficient change in their activation. A defining characteristic of
EvNets is that each neuron has state variables that provide it with long-term
memory. These state variables allow neurons to accurately track gradual, long-
term changes to their activations, such as those that occur in the presence of
camera motion.

We show that it is possible to transform a wide range of existing neural net-
works into EvNets without re-training. We demonstrate our method on state-
of-the-art architectures for both high- and low-level visual processing, includ-
ing pose recognition, object detection, optical flow, and image enhancement.
We observe roughly an order-of-magnitude reduction in computational costs

40

compared to conventional networks, with minimal reductions in model accu-

racy.

3.1 Introduction

Real-world visual data is repetitive; that is, it has the property of persistence.
For example, observe the two frames in Figure 3.1 (top). Despite being sepa-
rated by one second, they appear quite similar. Human vision relies on the
persistent nature of visual data to allocate limited perceptual resources. In-
stead of ingesting the entire scene at high resolution, the human eye points
the fovea (a small region of dense receptor cells) at areas containing motion
or detail [240]. This allocation of attention reduces visual processing and

eye-to-brain communication.

Processing individual frames using artificial neural networks has proven to be
a competitive solution for video inference [247, 273]. This paradigm leverages
advances in image recognition (e.g., pose estimation or object detection) and
processes each frame independently without considering temporal continuity,
implicitly assuming that adjacent frames are statistically independent. This
assumption leads to inefficient use of resources due to the repeated processing

of image regions containing little or no new information.

There has been recent interest in leveraging temporal redundancy for efficient
video inference. One simple solution is to skip processing image regions con-
taining few changes in pixel values. However, such methods cannot recognize
persistence in textures, patterns, or high-level semantics when it does not

coincide with persistent pixel values. See Figure 3.1 (top).

Because neural networks extract a hierarchy of features from their inputs,
they contain a built-in lens for detecting repetition across many levels of vi-
sual complexity. Shallow layers detect low-level patterns, and deep layers
detect high-level semantics. Temporal repetition at a given level of complex-

41

Persistence across time steps

Pixels Textures Semant

LB R A

Frame t+1

First layer Middle layers Deep

Computation savings Importance of long-term memory
Conventional EvNet

Without memory

With memory

Frame 0

Frame 100

35.8 Gops/frame 1.88 Gops/frame Error accumulation Correct updates

Figure 3.1: Event Neural Networks. (top) Two frames from a video se-
quence, separated by 1 second. Video source: [210]. Over this time, some areas
of the image maintain consistent pixel values (sky region). However, these
areas only represent a small fraction of the frame. In other regions, the pixel
values change but the textures (vertical lines) or semantics (tree branches)
remain the same. Each type of persistence corresponds to a different depth in
the neural hierarchy. EvNets leverage temporal persistence in video streams
across multiple levels of complexity. (bottom left) EvNets yield significant
computation savings while maintaining high accuracy. (bottom right) Event
neurons have state variables that encode long-term memory, allowing EvNets
to perform robust inference even over long video sequences with significant
camera motion. A network without long-term memory (left) fails to correctly
track the object due to gradual error accumulation.

42

ity translates to persistent values at the corresponding depth in the neural
hierarchy [72]. Based on this observation, we propose Event Neural Networks
(EvNets), a family of neural networks in which neurons transmit (thereby
triggering downstream computation) only when there is a significant change
in their activation. By applying this strategy over all neurons and layers, we

detect and exploit temporal persistence across many levels of complexity.

One of the defining features of EvNets is that each neuron has state variables
that provide it with long-term memory. Instead of re-computing from scratch
for every new input, an EvNet neuron accumulates information over time.
Long-term memory allows EvNets to perform robust inference over long video
sequences containing significant camera motion. See Figure 3.1 (bottom
right).

We design various structural components for EvNets—both at the individual
neuron level (memory state variables) and the network level (layers and trans-
mission policies). We recognize that transmission policies, in particular, are
critical for achieving a good accuracy/computation tradeoff, and we describe
the policy design space in detail. We show that, with these components, it
is possible to transform a broad class of conventional networks into EvNets
without re-training. We demonstrate our methods on state-of-the-art mod-
els for several high- and low-level tasks: pose recognition, object detection,
optical flow, and image enhancement. We observe approximately an order-of-
magnitude reduction in arithmetic operations with minimal effects on model

accuracy.

Scope and limitations. In this work, we focus on the theoretical and con-
ceptual properties of EvNets. Although we show results on several video
inference tasks, our goal is not to compete with the latest methods for these
tasks in terms of accuracy. Instead, we show that, across a range of models and
tasks, EvNets can significantly reduce computational costs without decreasing

accuracy.

43

In most of our analyses we do not assume a specific hardware platform or
computation model. We mainly report arithmetic and memory operations
(a platform-invariant measure of computational cost) instead of wall-clock
time (which depends on many situational variables). An important next step
is to consider questions relating to the design of hardware-software stacks for

EvNets, in order to minimize latency and power consumption.

3.2 Related Work

Efficient neural networks. There are numerous methods for reducing
the computational cost of neural networks. Many architectures have been
designed to require fewer parameters and arithmetic operations [84, 92, 137,
142, 189, 269]. Another line of work uses low-precision arithmetic to achieve
computation savings [44, 91, 186, 224]. Our approach is complementary
to both architecture- and precision-based efficiency methods. These meth-
ods reduce the cost of inference on a single time step, whereas EvNets elim-
inate repetitive computation between multiple time steps. Pruning algo-
rithms [73, 76, 121, 126] remove redundant neurons or synapses during train-
ing to improve efficiency. Instead of pruning universally redundant neurons,

an EvNet adaptively ignores temporally redundant neurons.

Adaptive networks. Adaptive models modify their computation based on
the input to suit the difficulty of each inference. Prior approaches consider an
ensemble of sub-networks [87, 226], equip a network with multiple exits [86,
221], select the input resolution at inference time [40, 157, 256], or dynamically
choose the feature resolution [245]. These methods are designed for image
recognition tasks and do not explore temporal redundancy. Further, many
require custom tailoring or re-training for each task and architecture. In
contrast, EvNets can be readily integrated into many existing architectures
and do not require re-training.

44

Temporal redundancy. Several recent approaches consider temporal redun-
dancy for efficient video inference. Many take a keyframe-oriented approach,
computing expensive features on keyframes, then transforming those features
for the other frames [38, 97, 132, 208, 273, 275]. Other methods include using
visual trackers [253], skipping redundant frames [64, 246], reusing previous
frame features [158], distilling results from previous time steps [166], two-
stream computation [56], and leveraging video compression [244]. In general,
these methods require extensive modifications to the network architecture.

Skip-convolution networks (Skip-Conv) [72] are closely related to EvNets.
Skip-Conv reuses activation values that have not changed significantly be-
tween frames. However, the algorithm only tracks changes between consecu-
tive frames and thus requires frequent re-initialization to maintain accuracy.
Re-initialization leads to reduced efficiency, especially in the presence of
camera motion. In contrast, the long-term memory in an EvNet maintains
accuracy and efficiency over hundreds of frames, even when there is strong

camera motion. See Figure 3.1 (bottom right).

Sigma-Delta networks [167] exploit temporal redundancy by quantizing the
changes in neuron activations. Sigma-Delta networks have been limited so
far to simple tasks like digit classification. Unlike Sigma-Delta networks,
EvNets do not require quantization (although they do allow it). Compared
to Sigma-Delta networks, EvNets achieve superior accuracy/computation
tradeoffs (Figure 3.5) and generalize better to challenging, real-world tasks
(Figure 3.7).

DeltaCNN [175] is concurrent work with similar goals to this work. Like
EvNets, DeltaCNN models have mechanisms for integrating long-term changes.
They focus on translating theoretical speedups into GPU wall-time savings
by enforcing structured sparsity (all channels at a given location transmit
together). Despite its practical benefits, this design is inefficient when there is

camera motion. In contrast, we emphasize broad conceptual frameworks (e.g.,

45

arbitrary sparsity structure) with an eye toward future hardware architectures
(Section 3.6).

Event sensor inference. Event sensors [136] generate sparse frames by com-
puting a quantized temporal gradient at each pixel. Many networks designed
for inference on event-sensor data have efficient, sparse dynamics [26, 159].
However, they make strong assumptions about the mathematical properties
of the network (e.g., that it is piecewise linear [159]). EvNets place far fewer
constraints on the model and are compatible with a broad range of existing
architectures.

Recurrent neural networks (RNNs). EvNets use long-term memory to
track changes, and are thus loosely connected to RNNs. Long-term memory
has been widely adopted in RNNs [83]. Several recent works also propose
adaptive inference for RNNs by learning to skip state updates [25] or updating
state variables only when a significant change occurs [165, 168]. Unlike
EvNets, these approaches are tailored for RNNs and generally require re-
training.

3.3 Event Neurons

Consider a neuron in a conventional neural network. Letx = [x1, X,, ..., X,,| be
the vector of input values and y be the output. Suppose the neuron composes

a linear function g (e.g., a convolution) with a nonlinear activation f. That is,

g(x) = ; Ww; X; 3.1
y = f(gx)),

where w = [w;, w,, ..., w,| contains the weights of the function g. In a con-
ventional network, every neuron recomputes f and g for every input frame
(Figure 3.2 (left)), resulting in large computational costs over a video sequence.

46

Conventional Value-based event Delta-based event

Figure 3.2: Sparse, delta-based transmission. (left) Conventional neurons
completely recompute their activations on each time step. (middle) Value-
based event neurons only transmit activations that have changed significantly.
However, a value-based transmission can still trigger many computations.
(right) Delta-based event neurons only transmit differential updates to their
activations.

Inspired by prior methods that exploit persistence in activations [25, 72, 167],

we describe a class of event neurons with sparse, delta-based transmission.

Sparse, delta-based transmission. An event neuron transmits its output to
subsequent layers only when there is a sufficient change between its current
activation and the previous transmission. This gating behavior makes the
layer output sparse. However, a value transmission may still trigger many
downstream computations (neurons receiving updated input values must
recompute their activations from scratch). See Figure 3.2 (middle). Therefore,
instead of transmitting an activation value, an event neuron transmits a delta
(differential).

Suppose a neuron receives a vector of incoming differentials A;, (one element
per incoming synapse). A, is sparse, i.e., it only contains nonzero values for

upstream neurons that have transmitted. The updated g is given by

g(x + Ay,) = g(x) + g(Aiy)- (3.2)

Instead of computing g(x +A;,) from scratch, an event neuron stores the value

47

Event neuron Difference
d«d -b
A lat —dtfl@ Output value
ccumulator .
a < a+gA,) d % Policy F—— Ay
Input vector
A ORE
Linear Activation b —> Delta
—> Value
Best estimate
b < f(a)

Figure 3.3: Building event neurons. The state variables and update rules in
an event neuron. The incremental updates to a convert from a delta-based
representation to value-based. The subtraction f(a) — b returns the output to
delta-based.

of g(x) in a state variable a. When it receives a new input A;,, the neuron
retrieves the old value of g(x) from a, computes g(A,,), and saves the value
g(x) + g(A;,) in a. This process only requires computing products w;x; for
nonzero elements of A, i.e., computation scales linearly with the number of

transmissions.

The activation function f is nonlinear, so we cannot update it incrementally
like g. Whenever a changes, we recompute f(a), then store the updated value
in another state variable. f is usually a lightweight function (e.g., ReLU), so
the cost of recomputing f is far smaller than computing the products w;x;.

3.3.1 Building Event Neurons

An event neuron consists of three state variables, as shown in Figure 3.3. The
accumulator (a) stores the current value of g(x). The best estimate (b) stores
the current value of f(a). The difference (d) stores difference between b and
the most recent output. When a neuron receives a differential update Ai(fl)
at time ¢ from one or more of its inputs, it updates these state variables as

48

follows:
a = a® 4 g(A")
dD =d® 4+ f(at+V) — p® (3.3)

b(t+1) — f(a(tﬂ)).

A neuron transmits an output A,,, when some condition on d is satisfied.
This condition is defined by the transmission policy. The transmission policy
also gives the relationship between d and A, .. The policies in this work
simply set A,,, = d. However, other relationships are possible, and the
properties described in Section 3.3.2 hold for other relationships. After a
neuron transmits, it sets d to d — A,,,. See Section 3.4.3 for more details on

transmission policies.

3.3.2 Properties of Event Neurons

Long- and short-term memory. The state variable d accumulates all not-
yet-transmitted corrections to the neuron output. It represents the neuron’s
long-term memory, whereas b represents its short-term memory. Including a
long-term memory keeps the neuron from discarding information when it
does not transmit. This error-retention property grants certain guarantees on

the neuron’s behavior, as we demonstrate next.

Error retention. Consider an event neuron receiving a series of inputs over
. 1 2
T time steps, AD, AP

in >~ in ’

have initial values a, f(a®), and zero, respectively. Let the transmitted
() A@ AD (some of these may be

out’> —out’ *°°? out

,Ai(?. Assume that the state variables a, b, and d

output values at each time step be A

49

zero). By repeatedly applying the neuron update rules, we arrive at the state

T
PR

t=1

b = f(a™) (3.4)
T

dD = pO _ p© _ Z AW

out*

t=1
See Section B.5 for a detailed derivation. Observe that d is equal to the dif-
ference between the actual and transmitted changes in the activation. This
is true regardless of the order or temporal distribution of the A;, and A;.
Because the neuron stores d, it always has enough information to bring the
transmitted activation into exact agreement with the true activation b. We
can use this fact to bound the error within an EvNet. For example, we can
constrain each neuron’s error to the range [—h, +h] by transmitting when
|d| > h.

The importance of long-term memory. For comparison, consider a model
in which neurons compute the difference between b on adjacent time steps,
then either transmit or discard this difference without storing the remainder.
This is the model used in Skip-Conv [72]. Under this model, the final state of
a neuron depends strongly on the order and temporal distribution of inputs.

For example, suppose a neuron transmits if the frame-to-frame difference
exceeds a threshold 8. Consider a scenario where the neuron’s activation
gradually increases from 0 to 26 in steps 0.16, 0.2, ..., 26. Gradual changes
like this are common in practice (e.g., when panning over a surface with an
intensity gradient). Because 0.15 < &, the neuron never transmits and ends
in a state with error —29. The neuron carries this error into all of its future
computations. Furthermore, because the neuron discards non-transmitted

activations, it has no way to know that this —26 error exists.

50

3.4 Event Networks

3.4.1 Building Event Networks

So far, we have considered the design and characteristics of individual event
neurons. In this section, we broaden our view and consider layers and net-
works. A “layer” is an atomic tensor operation (e.g., a convolution). By this
definition, g and f as defined in Section 3.3.1 correspond to two different

layers.

We define three new layer types. An accumulator layer consists of a state
vector a that contains the a variables for a collection of neurons. A gate layer
contains state vectors b and d and the transmission policy. A buffer layer stores
its inputs in a state vector x for future use by the next layer; this is required
before non-pointwise, nonlinear layers like max pooling. The state vectors a,
b and d are updated using vectorized versions of the rules in Equation 3.3. An
accumulator layer converts its input from delta-based to value-based, whereas
a gate converts from value-based to delta-based.

To create an EvNet, we insert gates and accumulators into a pretrained network
such that linear layers receive delta inputs and nonlinear layers receive value
inputs (Figure 3.4). Note that residual connections do not require any special
treatment—in an EvNet, residual connections simply carry deltas instead of
values. These deltas are added or concatenated to downstream deltas when

the residual branch re-joins the main branch (like in a conventional network).

We place a gate at the beginning of the network and an accumulator at the
end. At the input gate, we use pixel values instead of f(a) and update b and
d at every time step. At the output accumulator, we update a sparsely but
read all its elements at every frame. Throughout the model, the functions
computed by the preexisting layers (the f and g) remain the same.

51

. _ _ _ _
g
g
S % S o -
= 0O |5 = =)
S g |& e) 3 >) &
o = > ~ =
> o |~ £ ¢
g o S
o
@) L || L L
s § s s
= e = < < =
& O |5 2 5 E = L E 2.
S |E2E 2 EZ2E—— E—E
> £ O = 5 & QO 5 3
R g gl 3 g |°
o < <

Figure 3.4: Building event networks. We insert accumulators and gates
to make the input to linear layers (e.g., convolutions, fully-connected layers)
delta-based and the input to nonlinear layers (e.g., ReLU activations) value-
based.

3.4.2 Network Initialization

The equations in Section 3.3.1 define how to update the neuron state variables,
but they do not specify those variables’ initial values. Consider a simple
initialization strategy where a = 0 and d = 0 for all neurons. Since the
activation function f is nonlinear, the value of the state variable b = f(a)
may be nonzero. This nonzero b usually translates to a nonzero value of a
in the next layer. However, we initialized a = 0 for all neurons. We have an
inconsistency.

To address this problem, we define the notion of internal consistency. Consider
a neuron with state variables a, d, and b. Let b;, and d;,, be vectors containing
the states of the neurons in the previous layer. We say that a network is in an
internally consistent state if, for all neurons,

a = g(b;, — d;,)

(3.5)
b = f(a).

52

The simplest way to satisfy these criteria is to flush some canonical input
through the network. Starting with neurons in the first layer and progressively
moving through all subsequent layers, we set a = g(b;,), b = f(a),and d = 0.
In our experiments, we use the first input frame as the canonical input.

3.4.3 Transmission Policies

A transmission policy defines a pair of functions M(d) and P(d) for each layer.
M outputs a binary mask m indicating which neurons should transmit. P
outputs the values of A,. In this subsection, we describe the transmission
policy design space. The choice of transmission policy is a critical design
consideration, strongly influencing the accuracy and efficiency of the final
model.

Locality and granularity. Policies may have different levels of locality,
defined as the number of elements from d required to compute each element
of m and A,;. A global policy considers all elements of d when computing
each value m; and A;. A local policy considers some strict subset of d, and

an isolated policy considers only the element d;.

In addition to its locality, each policy has a granularity. The granularity defines
how m-values are shared between neurons. A chunked policy ties neurons
together into local groups, producing one value of m for each group. Neurons
in the same group fire in unison. This might be practically desirable for easy
parallelization on the hardware. In contrast, a singular policy assigns every
neuron a separate value of m, so each neuron fires independently.

A linear-cost policy. In this work, we use an isolated, singular policy based
on a simple threshold. Specifically,

m; = H(|d;| — h;)
Aout,i = di’

(3.6)

53

Ours Rounding Rounding policy comparison
1.00
o 0.95 1
Q
g
Quantized Nonuniform 3
Q
<
0.90 1
—&— QOurs
—e&— Rounding
0.85

T T T T T L |
Ops 10°

Figure 3.5: Policy design and quantization. (left) A few sample re-
sponse functions (assuming an isolated, singular policy). (right) A com-
parison between our policy and a rounding policy (used in Sigma-Delta net-
works [167]). Results are for a 3-layer fully-connected network on the Tempo-
ral MNIST dataset [167].

where H is the Heaviside step function and h; is the threshold for neuron i. A
key advantage of this policy is its low overhead. On receiving an incoming
transmission, a neuron evaluates |d| > h (one subtraction) in addition to the
usual updates to a, d, and b. Neurons not receiving any updates (e.g., those
in a static image region) do not incur any overhead for policy computations.
In other words, the policy’s cost is linear in the number of updated neurons.
Combined with the linear cost of computing the neuron updates, this results
in EvNets whose overall cost scales linearly with the amount of change in the
input, not with the quantity of input data received.

This linear cost has important implications for networks processing data from
high-speed sensors (e.g., event sensors [136] or single-photon sensors [52]).
Here, the differences between adjacent inputs are often minuscule, and the
cost of a policy with fixed per-frame overhead (e.g., a Gumbel gate [72]) could
come to dominate the runtime. EvNets with a linear-overhead policy are a

natural solution for processing this type of high-speed data.

54

Policy design and quantization. When a policy is both isolated and singular,
we can characterize the functions M(d) and P(d) by scalar functions M(d;)
and P(d;). Taking the product M(d;) - P(d;) gives a response function R(d;)
that describes the overall behavior of the neuron. Figure 3.5 (left) illustrates
several possible response functions.

Some response functions employ quantization to reduce the cost of computing
dot product terms w;x; (Equation 3.1). Sigma-Delta networks [167] use a
rounding policy to quantize neuron outputs; a neuron transmits if this rounded
value is nonzero. This rounding policy has significantly worse accuracy-
computation tradeoffs (Figure 3.5 (right)) compared to our proposed policy.
This might be caused by coupling the firing threshold with the quantization
scale. To increase its output precision a Sigma-Delta network must reduce its
firing threshold, possibly resulting in unnecessary transmissions.

3.5 Experiments

EvNets are widely applicable across architectures and video inference tasks.
Any network satisfying a few basic requirements (i.e., frame-based and com-
posing linear functions with nonlinear activations) can be converted to an
EvNet without re-training. To demonstrate this, we select widespread, repre-
sentative models for our main experiments: YOLOvV3 [189] for video object
detection and OpenPose [28] for video pose estimation. Additionally, we
conduct ablation experiments and report results on low-level tasks (optical

flow and image enhancement).

In Appendix B, we include additional results on HRNet [215] for pose estima-
tion. We also analyze the effect of granularity on savings, improved temporal

smoothness, and provide a comparison to simple interpolation.

55

3.5.1 Video Pose Estimation

Dataset and experiment setup. We conduct experiments on the JHMDB
dataset [99] using the widely adopted OpenPose model [28]. We use weights
pre-trained on the MPII dataset [6] from [28] and evaluate the models on a
subset of JHMDB with 319 videos and over 11k frames, following [72]. We
report results on the combination of the three JHMDB test splits. We use the
PCK metric [258] with a detection threshold of @ = 0.2, consistent with prior
works [72].

Implementation details. We resize all videos to 320x240, padding as needed
to preserve the aspect ratio of the content. The joint definitions in MPII (the
training dataset for OpenPose) differ slightly from those in JHMDB. During
evaluation, we match the JHMDB “neck,” “belly,” and “face” joints to the
MPII “upper neck,” “pelvis,” and “head top” joints, respectively.

Baselines. We consider the following baselines, all using the OpenPose
model.

« Conventional: This is the vanilla OpenPose model without modifica-

tions.

+ Skip-Conv: This is a variant of the Skip-Conv method with norm gates
and without periodic state resets.

« Skip-Conv-8: This adds state resets to Skip-Conv by re-flushing every 8

frames to reduce the effect of long-term activation drift.

We recognize that Skip-Conv networks can also incorporate a learnable gating
function (the Gumbel gate) that uses information from a local window around
each neuron. This can also be used for our EvNets (it is local and chunked
rather than isolated and singular), but it requires re-training of the network
and can incur a higher computational overhead. To keep the analysis fair, we
only compare to the Skip-Conv norm gate.

56

Table 3.1: Accuracy and computation. Results on the best threshold for
each model. We choose the highest threshold that reduces PCK or mAP by
less than 0.5%.

Pose Estimation Object Detection
Model Thresh. PCK (%) Operations Thresh. mAP (%) Operations
Conventional — 76.40 7.055%x101° — 55.38 1.537x10'"°
Skip-Conv 0.01 76.03 1.027x10° 0.01 54.13 7.340x10°
Skip-Conv-8 0.01 76.21 1.092x10%° 0.01 54.06 8.111x10°
EvNet 0.04 76.37 6.780x10° 0.08 56.19 3.061x10°

Results. Figure 3.6 (a) presents our results. We vary the policy threshold
h to characterize the accuracy/computation Pareto frontier. For both Skip-
Conv and EvNets, increasing the threshold reduces the computational cost
but increases the error rate. EvNets consistently outperform their direct com-
petitors (Skip-Conv and Skip-Conv reset) on the Pareto frontier, achieving
significantly higher accuracy when using a similar amount of computation.
Surprisingly, compared to the conventional OpenPose model, EvNets some-
times have slightly better accuracy, even with a large reduction in computation.
We hypothesize that this is caused by a weak inter-frame ensembling effect.

Table 3.1 summarizes the accuracy and computation at the best operating
point on the Pareto curve. For each model, we choose the highest thresh-
old that reduces PCK by less than 0.5%. To better understand the accuracy-
computation tradeoff, we further report the compute and memory overhead
of our EvNets (at the best operating point) in Table 3.2. We report overhead
operations both as a number of operations and as a percentage. This per-
centage gives the ratio between “extra operations expended” and “number of
arithmetic operations saved.” For example, an arithmetic overhead of 0.12%
indicates that the neuron updates and transmission policy require 0.12 extra
arithmetic operations for every 100 operations saved. Overall, EvNets add

minimal operation overhead and manageable additional memory.

57

Video pose estimation Video object detection
0.78 0.60
0.76 - ¢ 0.55 - //'_N‘-O o
0.74 0.50 1
s 0.72 2 045 1
U .
& 0.70 - —e— Conventional é 0.40 -
—e— Skip-Conv
0.68 Skip-Conv Reset 0.35
0.66 - —e— Ours 0.30 -
0.64 ———— . 0.25 . ————
Ops 10% 10! Ops 1010

Figure 3.6: Pareto curves. The performance of an EvNet over several different
thresholds, with baselines for comparison. The “Skip-Conv-8” model re-
flushes the network every 8 frames. EvNets give significant computation
savings without sacrificing accuracy. See the supplement to our paper [50]
for a table with this data.

Table 3.2: Overhead. “Weights” gives the amount of memory required for
model weights. “Variables” gives the amount of memory required for the state
variables a, b, and d. “Arithmetic” indicates the number of extra arithmetic
operations expended for neuron updates (Equation 3.3) and policy-related
computations. “Load and Store” indicates the number of extra memory access
operations. See the text for an explanation of the percentage notation.

Memory Costs Operation Overhead
Model Thresh. Weights Variables Arithmetic Load and Store

OpenPose 0.04 2068 MB 3462MB 7.570x107 (0.12%) 1.342x10° (0.21%)
YOLO 0.08 2488MB 2322MB 6.417x107 (0.52%) 1.040x10° (0.85%)

58

3.5.2 Video Object Detection

Dataset, experiment setup, and baselines. We evaluate on the ILSVRC
2015 VID dataset [196] using the popular YOLOv3 model [189] with pre-
trained weights from [198]. We report all results on the validation set with
555 videos and over 172k frames, using mean Average Precision (mAP) with
an IoU threshold of 0.5 (following previous works [38, 198, 275]). We evaluate
the same model variants as in Section 3.5.1 (conventional, EvNet, Skip-Conv,
and Skip-Conv reset).

Implementation details. We resize all videos to 224x384, padding as needed
to preserve the aspect ratio. Unlike OpenPose, YOLOv3 includes batch normal-
ization (BN) layers. BN gives us a convenient way to estimate the distribution
of activations at each neuron. We use this information to adjust the threshold
values. Specifically, we scale the threshold at each neuron by 1/y (where y
is the learned BN re-scaling parameter). This scaling makes the policy more
sensitive for neurons with a narrower activation distribution, where we would

expect equal-sized changes to be more meaningful.

Results. Figure 3.6 presents our results with varying thresholds. Again, we
observe that our EvNets outperform Skip-Conv variants, and sometimes have
slightly higher accuracy than the conventional model with greatly reduced
compute cost. Table 3.1 presents the accuracy and computation at the best
operating points.

3.5.3 Low-Level Vision Tasks

We have so far considered only high-level inference tasks. However, EvNets
are also an effective strategy for low-level vision. We consider PWC-Net [214]
for optical flow computation and HDRNet [63] for video frame enhancement.
For brevity, we only show sample results in Figure 3.7 and refer the reader
to Section B.1 for more details. As with the high-level models, we observe

59

PWC-Net

24.2X reduction 8.24X% reduction 18.3X% reduction 8.89% reduction

Figure 3.7: Versatility of EvNets. We demonstrate that EvNets are an ef-
fective strategy for many high- and low-level vision tasks. Across tasks, we
see significant computation savings while maintaining high-quality output.
This frame shows a person mid-jump. The EvNet tracks the subject correctly
under rapid motion.

minimal degradation in accuracy and significant computation savings.

3.5.4 Ablation and Analysis

Rounding policy comparison. Figure 3.5 (right) compares our transmission
policy and the rounding policy used in a Sigma-Delta network [167]. We
obtain these results by evaluating the fully-connected model from the Sigma-
Delta paper (with the authors’ original weights) on the Temporal MNIST
dataset [167]. We evaluate EvNets with thresholds of the form 10°, where p €
{-1.5,-14, ...,-0.3, -0.2}. We obtain results for the Sigma-Delta network using
the original authors’ code, which involves training the quantization threshold
(the Pareto frontier is a consequence of varying a training penalty scale 4).

Ablation of long-term memory. Figure 3.8 shows the effect of ablating
the long-term memory d (resetting it to zero after each input). We evaluate
the OpenPose model on the JHMDB dataset. Other than resetting d, the two
models shown are identical. Both models use a threshold of 0.05. We see that
long-term memory is critical for maintaining stable accuracy.

60

1.0
087)M
0.6
M
O
&
0.4
Conventional
0.2 - Event
Without long-term memory
0.0 T T T T T
0 10 20 30 40
Time step

Figure 3.8: Ablation of long-term memory. Removing the memory d, as
considered in Skip-Conv [72], causes a rapid decay in accuracy. Results using
the OpenPose model on the JHMDB dataset. See Section 3.5 for details.

Camera motion. Global camera or scene motion (e.g., camera shake or
scene translation) reduces the amount of visual persistence in a video. We
would therefore expect camera motion to reduce the savings in an EvNet.
To confirm this, we evaluate the OpenPose and YOLO models on a custom-
labeled video dataset. We label the camera motion in each video as “none”
(perfectly stationary camera), “minor” (slight camera shake), or “major.” See
Section B.4 for details. We test OpenPose with a threshold of 0.05 and YOLO
with a threshold of 0.06. Because this dataset does not have frame-level
labels for pose or object detection, we do not explicitly evaluate task accuracy.
However, the thresholds we use here give good accuracy on JHMDB and VID.

2 < b

For OpenPose, the computation savings for “none,” “major,” and “minor’
camera motion are 17.3%, 11.3%, and 8.40X, respectively. For YOLO, the
savings are 6.64X, 3.95%, and 2.65X. As expected, we see a reduction in
savings when there is strong camera motion, although we still achieve large

reductions relative to the conventional model.

Wall-time savings. We now show preliminary results demonstrating wall-
time savings in EvNets. We consider the HRNet [215] model (see Section B.3)

61

on the JHMDB dataset. We evaluate on an Intel Core i7 8700K CPU.

We implement the model in PyTorch. For the EvNet, we replace the standard
convolution with a custom sparse C++ convolution. Our convolution uses
an input-stationary design (i.e., an outer loop over input pixels) to skip zero
deltas efficiently. In the conventional model, we use a custom C++ convolu-
tion with a standard output-stationary design (i.e., an outer loop over output
pixels). We use a custom operator in the conventional model to ensure a fair
comparison, given the substantial engineering effort invested in the default
MKL-DNN library. We implement both operators with standard best practices
(e.g., maximizing data-access locality). We compile with GCC 9.4 with the
-Ofast flag.

For evaluation, we use an input size of 256x256 and an EvNet threshold of
0.1. The EvNet achieves a PCK of 90.46% and runs in an average of 0.3497 s
(7.361x10® ops) per frame. The conventional model achieves a PCK of 90.37%
and runs in 1.952 s (1.019x10'° ops) per frame.

Layer trends. Figure 3.9 shows the computational cost of the OpenPose
model as a function of the layer depth. We show results both on the JHMDB
dataset and on our custom-labelled MPII dataset (to allow analysis of the effect
of camera motion). Overall, we see a reduction in the relative cost as we go
deeper in the network. This highlights the importance of leveraging repetition
in the deep layers of the network, not just near the input. We also observe that
the early layers transmit more frequently when there is large camera motion.
This corresponds to an increased number of changes in low-level features and

pixel values.

Temporal variation. Figure 3.10 shows the per-frame computational cost of
the OpenPose EvNet over the course of a video. The video in question has a
static background and a moving foreground object (person). Recognizable
events in the video (e.g., walking, jumping) correspond to temporary increases
in the number of operations. In this way, we see EvNets living up to their

62

0.30
= MPII, None
0.25 1 —— MPIL, Minor
.5 0.20 MPIIL, Major
= —— MPII, All
[+
& 0.15 A —— JHMDB
2
O 0.10
0.05
000 T T T T T
0 20 40 60 80

Layer index

Figure 3.9: Operation costs by layer. Results for the OpenPose model on
the JHMDB and custom-labelled MPII datasets. The increasing savings with
depth show the importance of leveraging repetition at all levels of the network
hierarchy. We have applied a median filter of size 5 (along the layer axis) to
the data in this plot.

promise of “only computing when something interesting is happening.”

Pauses

0.10
g — Al
g —— Shallow
= 00 Middle
S Deep

0.00 - 1 1 I I |-

0 70 160 210 250 340
Time step

Figure 3.10: Temporal variation in operation cost. Identifiable events in the video (e.g., jumping) correspond
to temporary increases in the number of operations. “Shallow” corresponds to the first 31 layers, “middle” to
the next 31, and “deep” to the final 30. We have applied a centered moving average of size 10 (along the time

axis) to the data in this plot.

€9

64

3.6 Discussion

Hardware platforms. Mainstream GPU hardware is designed for parallel,
block-wise computation with coarse control flow. EvNets with neuron-level
transmission are inefficient under this computation model. In the long term,
we expect to achieve the best performance on specialized hardware designed
for extreme parallelism and distributed control. It is important to emphasize
that event neurons do not need to operate by a shared clock. Each neuron
operates independently—consuming new input as it arrives and transmitting
output once it is computed. This independence permits an asynchronous,
networked execution model in contrast to the ordered, frame-based model in
conventional machine learning. Spiking neural networks (SNNs) [152] share
this asynchronous computation model and have motivated the development
of neuromorphic hardware platforms [3, 46] that could be re-purposed for
efficient implementation of EvNets.

65

4 Compute: Eventful

Transformers

In this chapter, we extend the idea of event-based inference beyond CNNs to
another widely-used architecture: vision Transformers. Vision Transformers
achieve impressive accuracy across a range of visual recognition tasks. Un-
fortunately, their accuracy frequently comes with high computational costs.
This is a particular issue in video recognition, where a Transformer may be
applied repeatedly across frames or temporal chunks.

Similar to Chapter 3, we exploit temporal redundancy between subsequent
inputs to reduce the cost of video processing. However, there are significant
differences between CNNs and Transformers that require rethinking some
of our previous techniques. Specifically, the self-attention operator does not
satisfy the linearity assumption in Chapter 3; to address this challenge, we
propose a novel method for event-based self-attention updates. This approach
allows us to re-process only those token vectors that have changed significantly
over time.

Our proposed family of models, Eventful Transformers, can be converted from
existing Transformers (often without any re-training) and give adaptive control
over the compute cost at runtime. We evaluate our method on large-scale
datasets for video object detection (ImageNet VID) and action recognition
(EPIC-Kitchens 100). Our approach leads to significant computational savings

66

(on the order of 2-4x) with only minor reductions in accuracy.

4.1 Introduction

Transformers, initially designed for language modeling [225], have been re-
cently explored as an architecture for vision tasks. Vision Transformers [48]
have achieved impressive accuracy across a range of visual recognition prob-
lems, attaining state-of-the-art performance in tasks including image classifi-
cation [48], video classification [8, 15, 53], and object detection [29, 130, 145,
233].

One of the primary drawbacks of vision Transformers is their high computa-
tional cost. Whereas typical convolutional networks (CNNs) consume tens of
GFlops per image [27], vision Transformers often require an order of magni-
tude more computation, up to hundreds of GFlops per image. In video pro-
cessing, the large volume of data further amplifies these costs. High compute
costs preclude vision Transformers from deployment on resource-constrained
or latency-critical devices, limiting the scope of this otherwise exciting tech-
nology. In this work, we present one of the first methods to use temporal
redundancy between subsequent inputs to reduce the cost of vision Transform-
ers when applied to video data.

Temporal redundancy. Consider a vision Transformer that is applied frame-
by-frame or clip-by-clip to a video sequence. This Transformer might be a
simple frame-wise model (e.g., an object detector) or an intermediate step
in some spatiotemporal model (e.g., the first stage of the factorized model
from [8]). Unlike in language processing, where one Transformer input rep-
resents a complete sequence, we consider Transformers applied to several
distinct inputs (frames or clips) over time.

Natural videos contain significant temporal redundancy, with only slight
differences between subsequent frames. Despite this fact, deep networks

67

Temporal redundancy in vision Transformers

Identify and update tokens
with large changes

Downstream
_— Transformer
operations
Efficiency and adaptivity
4096 -
E“ ------) Reduce budget
S 2048 -
Z L —
0 - T T T T T
500
e |l
5
= 250 A |
@]
0 T T T T T T
0 20 40 Frame 60 80 100

Predictions

Frame 50 o Frame 100

Figure 4.1: Eventful Transformers. Our method exploits temporal redun-
dancy between subsequent model inputs. (top) Within each Transformer
block, we identify and update only those tokens with significant changes over
time. Image: [23]. (bottom) In addition to improving efficiency, our method
gives fine-grained control over the compute cost at runtime. “Budget” refers
to parameter r as described in Section 4.4.3. “Flush” refers to the initialization
of all tokens on the first time step. This example shows the ViTDet [130]
object detection model on a video from the VID [196] dataset.

68

(including Transformers) are commonly computed “from scratch” on each
frame. This approach is wasteful, discarding all potentially relevant infor-
mation from previous inferences. Our key intuition is that we can reuse
intermediate computations from earlier time steps to improve efficiency on

redundant sequences.

Adaptive inference. For vision Transformers (and deep networks in general),
the inference cost is typically fixed by the architecture. However, in real-world
applications, the available resources may vary over time (e.g., due to competing
processes or variations in power supply). As such, there is a need for models
whose computational cost can be modified at runtime [160]. In this work,
adaptivity is one of our primary design objectives; we design our method to
allow real-time control over the compute cost. See Figure 4.1 (bottom portion)
for an example where we vary the compute budget throughout a video.

Challenges and opportunities. There are past works exploring temporal
redundancy [50, 72, 175] and adaptivity [157, 226, 252] for CNNs. However,
these methods are generally incompatible with vision Transformers, owing
to substantial architectural differences between Transformers and CNNs.
Specifically, Transformers introduce a new primitive, self-attention, that does
not conform to the assumptions of many CNN-based methods.

Despite this challenge, vision Transformers also represent a unique opportu-
nity. In CNN, it is difficult to translate sparsity improvements (i.e., the sparsity
gained by considering temporal redundancy) into concrete speedups. Doing
so requires imposing significant restrictions on the sparsity structure [72]
or using custom compute kernels [175]. In contrast, the structure of Trans-
former operations (centered on manipulating token vectors) makes it easier

to translate sparsity into reduced runtime using standard operators.

Eventful Transformers. We propose Eventful Transformers, a new class of
Transformer that leverages temporal redundancy between inputs to enable
efficient, adaptive inference. The term “Eventful” is inspired by event cam-

69

eras [20, 136], sensors that produce sparse outputs based on scene changes.
Eventful Transformers track token-level changes over time, selectively up-
dating the token representations and self-attention maps on each time step.
Blocks in an Eventful Transformer include gating modules that allow control-
ling the number of updated tokens at runtime.

Our method can be applied to off-the-shelf models (generally without re-
training) and is compatible with a wide range of video processing tasks. Our
experiments demonstrate that Eventful Transformers, converted from existing
state-of-the-art models, significantly reduce computational costs while largely
preserving the original model’s accuracy. We publicly release our code, which
includes PyTorch modules for building Eventful Transformers.

Limitations. We demonstrate wall-time speedups on both the CPU and GPU.
However, our implementation (based on vanilla PyTorch operators) is likely
sub-optimal from an engineering standpoint. With additional effort to reduce
overhead (e.g., implementing a fused CUDA kernel for our gating logic), we
are confident that the speedup ratios could be further improved. Our method
also involves some unavoidable memory overheads. Perhaps unsurprisingly,
reusing computation from previous time steps requires maintaining some
tensors in memory. These memory overheads are relatively modest; see

Section 4.6 for further discussion.

4.2 Related Work

Efficient Transformers. Several past works improve the efficiency of Trans-
formers. Many of these methods focus on reducing the quadratic complexity
of self-attention, often using low-rank or sparse approximations [39, 41, 69, 98,
104,115, 148,190, 194, 232]. In this work, we consider standard self-attention
(with windowing in some cases). Our approach is orthogonal to the above

methods.

70

Selecting and summarizing tokens. Some recent works improve the effi-
ciency of vision Transformers by exploiting spatial redundancy within each
input. Many of these methods prune or fuse tokens based on a salience mea-
sure 55, 66,134, 169, 184]. A notable example is the Adaptive Token Sampling
(ATS) algorithm [55], which has an adaptive computation cost and does not
require re-training. Other spatial redundancy methods include adaptive token
pooling [17, 155], hierarchical pooling [172], learned tokenization [197], and
progressive token sampling [264].

Unlike these works, which consider spatial redundancy, our method targets
temporal redundancy. This makes our work complementary to these ap-
proaches. A single model can leverage both spatial and temporal redundancy
by only updating tokens that are both salient and not temporally repetitive.
We illustrate this compatibility in our experiments by building a simple proof-
of-concept model that combines temporal and spatial redundancy.

Another related work is Spatiotemporal Token Selection (STTS) [230], which
exploits spatiotemporal redundancy for video inference. STTS is intended for
models with explicit temporal reasoning that take an entire video as input.
In contrast, our method is designed for models that are repetitively applied
to frames or clips. Compared to STTS, our method covers a wider range of
architectures and tasks.

Temporal redundancy between inputs. There has been recent work on
exploiting inter-frame temporal redundancy in CNNs [30, 50, 72, 175]. While
we draw some inspiration from these methods, directly applying them to
vision Transformers is not feasible due to significant architectural differences
between CNNs and Transformers.

There is limited existing research on exploiting temporal redundancy between
subsequent vision Transformers inputs. To our knowledge, the only past work
in this area is the Spatiotemporal Gated Transformers (STGT) method [131].
There are two noteworthy differences between STGT and our work. Most

71

notably, STGT only considers temporal redundancy within token-level opera-
tions (e.g., token-wise linear transforms), and not within the self-attention
operator. Our method accelerates all major Transformer components, includ-
ing self-attention. Further, STGT uses lossy gating logic that leads to accuracy
degradation on long sequences with gradual changes. Our method avoids this

issue by employing an improved, reference-based gating mechanism.

Adaptive neural networks. Many existing methods add adaptivity to deep
CNNs [40, 57, 86, 157, 221, 226, 235, 245, 252, 256]. However, due to architec-
tural differences (e.g., the use of relative position embeddings in Transformers),
these methods (e.g., those based on input resizing) often do not translate to
vision Transformers.

There has been some recent work on adaptive vision Transformers [156, 238,
261]. These works leverage redundancy within a single input, whereas we
consider redundancy between inputs. Unlike our method, these approaches
generally require re-training or fine-tuning the model.

Efficient neural networks. There is a substantial body of work on improving
the efficiency of deep networks. Some works propose efficient CNN archi-
tectures [84, 92, 269]. Others use reduced-precision arithmetic [44, 91, 186]
or pruning [73, 76, 121, 126]. Our method is loosely connected to pruning; it

can be viewed as adaptively pruning redundant tokens on each time step.

4.3 Background: Vision Transformers

In this section, we describe the basic elements of a vision Transformer (see [48]
for more details) and define the notation we use throughout the rest of the
chapter.

A vision Transformer consists of a sequence of Transformer blocks. The input
to each block is a list of N, D-dimensional token vectors; we denote this as

x € RN*P_ Before the first Transformer block, a vision Transformer maps

72

each image patch to a token vector using a linear transform. Positional embed-
ding [225] can be injected before the first block [48] or at every block [130].

A Transformer block. A Transformer block maps input x € R¥*P to output
z € RN¥*P according to

y = MSA(LN(x)) + x, (4.1)
z=MLP(LN(y)) + y, (4.2)

where “MSA” denotes multi-headed self-attention. “MLP” is a token-wise
multilayer perceptron with two layers and one GELU nonlinearity. “LN”

denotes layer normalization.
Multi-headed self-attention (MSA). The self-attention operator first ap-

plies three linear transforms W, W, W, € R”*® to its input x’ = LN(x).

g=x'W, k=xW, v=xW,. (4.3)

g, k, and v are the “query,” “key,” and “value” tensors, respectively. In practice,
Wy, Wy, W, are often fused into a single transform W, = [W,, W, W,].

These transforms may include a bias; we omit the bias here for brevity.

The self-attention operator then computes a normalized similarity matrix
(attention matrix) A € RM between the tokens of g and k.

A = Softmax (qkT / \/B) . (4.4)

Softmax normalization is applied along rows of the matrix.

The MSA output y’ is an attention-weighted sum of the value tokens v, fol-
lowed by a linear projection W ,.

Y =(Av)W,,. (4.5)

73

Multi-headed self-attention (as opposed to single-headed self-attention) splits
q. k, and v into H tensors of shape RVX®/H) and applies self-attention in
parallel across these H heads. Before applying W, the results of all heads are
concatenated into a tensor with shape RNXP,

Windowed attention. Standard MSA has a complexity of O(N?) (quadratic
in the number of tokens). To reduce this cost, many vision Transformers adopt
windowed attention. Windowed attention constrains the attention compu-
tation to local windows. Information can be exchanged between windows
by shifting the windows between blocks [145] or by interleaving global atten-
tion [130].

4.4 Eventful Transformers

Our goal is to accelerate vision Transformers for video recognition, in the
situation where a Transformer is applied repetitively across frames or chunks
of frames (e.g., for video object detection or video action recognition, respec-
tively). Our key idea is to exploit temporal redundancy by re-using compu-
tation from previous time steps. In this section, we describe how to modify

Transformer blocks to add temporal redundancy awareness.

In Section 4.4.1, we present a token-gating module that monitors temporal
changes and determines which tokens to update. In Section 4.4.2, we integrate
our token gating logic into a Transformer block, creating a redundancy-aware
Eventful Transformer block. In Section 4.4.3, we explore policies for selecting
which tokens to update.

4.4.1 Token Gating: Detecting Redundancy

In this subsection, we propose two modules: token gates and token buffers.
These modules allow us to identify and update only those tokens that have

changed significantly since their last update.

1: Compute error

74

Current tokens Reference tokens

.' I. - ! B - - -

Total error

2: Apply selection policy

P _— Policy

Mask

—

3: Extract selected tokens

Current tokens Mask

. . . .!. ?A.

Output tokens

— Sl

4: Update reference

Reference tokens Inverted mask

gngnn
iy

Reference tokens

Figure 4.2: Token gating. A gating module compares incoming tokens
against a stored reference. If the difference between a token and its reference
is large, then the token is selected to be updated. See Section 4.4.3 for details
on selection policies. Images are from the VID [196] dataset.

75

Gate module. A gate selects M < N of its input tokens to send to downstream
layers for re-computation. The gate maintains a set of reference tokens in
memory, which we denote as u € R¥*P, The reference tensor contains the
value of each token on the time step it was most recently updated. On each
time step, tokens are compared against their references; those that deviate

significantly from their reference are selected for an update.

Let ¢ € RV*P denote the current input to the gate. On each time step, we
update the gate’s state and determine its output according to the following
procedure (see Figure 4.2):

1. Compute the total error e = u —c.

2. Apply a selection policy to the error e. A selection policy returns a binary
mask m (equivalently, a list of token indices) indicating which M tokens
should be updated.

3. Extract the tokens selected by the policy. In Figure 4.2, we depict this as
the product ¢ X m; in practice, we achieve this with a “gather” operation
along the first axis of ¢. We denote the gathered tokens as ¢ € RM*P,

The gate returns € as its output.

4. Update the references for selected tokens. In Figure 4.2, we depict this
asu < e X (~ m) + ¢ X m; in practice, we apply a “scatter” operation
from € into u.

On the first time step, the gate updates all tokens (initializing u < ¢ and

returning ¢ = c).

Buffer module. A buffer module maintains a state tensor b € RN¥*P that
tracks the most recent known value for each of its input tokens. When receiv-
ing a new input f(¢) € RM*P, the buffer scatters the tokens from f(€) into
their corresponding locations in b. It then returns the updated b as its output.
See Figure 4.3.

76

Gate Buffer

Gather
)

Token-wise
operations
Scatter

L | L |

Figure 4.3: Accelerating token-wise operations. The gate reduces the
number of active tokens from N to M. Subsequent token-wise operations
operate on a smaller tensor and therefore have a lower computational cost
(proportional to M).

We pair each gate with a subsequent buffer. One simple usage pattern is
as follows. The gate output ¢ € RM*P is passed to a series of token-wise
operations f(€). The resulting tensor f(¢) € RM*P is then passed to a buffer,
which restores the full shape RN*P,

4.4.2 Building Redundancy-Aware Transformers

Existing Transformer operation

L]

f...a:-)O O Buffer module
<
<

i \[d & Gate module

Delta gate module

g - 2
_ & B ’f >O_) al || Query-key ---- Row-sparse (gated tokens)
g S = product
= = st 4 Column-sparse
3 ' i o
o \[Matrix multiplication order
W
Softmax
S—= |
Attention-

Lln:ear
Layer:norm
$
MlLP

i -y value —)<>-
product

Figure 4.4: An Eventful Transformer block. To exploit temporal redundancy, we strategically apply token
gating throughout the block and compute a modified, sparse self-attention update. Rectangles are standard
Transformer components (see Section 4.3). For clarity, we have omitted some minor operations (e.g., scaling
after the first matrix multiplication) from this figure.

LL

78

In this subsection, we propose a modified Transformer block that exploits tem-
poral redundancy. Figure 4.4 shows our design for an Eventful Transformer
block. Our method accelerates token-wise operations (e.g., the MLP), as well
as the query-key and attention-value multiplications (Equations 4.4 and 4.5,
respectively).

Token-wise operations. Many of the operations in a Transformer block
are token-wise, meaning they do not involve information exchange between
tokens. These include the MLP and the linear transforms in the MSA. We
can save computation in token-wise operations by skipping those tokens not
selected by the gate. Due to token-wise independence, this does not change
the result of the operation for the selected tokens. See Figure 4.3.

Specifically, we place a gate-buffer pair around each contiguous sequence of
token-wise operations, including the W, transform (Equation 4.3), the W,
transform (Equation 4.5), and the MLP. Note that we add buffers before the
skip connections (Equations 4.1 and 4.2) to ensure that the tokens of the two

addition operands are correctly aligned.

The cost of a token-wise operation is proportional to the number of tokens. A
gate reduces the number of tokens from N to M. This, in turn, reduces the
computational cost of downstream token-wise operations by a factor of N /M.

The query-key product. We now consider the query-key product B = gk’
(part of Equation 4.4). Writing this matrix multiplication explicitly, we have

Bj=). qip(kT)pj. (4.6)
p

Element B;; needs to be updated if either (a) there is a change in the i™ row
of g, or (b) there is a change in the j® column of k”. Due to the gate that we
inserted before the W, transform (shown in Figure 4.4), only some rows of q
and some columns of kT have changed. Therefore, we only need to recompute

a subset of the elements of B.

79

Let ¥’ € RM*P denote the output of the gate before the W iy transform. We
define § = X'W, and k = ¥ W, (following Equation 4.3). Let q and k denote
the outputs of the g and k buffers (shown in Figure 4.4). § contain k the
subset of tokens from q and k that are being updated.

Figure 4.5 depicts our method for sparsely updating B. The product gk’
contains the elements of B that need to be updated due to a change in §. We
compute gk, then scatter the result row-wise into the old B (the value of B
from the last time step). We use an analogous approach for the k-induced
updates; we compute gk” and scatter the result column-wise into B.

The overall cost of these updates is 2NMD, compared to a cost of N2D to
compute B from scratch. Note that the cost of our method is proportional to
M, the number of tokens selected by the gate. We save computation when
M < N /2 (when we update fewer than half of the tokens).

The above method for updating B involves some redundant computation.
Some elements of the first scattered matrix gk” are also present in the second
matrix gk”. These overlapping elements are computed twice. Eliminating
this redundancy would reduce the cost of our method to NMD < N2D. This
could be achieved by removing the tokens in § from q before computing gk”.
We would then scatter the result by indexing along both axes of B. We leave

this as an optimization for future implementations.

The attention-value product. We now describe a method for updating the
attention-value product Av (part of Equation 4.5). Writing this multiplication

explicitly, we have
(Av),; = D Apvy; (4.7)
p

Because of the gate before the W, transform, only some rows (tokens) of v
change on each time step. However, there are some updated values in every
column of v. Therefore, every element of Av will change on each time step.

This means we cannot use the same strategy that we used for B, where we

80

kT

<]

X
Il
Scatter
o]

I l

Scatter

D Query update

q
D Key update
D Joint update l—l

X =

No update

Figure 4.5: The query-key product. We reduce the cost of computing B =
gk” by only updating a subset of its elements. We first compute changes
induced by updated rows in q (top-left), then compute changes induced by
updated columns in k7 (bottom).

only updated some of the output elements.

Instead, we propose a delta-based update strategy. Let A, and v, denote the
last known values for A and v. Let A, and v, denote changes in A and v.
Define A, = A, + A, and v, = v, + v,. We can compute the updated

attention-value product A, v, as

AU, = (Ay + ANV, +1,)
= A0, + AUy + A\, + ApU,
= A0, + (A, + Apv,y + Ap(V, +0,y) — Ay,
= A, U, + A, Uy + ApU, — ApV,. (4.8)

Therefore, on each time step, we can update Av by adding A,v,+AAV,,— AU,

to the previous result A, v,.

We obtain A,, v,, A,, and v, using delta gate modules. Delta gates are similar

81

to the gates defined in Section 4.4.1, with one difference: instead of returning
¢, a delta gate returns u and & (where é is the result of gathering the selected
indices from e). u represents the effective current value of the gate’s output,
corresponding to A, or v,, in Equation 4.8. é represents the amount of change
on the current time step, corresponding to A, or v, in Equation 4.8.

Figure 4.6 illustrates our approach for efficiently computing the three delta
terms in Equation 4.8. We remove the columns of A, that correspond to
zero rows in v, (these columns will always be multiplied by zero). Let A4,
denote A, with these columns removed. We remove rows of v,, analogously

to produce U,,. We then compute
A, 0, + A0, — ApDy, (4.9

adding the result to the previous value of Av.

The product A,0, assumes the columns of A, are correctly aligned with
the rows of ¥,. We achieve this alignment by forcing the A gate to select
the same indices as the v gate. Using a separate policy in the A gate would
be possible, but would require a re-alignment operation before computing
A,U,. Further, forcing alignment allows us to eliminate a multiplication by

rearranging Equation 4.9 as
A, 0, + A,(0, — U0,). (4.10)

Equation 4.10 has a cost of 2M ND (assuming the addition has a negligible
cost), compared to N2D for a standard multiplication. We see savings when
M < N/2.

4.4.3 Token Selection Policies

An important design choice for an Eventful Transformer is the token selection
policy. Given a gate error tensor e, a policy generates a mask m indicating

82

An vA An
] %
X = X =
v, + LN
+
Ay A, U — U
X = X —_ =

|:| Attention update
|:| Value update
I:l Joint update
Nonzero corresponding column
Nonzero corresponding row
No update
Zero

Figure 4.6: The attention-value product. We propose a delta-based strategy
for sparsely updating the product Av. We reduce the cost of each sub-product
by cutting rows and columns that do not contribute to the result (due to a
zero multiplication).

83

which tokens should be updated. We now discuss the design of selection

policies.

Top-r policy. This policy selects the r tokens whose error e has the largest
norm (we use the L2 norm). The top-r policy is lightweight and has a single
parameter that can be easily tuned by hand. Varying r gives direct control
over the model’s computation cost. These properties make the top-r policy a
good fit for applications with tight (potentially time-varying) computational
constraints. We use a top-r policy in our main experiments.

Threshold policy. This policy selects all tokens where the norm of the error
e exceeds a threshold h. A threshold policy is input-adaptive; the number of
tokens selected depends on the amount of change in the scene. This input
adaptivity can potentially lead to a better accuracy-cost tradeoff. However,
the best value for the threshold 4 depends on the distribution of token vectors
(which varies across layers) and is difficult to decide. In addition, a threshold
policy does not give a fixed compute cost. This policy is likely better suited to
applications with more flexible resources, where achieving the best possible
accuracy-cost tradeoff is critical.

Other policies. More sophisticated token selection policies could lead to an
improved accuracy-cost tradeoff. For example, we could use a learned policy
(e.g., a lightweight policy network). However, training the policy’s decision
mechanism might be challenging, due to the general non-differentiability
of the binary mask m. Another idea is to use an importance score (e.g., as
proposed in [55]) to inform the selection. We leave these ideas as potential
topics for future work.

4.5 Experiments

In this section, we present our experiments and results. We evaluate our
method for video object detection (Section 4.5.1) and video action recognition

84

Size 1024 Size 672
10x
] - -
[| [|
0]]
.S SX - I - - — -
3] [0| [0|
] [B 1 N — 0 0|
] s i i i im I N N
j—1 1 § 1 1 g 1 1 § B |
Sty § § Bl 8
2] - |
9 [| [|
é 1 [| [|
_10%] — 2l

T T T T T T T T T T T T

S o ™ S Vv o S © ™ S Vv ©

X i) V S N \e) % i) V o N \e)

F 8T A § 8T A

Tokens updated (r) Tokens updated (r)

Figure 4.7: Video object detection results. Computation savings ratio
(positive axis) and relative reductions in mAP50 score (negative axis) for our
method. Results are for the ViTDet model [130] on the VID [196] dataset. See
the supplement to our paper [51] for tables.

(Section 4.5.2). We show additional analysis in Section 4.5.3.

4.5.1 Video Object Detection

Task and dataset. We test our method on video object detection using the
ILSVRC 2015 ImageNet VID dataset [196]. We report results on the validation
set, which contains 555 videos with lengths of up to 2895 frames. Following
prior works [38, 189], we evaluate the mean average precision (mAP) metric
with an IoU threshold of 0.5.

Implementation details. We consider the ViTDet model from [130], which
we apply to individual frames of an input video. ViTDet combines a plain
Transformer backbone (based on ViT-B [48]) with a standard detection head [24,
78]. The backbone consists of 12 blocks with interleaved global and windowed

85

self-attention (blocks 3, 6, 9, and 12 use global attention). Windowed self-
attention uses a window size of 14x14 tokens (224x224 pixels). Token vectors
are 768-dimensional. Self-attention operators have 12 heads and employ
learned relative position embeddings.

Before the backbone, the model maps each 16x16 image patch to a token
vector using a linear transform. The model expects fixed-size inputs (due to
resolution-specific position embeddings). Therefore, following from [130],
we rescale and pad all video frames to a uniform size (e.g., 1024x1024) before
applying the model.

We convert the model to an Eventful Transformer following the method in
Section 4.4. In blocks that use windowed attention, we exploit temporal re-
dundancy only within token-wise operations (not within the query-key or
attention-value products). Our complete approach is compatible with win-
dowed attention; however, windowing leads to some implementation chal-
lenges (ragged tensor shapes across windows, making batched computation
more difficult). Note that for ViTDet, global self-attention represents the bulk
of the self-attention compute cost.

Experiment protocol and baselines. We fine-tune the original ViTDet
weights (trained on COCO) for VID object detection. See Section C.3 for train-
ing parameters. Note that we fine-tune before we add temporal redundancy
awareness to the model. We train and evaluate at resolution 1024x1024. To
understand the effect of token count (which strongly influences compute
cost), we also evaluate at resolution 672X672. Rather than training a separate
lower-resolution model, we adapt the 1024x1024 model by interpolating the
learned position embeddings. The resulting adapted model retains most of its

accuracy.

We compare against a version of the STGT method [131]. Due to unavailable
source code, we were unable to evaluate all components of this method (no-
tably, the use of a learned policy network). Instead, we consider a simplified

86

Size 1024 Size 672
82.5 - s e o
80.0 - B
g 77.5 -
(=}
A 75.0 -
% 75
& —&— Base model
72.5 1 B
—8— Our method
70.0 - Token-wise only
—e— STGT
67'5 T T T T T T T T T T T T T T T
50 100 500 50 100

GFlops GFlops

Figure 4.8: Video object detection comparison and ablation. The
accuracy-cost tradeoff for our method, compared with STGT [131] and an
ablation that only accelerates token-wise operations. See the supplement to
our paper [51] for tables.

version that uses the same top-r policy as our method. This setup enables a
direct comparison of the core gating and update mechanisms. In addition, we
evaluate an ablated version of our approach that only accelerates token-wise
operations. We vary the policy r to explore the accuracy-compute tradeoff.
At resolution 1024, we test r = 256, 512, 768, 1024, 1536, and 2048 (from a
maximum of 4096 tokens). At resolution 672, we test r = 128, 256, 384, 512,
768, and 1024 (from a maximum of 1764).

Results. Figure 4.7 shows our results. Our method gives significant savings
with only minor reductions in accuracy. For example, at size 1024 with r = 768,
our approach reduces the cost from 467.4 GFlops to 122.3 GFlops (3.8x lower)
while reducing the mAP50 score from 82.93 to 81.25 (-1.68% in absolute
mAP50). At size 672 with r = 384, we reduce the cost by 3.7x with a -0.85%
change in mAP50.

In these experiments, some tokens correspond to padded space and are there-

87

o))
H
1

@)
8]
1

—— Base model

—&— Tuned with r=50
Tuned with »=100

—— Tuned with r=200

Accuracy (%)

N
(=]
1

58

1 TFlops 5

Figure 4.9: Video action recognition results. Our results for action recog-
nition on EPIC-Kitchens 100 using the ViViT model [8]. We report the total
TFlops per video (spatial + temporal sub-models). See the supplement to our
paper [51] for a table containing this data.

fore “easy” from a temporal redundancy standpoint. However, even in a
padding-free deployment (e.g., with a single, known training and inference
resolution) our method would still give strong computation savings. For ex-
ample, consider resolution 1024 with r = 768. We are skipping 66% of all
non-padded tokens here (based on a measured mean padding ratio of 44.6%
on VID—corresponding to a ~16:9 aspect ratio). This corresponds to a savings
of >2x, with an accuracy drop of only 1.68%. Note that our ViViT experiments
(Sections 4.5.2 and C.2) do not involve padding.

Figure 4.8 shows the accuracy-compute tradeoff for our method, along with
baselines. Our approach gives a considerable improvement in the accuracy-
compute tradeoff compared to STGT [131]. Further, adding redundancy
awareness to the query-key and attention-value products reduces the cost
significantly, especially at low r values.

88

Table 4.1: Adding spatial redundancy to ViTDet. “Spatial” is a model
with pooling in k and v. “Spatiotemporal” is a model with both pooling and
temporal redundancy awareness.

Variant r mAP50 (%) GFlops
Base model — 82.93 467.4
Spatial — 80.15 388.1
Spatiotemporal 2048 80.14 217.0
Spatiotemporal 1536 80.07 169.3
Spatiotemporal 1024 79.50 121.0
Spatiotemporal 768 78.69 96.3
Spatiotemporal 512 76.96 70.9
Spatiotemporal 256 71.35 44.5

4.5.2 Video Action Recognition

Task and dataset. We evaluate our method on action recognition using the
EPIC-Kitchens 100 dataset [45]. EPIC-Kitchens 100 contains highly dynamic
egocentric videos annotated with 97 verb and 300 noun classes. We consider
the verb classification task. The training and validation set contains 67217
and 9668 action instances, respectively.

Implementation details. We use the ViViT model [8] with factorized spatial
and temporal sub-models based on ViT-B. The spatial sub-model (the bulk
of the compute cost) is applied sequentially to 16 2-frame input clips. The
outputs of the spatial model are concatenated and passed to the temporal
model, which returns a class prediction. The prediction is the average over 12
video views (4 temporal views, each divided into 3 spatial crops). Each view
has a shape of 320x320x32. Unlike ViTDet, ViViT adds a class embedding
token (see [48]), does not use windowed self-attention, and does not use
relative position embeddings.

We convert the spatial model to an Eventful Transformer. Naively replacing the
spatial model with an Eventful version leads to a considerable drop in accuracy
(about -10% with r = 100). We conjecture that the cause is a distribution shift
in the inputs to the temporal model (see Section C.1 for further discussion).

89

We recover most of the lost accuracy by fine-tuning the non-Eventful temporal
model on the outputs of a frozen Eventful spatial model.

Experiment protocol. We start with ViViT pre-trained on EPIC-Kitchens 100
and fine-tune the temporal model as described above (on the EPIC-Kitchens
training set). We fine-tune different model variants with policy r values of 50,
100, and 200 (out of a maximum of 401 tokens). See Section C.3 for training
parameters. We report results using the top-1 accuracy metric, following
standard protocol [45].

Results. Figure 4.9 shows our results for the Eventful ViViT model. We
evaluate a range of r values for each of the fine-tuned variants. We test the
original fine-tuned r-value, along with +20% and +40% of this value. We
observe considerable computation savings with only moderate reductions
in accuracy. For example, with r = 140, we reduce the cost by 2.4x while
reducing the accuracy by only 1.62%. In addition, the model retains adaptivity
despite being fine-tuned with a single-r value, exhibiting a favorable accuracy-
compute tradeoff over a range of r-values.

4.5.3 Spatial Redundancy and Runtime

Considering spatial redundancy. Eventful Transformers exploit temporal
redundancy and thus complement prior works that leverage spatial redun-
dancy. Here we present a simple proof-of-concept experiment that considers
spatial redundancy in Eventful Transformers.

Specifically, we adopt a variant of [250], which applies spatial pooling to
the self-attention key and value tokens. We apply this method with 2x2
pooling to the global self-attention operators in the ViTDet model. We evaluate
this method both with and without temporal redundancy awareness. In the
temporal-redundancy model, we pool k and v after their respective buffers.
We pool k by first pooling the active indices (equivalent to max-pooling the
mask m), then gathering the buffered k using the pooled indices.

90

Table 4.2: Runtimes (ms). ViTDet runtimes are for the Transformer back-
bone only. ViViT runtimes include the temporal sub-model.

Model Size Variant r GPU CPU
ViTDet 1024 Base model — 86.6 5150
ViTDet 1024 Spatial — 589 3116
ViTDet 1024 Temporal 512 699 3570
ViTDet 1024 Spatiotemporal 512 38.1 1682
ViTDet 672 Base model — 283 1492
ViTDet 672 Spatial — 233 1055
ViTDet 672 Temporal 256 21.6 838
ViTDet 672 Spatiotemporal 256 20.8 478
ViViT 320 Base model — 950 5.45x10*
ViVviT 320 Temporal 50 545 2.15x10*

Table 4.1 shows our results for resolution 1024 (See the supplement to our pa-
per [51] for resolution 672). We see that the spatial and temporal methods are
complementary; both meaningfully contribute to reducing the computational
cost. See Section 4.6 for further discussion on spatial redundancy methods.

Runtime. We show preliminary runtime results on a CPU (Xeon Silver 4214,
2.2 GHz) and a GPU (NVIDIA RTX 3090). See Section C.3 for experiment
details. Table 4.2 shows our results. Adding temporal redundancy awareness
leads to speedups of up to 1.74x on the GPU and 2.48% on the CPU. These
results should be seen just as a proof of concept—we are confident that these
speedups could be improved with further engineering effort (e.g., by replacing
vanilla PyTorch operators with custom kernels or using a high-performance
inference framework).

Update visualization. Figure 4.10 shows an example video sequence. We
visualize the model predictions (top), the token-wise L2 norm of the error e
(middle), and the update mask m (bottom). We see that larger error values
correspond to dynamic regions in the image.

91

Figure 4.10: Update visualization. The error e and update mask m, for the
pre-QKYV gate in block 3 of ViTDet. Video source: [196]

4.6 Discussion

Memory overhead. Our method reduces floating point operations at the
cost of higher memory usage. Each gate or buffer maintains a reference tensor
(u or b, respectively). The memory overhead for token gates and buffers
is generally modest. For, consider size-1024 ViTDet. The model has 4096
768-dimensional tokens, meaning a token gate or buffer takes 12.6/6.3 MB of
memory at full/half precision.

However, gating or buffering the attention matrix A can require a larger
amount of memory. For example, in the global attention layers of the size-
1024 ViTDet model, the A matrix has shape 4096x4096x12. Buffering this A
requires 805/403 MB at full/half precision. Fortunately, the situation dramati-

cally improves if we reduce the number of tokens or use windowed attention

92

(due to the quadratic size of A). For example, the A matrices for the size-
672 ViTDet model (1764 tokens) and the ViViT model (301 tokens) occupy
149/75 MB and 4.3/2.2 MB, respectively. In applications where memory is
tight and the A matrix is large, it is possible to save memory by removing tem-
poral redundancy awareness in the query-key and/or attention-value products

(each eliminates one A-shaped state tensor).

Integration with spatial redundancy methods. A promising avenue for
future work the is further integration of our approach with spatial redundancy
methods. Conceptually, these methods summarize a large, redundant set of
tokens using a more compact set of tokens. The gating module in an Eventful
Transformer assumes that most of its inputs vary smoothly over time. When
combining our approach with spatial redundancy methods, we need to ensure
that the compact spatial summary is relatively stable. For example, with
adaptive token clustering [17, 155], we would need to sort the clusters in a
mostly-consistent order.

There are many potentially interesting questions regarding joint modeling of
spatial and temporal redundancy. For example, how is the temporal axis dif-
ferent from the spatial one? Should the temporal axis be modeled separately?

We leave such questions for future work.

93

5 Stability and Robustness:
Instant Video Models

5.1 Introduction

Video is often processed frame-wise—meaning images are passed one by one to
a processing pipeline or model, and each output is independent of the previous
one. This design choice is often driven by practical considerations: single-
frame datasets are generally more diverse and accessible than video datasets,
training image-based models is far less demanding in terms of compute and
memory, and improvements in single-frame performance often carry over to
video-based tasks.

Unfortunately, frame-wise processing faces the inherent challenge of temporal
consistency, where model predictions fluctuate over time (Figure 5.1 (top-
middle)). This behavior is especially problematic in tasks such as denoising or
stylization, where temporal inconsistency can significantly reduce perceptual
quality. Even in applications where the model output is not intended for
human consumption, instability can impact downstream tasks. For example,
inconsistent monocular depth estimates could produce erratic behavior in a
collision avoidance system. Moreover, instability can reduce perceived relia-

bility and thereby undermine user trust, regardless of objective performance.

Temporal consistency is closely related to corruption robustness. In field de-

94

ployments, vision systems often operate in non-ideal conditions. For example,
an autonomous vehicle may encounter inclement weather, sensor artifacts,
or low-light noise; robustness in these circumstances is vital for safe system
operation. These real-world corruptions are often transient, with an appear-
ance that changes between frames (Figure 5.1 (top-right)). While it may be
challenging to correct such degradations with a single frame, we can often
infer the underlying clean signal from recent context. In this case, we can

view robustness as a natural extension of temporal consistency.

Several prior works have proposed video-centric models with improved tem-
poral consistency [18, 143, 88, 254, 209, 249]. However, these methods are
often narrowly designed for one or a few tasks and require costly training
on large-scale video datasets. Consequently, they lack the flexibility to lever-
age the extensive ecosystem of frame-based imaging and perception models.
Further, few explicitly address robustness to transient corruptions or other
challenging conditions.

In this work, we improve the temporal consistency and robustness of pre-
trained, image-based models across various tasks. One of our primary chal-
lenges is that increasing stability may result in over-smoothing, which can,
in turn, reduce accuracy. We conceptually explore the tradeoffs between
output quality, corruption robustness, and temporal consistency, and intro-
duce a unified accuracy-robustness-stability loss to balance these objectives.
We provide a theoretical analysis of this loss and identify strategies to avoid
“over-smoothing reality,” such that there is no incentive for predictions to be
smoother than the true scene dynamics.

Guided by this analysis, we propose a class of versatile stabilization adapters
(Figure 5.1 (middle)). These adapters generate control signals, based on recent
spatiotemporal context, that modulate changes to the model’s features and
output. By operating in both the feature and output spaces, we allow the
adapters to model stability wherever it exists in the visual hierarchy. This

95

Frame-wise prediction
Unstable

Non-robust

e Denoising (NAFNet) Monocular depth with corruptions

Injecting stabilizers Versatility
- — Training loss
o~ [I-1]] <
Uu Uu +
Ll Ll Ao(91,92)
MM MM +
o [l0-00]] ~@ e
Uu Uu +
Frozen
ces cee Depth Segmentation

Stability and robustness (input / unstabilized / stabilized)

Snow Rain Elastic deformation Impulse noise

Denoisig (AFNet) Denoising (AFNet) Enhancement (HDRNet) Enhancement (HDRN;st)
Figure 5.1: Stabilizing image-based networks. (top) Applying single-
image models sequentially to the frames of a video can cause unstable predic-
tions and failures under time-varying corruptions. In the top-right example,
we see that randomly dropping patches causes artifacts in monocular depth es-
timates. (middle) We propose a method for injecting stabilizers into existing
networks and for training these stabilizers using a unified accuracy-stability-
robustness loss. (bottom) We demonstrate improvements in stability and
robustness for various tasks, without modifying the original image-based
models. Image sources: [63, 191, 202, 257].

96

property is important for high-level vision tasks, where stability is often best

described in a feature space.

Our method offers several key benefits. First, our stabilization adapters are
lightweight and modular, and do not require modifying the original model
parameters. Second, our adapters operate causally; stabilized outputs de-
pend only on current and past inputs—a feature that is critical for processing
streaming video in latency-sensitive applications. Third, our approach is com-
patible with both low-level tasks, where stability can be described in terms of
pixel values, and higher-level tasks, where stability occurs at the level of scene
semantics. Finally, our method naturally enhances robustness to transient
corruptions, without requiring explicit corruption modeling.

We evaluate our method on a range of tasks: denoising, image enhancement,
monocular depth estimation, and semantic segmentation (Figure 5.1 (middle-
right)). We also demonstrate improved robustness against various transient
corruptions, including noise, dropped patches, elastic deformations, com-
pression artifacts, and adverse weather (Figure 5.1 (bottom)). In most cases,
these improvements do not reduce accuracy—on the contrary, we often see
significant improvements in task metrics. Overall, our experiments establish
the flexibility and practicality of our approach.

5.2 Related Work

Corruption robustness. Several prior works have addressed robustness
against input corruptions. Hendrycks and Dietterich [80] propose metrics for
measuring the robustness of image classifiers against common corruptions
(e.g., compression artifacts or weather); their metrics inspire our definitions
in Section 5.3. In general, natural corruptions have received less attention [49]
from the vision community than adversarial corruptions [2, 65, 153, 173, 204,
218, 237, 248], although a handful of methods and benchmarks exist [12, 118,

97

139,162, 243]. Like these works, our paper emphasizes robustness to naturally
occurring corruptions rather than worst-case adversarial perturbations.

Consistent image enhancement. Frame-to-frame flickering is a significant
problem for low-level image enhancement models; as such, there have been
several works that improve temporal consistency for these tasks [18, 117, 124,
260, 267]. Blind video temporal consistency methods [18, 117, 124] treat the
frame-level model as a black box, which allows generalization across models
and applications. However, because they consider only the model input and
output, these methods cannot model higher-level (semantic) stability and
are prone to instability when the input is impacted by transient noise or
corruptions. In contrast, we model stability in both the output space and the
feature space, improving robustness against corrupted inputs and supporting
a wider range of tasks, including those where stability is best described in

semantic terms.

Task-specific video architectures. Many works propose video-optimized
architectures for specific tasks, with temporal consistency a stated priority
in many cases. This problem has been widely studied for ill-posed, low-level
tasks where the output is intended for a human viewer; examples include
video colorization [123, 143, 227, 259, 266, 271, 272], stylization [33, 36, 37,
47, 58, 59, 70, 88, 129, 141, 182, 195, 234, 251], and inpainting [32, 110, 122,
228, 254, 265]. Temporal consistency is also a concern in higher-level tasks,
including segmentation [9, 179, 187, 209, 229], object detection [14, 101, 140,
222, 249, 274], and depth estimation [103, 107, 116, 128, 149, 178, 236, 268].
Clockwork ConvNets [209] leverage the observation that semantic content
evolves more slowly and smoothly than pixel values; we share this motivation

in designing feature-domain stabilizers.

Our goal is not to design a task-specific method; in fact, we expect specialized
architectures to outperform our general approach on benchmarks. The appeal
of our approach lies in its practicality and versatility. Our method requires

98

minimal training and no alterations to the original network, and can be
applied to a broad range of video inference tasks, including those where
highly optimized video architectures may not exist.

5.3 Defining Stability and Robustness

We start by defining temporal stability. Let f, : X' — Y be a frame-wise
predictor with parameters ¢, and let 5(y;, y,) be a metric defined on the space
Y. We use ¥ to indicate the model output and y for the target output (ground
truth, or features from a reference model). We formulate our definition as an
expectation over data distribution 2 containing (x, y) sequences of duration
7 indexed by discrete time step ¢ (the frame index). We define the stability S
as the negative expected difference between adjacent predictions, i.e.,

-1

8= =Exyoo z 5(f¢(xt)’ f¢(xt+1)) . (5.1)

The negation is added such that stability increases as frame-to-frame variation
decreases.

This notion of stability is closely related to robustness, i.e., the correctness of
the model predictions under input corruptions [80]. The same input corrup-
tions can cause both temporal instability and reduced prediction accuracy;
examples include sensor noise, image or video compression artifacts, rain,
and snow. Hendrycks and Dietterich [80] define corruption robustness R,
as the expected accuracy of a classifier under a distribution &£ of per-image
perturbation functions. We extend their definition to cover arbitrary metrics
0 and time series of duration T,

jzc = _|E5~8,(x,y,f)~D [Z 5 (fgb(gt(xt))a yt) ’ (5-2)

99

where ¢, is the per-frame perturbation at time ¢. Again, y, is the target output.

We define the corruption stability S, similarly:

8 = —Eeoe ey | 2, 8 E&(x)), folEa (i) |- (5.3)
t=1

Both R, and 8, include input perturbations . R, measures how accurately a
model f predicts the target, while S, captures the temporal smoothness of the
model’s outputs. Notably, R, and S, can be applied to both the intermediate
features and the output of f.

5.4 Learning to Balance Stability and

Robustness

We now combine R, and S, to form a unified accuracy-stability-robustness
training loss U,, and analyze the conditions under which this loss leads to
well-behaved training.

Unified accuracy-stability-robustness loss. We define the unified loss U,
as

U, =—-(R.+18.) (5.4)
T -1
= Eeeg (xy,0~n Z 5(f¢(£t(xt)), y)+4 Z 5(f¢(£t(xt))7 f¢(£t+1(xt+1))))
t=1 t=1
(5.5)

where 4 is a constant that weights stability relative to accuracy.

Theoretical analysis. If § can be expressed in terms of a norm on Y, we
can derive two bounds on A. The first, A < 1/2, which we call the oracle
bound, defines the range of 4 where the ground truth is the global minimizer

100

No stability penalty, A =0 Below oracle bound, A =0.4 Above collapse bound, A =4
T H H

:

i P i Y2 i P
Value of second prediction ¢, Value of second prediction g Value of second prediction g

Value of third prediction g3

Figure 5.2: Unified loss for one-dimensional predictions. We consider
a time series of duration T = 3 consisting of one-dimensional predictions,
with & defined as the L1 distance. We assume that the first prediction ¥, is
fixed (cannot be modified by a stabilization adapter). We show the value of
the second prediction y, along the x-axis and the value of the third y; along
the y-axis, with contours indicating the value of the unified loss as these
predictions vary. When 4 = 0, the minimum occurs at the ground truth
¥, = y, and y; = y;. When 1 is nonzero but below the oracle bound, the
minimum still occurs at the ground truth, but the loss increases more slowly
in the direction of stabler predictions. When A exceeds the collapse bound,
the global minimum is the collapse state y; = y, = y;.

of the loss in prediction space. Under this bound, a perfectly accurate (oracle)
model will never have an incentive to diverge from the correct prediction to
increase stability. For each training item x, the minimum loss occurs at the
ground truth y, implying zero gradients with respect to the prediction y. See
Appendix D.1 for a proof of this and the following bound.

The second bound, 1 > 7 — 1, is the collapse bound, and gives the range of 4
where the global loss minimizer corresponds to exact repetition of the initial
prediction, regardless of scene changes. Unlike the global accuracy minimizer
(the oracle state), which may be difficult or impossible to reach with gradient
descent, the collapse state is often easily achieved. For example, if there is an
EMA stabilizer (Section 5.5) on the output, we can achieve collapse simply by

101

setting its decay to zero. In our experiments, we confirm that setting A above
the collapse bound leads to prediction collapse, provided the collapse state is
representable in the stabilizer parameter space.

Example. In Figure 5.2, we plot the loss as a function of two one-dimensional
predictions y, and s, for several values of 4. When the stability penalty is
introduced, the loss begins to tilt toward more stable predictions. When 4 is
within the oracle bound, the global minimizer is unchanged. When it exceeds
the collapse bound, the global minimizer is a repeated prediction.

Note that the oracle state is mutually exclusive with the collapse state (unless
the ground truth is itself collapsed), as for any time series with 7 > 1, we have
7 —1 > 0.5. Thus, we recommend training with 4 < 0.5 in general; doing
so ensures non-collapse and yields the correct behavior in the limiting case
where the model is perfectly accurate.

5.5 Designing Stabilization Adapters

Our goal is to improve the temporal stability and robustness of a pre-trained,
frame-wise predictor f for video tasks. We assume f is realized using a deep
neural network with pre-trained weights ¢,. While the unified loss U, allows
us to update ¢,, this fine-tuning may be computationally expensive or require
substantial training data. Instead, we consider adaptation of f, where a task-
specific, lightweight adapter parametrized by A¢ is learned to stabilize the
intermediate features and outputs of f. Under this formulation, we train only
the parameters A¢ of the adapter (i.e., the stabilizer), and the original weights
¢, remain fixed.

Design principles. The following principles guide our stabilizer design.
First, we consider only causal stabilizers, where the stabilized outputs at time
t are computed exclusively using information from times < ¢. This constraint
is critical for processing streaming videos. Second, we stabilize both network

102

activations (features) and outputs. Output-only stabilization is sufficient for
some low-level operations such as colorization. Feature-domain stabilization
expands the potential scope of our method to include higher-level tasks; for
these tasks, the inherent stability of a scene is often best described in feature
space. Finally, we limit ourselves to designs that do not interfere with the
existing network architecture. Our stabilizers are layer-level adapters with
independent parameters and are designed to preserve the existing feature

representation.

Exponential moving average (EMA) stabilizer. As a starting point, we
consider a simple temporal smoothing operation applied to individual feature
values forming a one-dimensional time series. Let z, denote an activation
or feature value at time ¢, and let Z, denote the corresponding stabilized
activation. The exponential moving average (EMA) stabilizer produces a linear
combination of the current unstabilized output and the previous stabilized
output,

Zy =Pz, + (A =Pz, (5.6)

where 8 € [0, 1] is a decay-rate parameter. The recursive formulation here is
equivalent to convolving the input time series with an infinite exponentially
decaying weight kernel. The EMA stabilizer is memory-efficient (only Z,_; is
retained) and differentiable with respect to 5 and z. We use the EMA stabilizer

as the basis for more sophisticated designs.

Stabilization controllers. Simple smoothing operations (like the EMA
stabilizer) are limited in both their spatial context and their ability to model
complex changes in the scene. To address these limitations, we propose
a stabilization controller network, which considers prior context (e.g., the
current and previous input frames and feature maps) and predicts the amount
of stabilization that should be applied to each value.

Although the idea of controller-augmented stabilization can be applied to
many stabilization mechanisms, we focus here on the EMA stabilizer due to

Stabilizer 1 Z2t Stabilizer 2

- T HM

g

Legend

ha O Existing layer

O Controller layer
Stabilization

O Interpolation

Figure 5.3: Stabilization controllers. Starting with the existing network
(red), we add stabilizers (yellow) to select layers. The degree of stabilization,
i.e., the decay (3, can be predicted by a stabilization controller (blue). This
controller consists of a shared backbone g and one head h; per stabilized layer.
Stabilizers can be added to both internal layers and the model output.

its differentiability and low memory requirements. In this case, the controller
predicts the decay 3 for each activation across layers. Our architecture, as
shown in Figure 5.3, consists of a shared backbone g and a stabilization head h;
per stabilized layer. Tog g compares the current and previous frames, offering
a shortcut connection from frames to features. h predicts the decay values
based on the output of g (resized to match the layer resolution), the current
unstabilized features z;, and the previous stabilized and unstabilized features
Z,_; and z,_,. Together, the parameters of g and {h;} form A¢.

Formally, the stabilized feature tensor Z;, for layer i and time ¢ is given by

Zi, =B Oz, +(1—=Bi) © %y, (5.7)
ﬁi,t = U(hi(g(xt’xt—l)’zi,t’zi,t—l’zi,t—l))’ (5.8)

where © denotes an element-wise product and z;, is the unstabilized feature
tensor.

104

We note that our controller is conceptually similar to selective state space
models [68], although the design differs significantly. Equation 5.7 can be
viewed as a linear dynamical system defined on frame-level features with
parameters conditioned on the input, current, and previous features.

Controller with spatial fusion. Often, z takes the form of a 2D feature map.
If g and h are convolutional, the predicted decay £ is informed by the frames
and features within a local receptive field. However, with Equation 5.8, the
weighted fusion used to compute Z is still constrained to the time axis. Extend-
ing the weighted fusion to a spatial neighborhood can improve stabilization
in the presence of motion by allowing translation of features from previous
frames.

To perform spatial fusion, we modify the controller head h to predict a spatial
decay kernel 5 at each pixel rather than a single decay . For a neighborhood
that contains m locations (including the central pixel), the kernel 5 contains
m+1 elements. The first m elements weight the stabilized activations from the
previous time step (Z,_,), for each location in the neighborhood. The (m +1)th
element weights the current unstabilized activation (z,) for the central pixel.
The kernel is softmax-normalized. The first m logits are predicted directly
by the controller head, and the last is set to zero (when m = 1, the softmax
reduces to the sigmoid in Equation 5.8). See Section D.4.3 for more details.

The spatial fusion stabilizer can represent a recursive shift projection, where
a feature vector is translated on each frame by an amount corresponding to
the object motion. The maximum trackable motion in this case is determined
by the spatial extent of the kernel 7.

5.6 Experiments

In Sections 5.6.1 and 5.6.2, we test our approach on image enhancement
and denoising, respectively. We ablate the components of our method and

105

3 Moderate intensity (o = 0.5) High intensity (o = 0.25)

Base model
—e Output fixed
-+ Simple fixed

Simple learned
—= Controlled
—e— Spatial

20 25 30 25 30 35 40
Instability Instability

Figure 5.4: Image enhancement results. Introducing a controller and
spatial fusion to the stabilizer significantly improves the accuracy-stability
tradeoff. The spatial-fusion stabilizer reduces frame-to-frame variation by up
to & 35% while exceeding the quality of the base model. “Instability” here
refers to negative stability (—38); see Equation 5.1. The goal is to move toward
—x (lower instability) and +y (better image quality).

explore the tradeoff between stability and accuracy. In Section 5.6.3, we test
our stabilizers in the presence of various image corruptions, evaluating image
enhancement, denoising, and depth estimation. In Section 5.6.4, we consider
corruptions resulting from adverse weather (rain and snow).

Some low-level details (e.g., training hyperparameters) are omitted here for
brevity; see the appendices for a more exhaustive description of experiment
protocols. The appendices also include results for semantic segmentation and
an exploration of training-free stabilizer composition.

Variants and baselines. Across our experiments, we consider a common set
of variations (ablations of our approach) and baselines. The simple learned
variant adds a simple EMA stabilizer (Equation 5.6) to the output and features,
with one learned § value per channel. The controlled variant adds a learned
controller that predicts the stabilizer decay according to Equation 5.8. Finally,
the spatial variation augments the controlled stabilizer by adding spatial
fusion. As for baselines: the simple fixed method applies a simple EMA
stabilizer to internal features and the output, with one global, hand-tuned
B; the output fixed method applies a hand-tuned EMA stabilizer only to the

106

model output.

5.6.1 Image Enhancement

Task, dataset, and base model. We first consider image enhancement, a
task where perceptual quality (including stability) is of primary importance.
We use the HDRNet model [63], which can be trained to reproduce many
low-level image transformations. Specifically, we target the local Laplacian
detail-enhancement operator [176], due to its known forward model and
readily available code. We consider two effect strengths: moderate (o = 0.4
and o = 0.5) and strong (o = 0.4 and a = 0.25). We generate training pairs by
applying the local Laplacian filter to each frame of the Need for Speed (NFS)
dataset [109]. NFS contains 100 videos (380k frames) collected at 240 FPS; we
randomly select 20 videos for validation and use the remaining 80 for training.
Videos are scaled to have a short-edge length of 360. We evaluate PSNR and
instability (Equation 5.1) with § = || - ||,.

Experiment protocol. We fine-tune the original HDRNet local_laplacian/strong_1024
weights for both effect strengths. After this fine-tuning, we attach a stabilizer

to the output of each convolution and the overall model output (because the

HDRNet architecture is extremely lightweight, this does not represent an

unreasonable overhead). We then freeze the fine-tuned weights and train the

stabilizers using BPTT on short video snippets (7 = 8). We use the unified

loss with 6 = || - ||,. We test several 4 values—0.1, 0.2, 0.4, 0.8, and 8.0—for

each effect strength and model variation. The first three values are within the

oracle bound, and the last exceeds the collapse bound.

Results. Figure 5.4 illustrates how PSNR and instability change as we vary the
degree of stabilization (4 for learned stabilizers, § for hand-tuned stabilizers).
We observe that for static (non-controlled) stabilizers, there is no benefit to
stabilizing in feature space. For the static methods (output fixed, simple fixed,
and simple learned), increasing stability brings a reduction in quality as we

107

Moderate noise (o =0.1) Strong noise (o = 0.2) Extreme noise (o = 0.6)

34.51
37.54 29.0 Base model
37.0 34.0 28.5- -e Output fixed

« -~ Simple fixed
’ 33.51 /\ 28.0 \ Simple learned
-e- Controlled
*| 33.01 ! 2751 - Spatial
27.01

26.51

L] L]
15 20 25 I5 20 25 30 0 20 30 40
Instability Instability Instability

~ J

g 36.5

7]

A~ 36.0
35.51

35.0

Figure 5.5: Denoising results. Because it attempts to stabilize an iid noise
residual, naive feature-space stabilization leads to worse PSNR and worse
stability. We achieve the best performance with a controlled stabilizer, usually
with spatial fusion.

begin to over-smooth the output. In contrast, for the controlled and spatial
stabilizers, there is a region where both PSNR and stability are improved over
the base model. Spatial fusion gives a significant improvement in output
quality—roughly 2 dB for the high-intensity effect. We suspect this is related
to the nature of the detail-enhancement task (its sensitivity to small-scale
motion). Finally, we confirm that setting A = 8 > v — 1 leads to prediction
collapse (instability < 103, indicating a constant prediction). This result
confirms that the global collapse minimum is easily reached, despite the

non-convex nature of the optimization in general.

5.6.2 Denoising

Task, dataset, and base model. Next, we evaluate image denoising under
AWGN. Denoising highlights the utility of our method when the input is
itself unstable. We use the NAFNet model [35], which employs a U-Net
architecture with modified convolutional blocks (NAFBlocks). We again use
the NFS dataset, with the same train/validation split as in Section 5.6.1. We
evaluate three noise levels: moderate (¢ = 0.1, for float images € [0, 1]),
strong (¢ = 0.2), and extreme (o = 0.6). See Appendix D.6.4 for additional

108

results on the DAVIS [180] dataset.

Experiment protocol. We start by fine-tuning the unstabilized model for
each dataset and noise level, initializing with the nafnet_sidd_width32
weights published by the model authors. We then attach a stabilizer to the
output of each NAFBlock and to the model output. As before, we freeze the
fine-tuned weights and train only the stabilizer parameters, using the unified
loss with 6 = || - ||, and sweeping out 4 = 0.1, 0.2, 0.4, 0.8, and 8.0.

Results. Figure 5.5 shows PSNR and instability across noise levels. The “sim-
ple fixed” stabilizer gives a somewhat surprising result: adding stabilization
worsens both PSNR and instability. The reason is that the network backbone
predicts a noise residual, which is completely uncorrelated between frames.
Over-smoothing this residual inhibits the noise removal, which worsens PSNR
and increases frame-to-frame variation due to unremoved noise. Fortunately,
this behavior does not exist for the learned or controlled stabilizers, as they
target only those features that exhibit some temporal smoothness. Controlled
stabilizers improve both stability and PSNR when 4 < 0.4. We again confirm
that setting A = 8 > 7 — 1 leads to prediction collapse, i.e., instability < 107.

In most cases, we find that the spatial fusion stabilizer outperforms the non-
spatial controlled stabilizer. However, there is a notable exception in the case
of extreme noise, where the spatial fusion stabilizer is about 6 dB worse than
other methods (these points are outside the range of the plot in Figure 5.5 but
are included in Table D.5). Intriguingly, this quality gap only appears when
evaluating long sequences (hundreds of frames) and shrinks as we reduce
7. In Appendix D.6.6, we show that this problem can be at least partially
mitigated by increasing t during training.

The supplementary material includes video files comparing the stabilized and
unstabilized outputs. We encourage the reader to watch these videos for a
clear qualitative comparison (temporal inconsistency is much more obvious
in videos than in side-by-side static frames).

109

Enhancement Denoising Depth estimation
Corruption Method PSNR Instability PSNR Instability AbsRel(|) Delta-1.25(1) Instability
Patch drop Base model 17.43 164.6 18.93 151.4 0.070 0.948 9.89
Ours 31.39 30.36 35.46 20.42 0.070 0.956 4.73
Elastic distortion ~Base model 24.00 64.23 27.99 47.31 0.052 0.968 7.76
Ours 26.63 24.97 30.78 21.04 0.057 0.967 4.75
Frame drop Base model 28.65 94.04 33.42 113.5 0.065 0.936 14.17
Ours 31.69 29.14 27.34 20.56 0.050 0.974 491
JPEG artifacts Base model 24.85 42.06 29.01 39.71 0.057 0.964 7.32
Ours 26.46 23.58 32.19 20.49 0.065 0.961 4.92
Impulse noise Base model 14.28 217.8 24.65 62.10 0.047 0.974 6.83
Ours 27.37 30.90 32.04 19.73 0.056 0.972 4.98

Table 5.1: Corruption robustness. Our method significantly improves
stability while preserving or improving prediction quality. The only notable
exception is reduced PSNR for denoising with dropped frames. However, we
note that PSNR (averaged over frames) does not capture the jarring perceptual
effect of dropped frames; thus, the high PSNR of the base model is somewhat
deceptive.

5.6.3 Corruption Robustness

Tasks, datasets, and base models. We again consider HDRNet for image
enhancement and NAFNet for denoising. We also include results for depth
estimation with Depth Anything v2 [257]. Depth Anything is notable for the
scale of data used in its training; it would be costly to develop a new video
architecture from scratch, making Depth Anything a good candidate for our
approach. See Appendix D.6.2 for results on semantic segmentation with
DeepLabv3+.

For depth training, we use the VisionSim framework [100] (Blender) to gen-
erate a dataset of simulated videos with ground-truth depth. The dataset
consists of 50 indoor scenes containing ego motion and is rendered at 50 FPS.
We randomly select 10 scenes for validation and use the rest for training. See
Appendix D.5 for further details on this dataset.

110

Experiment protocol. For HDRNet and NAFNet, we train spatial-fusion
stabilizers using the same settings as in Sections 5.6.1 and 5.6.2. We train
HDRNet for the moderate effect strength (o = 0.5), and NAFNet for moderate
noise (o = 0.1) on NFS. Unlike other models, we do not fine-tune the base
Depth Anything model; we found that naive fine-tuning on a small dataset
like ours quickly led to overfitting. We add controlled stabilizers to instances of
DepthAnythingReassembleLayer, DepthAnythingFeatureFusionLayer, and
the model output.

We train and evaluate stabilized models for each of the following corruptions:
(1) randomly zeroing each 88 patch with probability 0.1, (2) elastic defor-
mation, see Appendix D.5 for details, (3) randomly zeroing each frame with
probability 0.1, (4) applying JPEG compression at quality 10/100, and (5)
adding impulse noise to each channel with probability 0.05 for both salt and
pepper. We set A = 0.2 when training stabilizers for corruption robustness.

Results. Table 5.1 shows accuracy and stability with and without stabiliz-
ers. Adding stabilizers leads to significant reductions in instability and, in
most cases, improvements in per-frame accuracy metrics. See Appendix Fig-
ures D.5, D.6, and D.7 for qualitative results.

5.6.4 Adverse Weather Robustness

Task, dataset, and base model. We now evaluate robustness under adverse
weather conditions. Specifically, we consider the rain and snow corruptions
from the RobustSpring [202] dataset. These corruptions differ from those in
Section 5.6.3 in their spatial complexity and temporal dynamics (raindrops
and snowflakes follow continuous paths, unlike simpler corruptions such as
randomly-dropped patches). RobustSpring contains 10 rendered sequences
(2000 total frames), each with left- and right-frame variants. Clean ground-
truth frames are provided for all sequences. We randomly select 2 videos for
validation and use the remaining 8 for training. Videos are downsized to 720p.

111

We evaluate NAFNet denoising [35] with o = 0.1, adding noise after weather
effects.

Experiment protocol. We fine-tune the original nafnet_sidd_width32
weights with noise, but not weather corruptions. Following Section 5.6.2,
we then append a spatial-fusion stabilizer to each NAFBlock and the model
output. We train these stabilizers under noise + weather using 4 = 0.2.
Consistent with our other experiments, we train stabilizers with a frozen base
model.

In addition, we consider two variants with an unfrozen base model. In the first
variant, we fine-tune the base model on noise + weather without stabilizers.
In the other, we unfreeze the base model when training on noise + weather,
jointly training the stabilizer and base parameters. For both variants, we use

the same hyperparameters as the frozen stabilizer training.

Results. See Table 5.2 and Appendix Figure D.9 for results. Compared to
the unstabilized baseline, stabilizers substantially improve image quality and
stability. Likewise, fine-tuning the original weights (without stabilizers) with
weather corruptions gives a significant improvement. Compared to stabiliza-
tion, fine-tuning gives better single-image quality but higher instability. We
obtain the best overall results by combining fine-tuning with stabilization. In
general, we expect this joint training approach to be the best choice for small-
to medium-sized models. For larger models where training the base model is
infeasible, training only the stabilizers still gives reasonable results.

5.7 Discussion

Limitations. The bounds in Section 5.4 assume that the distance § can be
expressed in terms of a norm on the prediction space Y. This condition ex-

cludes many widely used loss functions, especially more sophisticated, multi-

112

Rain Snow
Stabilized? Unfrozen? PSNR SSIM Instability PSNR SSIM Instability
X X 21.43 0.617 151.76 18.62 0.577 262.48
v X 28.63 0.880 57.88 31.34 0914 59.31
X v 3219 0.937 70.84 3433 0.950 66.57
v v 32.61 0.938 58.30 3520 0.956 58.98

Table 5.2: Adverse weather robustness on RobustSPRING. Training sta-
bilizers with a frozen base model gives substantial improvement over the
unstabilized model. We obtain the best overall results by jointly training
stabilizers with the base parameters.

component losses. Nonconforming 6 may still work in practice, although they

may require more careful tuning of 4 due to the lack of theoretical guarantees.

We had some difficulty with sim-to-real generalization when training sta-
bilizers for Depth Anything. We conjecture that real video contains subtle
corruptions not present in simulated video—for example, sensor noise, com-
pression artifacts, or optical phenomena. These “baseline corruptions” could
explain some of the temporal instability we see when using apparently clean
input video.

Alternate metrics. In all of our experiments, we use a simple Euclidean
norm for §. However, other metrics may be a better choice, depending on
the task. For example, a variant of the Wasserstein metric may give improved
results for two-dimensional outputs and feature maps, due to its ability to
account for the spatial structure of the tensor. See Appendix D.2 for further

discussion.

113

6 Discussion and Outlook

6.1 Trends

There are still a lot of open questions around hardware development/trends
Sensing architecture trends—will SPADs catch on?

Compute architecture trends—monolithic vs sparse operations (point to a
few companies in this space)

Growth of models (foundation-style) and the increasing difficulty of training
something from scratch

6.2 Tradeoffs

Custom models for efficiency/stability vs our adapter-based approach

Compatibility of event network methods with stability method—train trunca-
tion for both stability and efficiency?

6.3 Why?

Is this worth our time? Does this matter? So what?

114

We should be motivated by real problems. Not “a hammer that sees everything
asanail.” This is true for out methods specifically—we should not make broad
claims about our method being “better” but analyze case-by-case. There is a
solipsism or arrogance in this—that I have the answer, that I am the solution.

This is also true generally for the fields of computer vision and computer
science. “Progress” without a moral axis is better called “movement.”

This is perhaps true of our field and of ourselves. We are “hammers looking
for a nail.” But, I am becoming convinced that we are not what the world
needs.

The recurring question: “To what end?” to be repeated.

The problems of the human world are not a series of algorithmic puzzles, as
much as us quant types would like to think so. Or, if they are, the puzzle is of
such dizzying complexity as to absolutely defy our analysis. Too easily, we
strengthen what we seek to oppose.

Humanity is not lacking in power—it is lacking in wisdom. And wisdom,
unfortunately for us builders, cannot be built, but must be gently cultivated
and nourished.

This is not to say that our inventiveness and talent should be discarded. Rather,
we must remember to cultivate our capacity for listening, for compassion, for
stopping, for questioning. We must build, but we must do so with care and
attention.

We must discard our pride and remember that this story is not about us—this
world is not about us—we are just in it.

Dalai lama quote—the path to peace is in transforming the hearts of people.

A

115

Bandwidth: Generalized

Event Cameras

This appendix expands on Chapter 2. Sections A.1 and A.2 provide further

details of our methods, Section A.3 contains an extended discussion, and the

remaining sections provide expanded experiment details and results.

The supplementary material for our paper [217] contains the following not

included here:

Details of our imaging setup and scene acquisition

Formal definitions of the proposed event camera algorithms
Additional high-speed results

Additional low-light results

Sample images from the dataset used for rate-distortion experiments

An illustration of the effect of Ultraphase algorithm modifications on
reconstruction quality

Sample images from the scene used for Ultraphase experiments

116

g 5y
Backtrack gt
& sample

Event

z
output response Stream of integrator values
Photon detections ®(x,y,t) (z,y,t, B(z,y, 1))

Il J
Y Y

Upstream (near sensor) Downstream (post redout)

Figure A.1: Algorithmic overview of generalized event cameras. Our
algorithms take as input the SPAD’s response, ®(x, t), and output a stream
of integrator values, i.e., a stream of tuples (x, ¢, (X, t)), where X represents
the integrator’s value. After sensor readout, we perform backtracking, which
takes the value of the integrator as the flux estimate between the current and
previous event timestamps at location x. We then sample these flux estimates
at any time ¢, providing a stack of backtracked frames. Notice the rich scene
information present in these backtracked frames. To alleviate artifacts (shown
in the insets here) arising from the pixel-wise independent emission of events,
we perform video restoration to recover high-quality outputs.

A.1 Pipeline Overview

Figure A.1 shows an overview of recovering scene intensity in a bandwidth-
efficient manner using generalized event cameras. This process begins from
the SPAD’s output response, ®(x, t) at pixel location x and (discrete) time
t, and culminates in a high-fidelity, high-temporal resolution video recon-
struction. In what follows, we go over the salient steps before laying down
specific algorithms (in Sections A.2.1, A.2.2, A.2.3, and A.2.4) and detailing
any algorithm-specific modifications to these steps.

Event generation. Each of our algorithms (Sections 2.4,2.4.1,2.4.2,and 2.4.3)
takes as input the high-speed binary frames produced by the SPAD, &(x, t),
and processes it in an online manner—without any buffering of photon detec-
tions. The output of our algorithms is an asynchronous (each pixel or patch
can emit events independently) spatiotemporal stream of event packets.

Event packets. For our methods, we assume events are sparsely encoded

117

using a coordinate list (COO) format. In other words, we represent each event
as a tuple (x, t, A), where x is the spatial location, ¢ is the time, and A is the
event payload—which is typically the integrator’s value (X), except in the case
of coded-exposure events where we transmit a set of integrator values. For
the adaptive-EMA and Bayesian methods, A = Z,,,,;, the adaptive integrator.
For the spatiotemporal chunk method, A = Z,,,.,, the patch-wise cumulative
mean (a vector). For the coded method, A = (2o, {Zi odea))» the long exposure
and most recent coded exposures (note that we can exclude Z,,, if this is the
change detector’s first time step or if we produced an event on the time step
immediately preceding this one).

Backtracking. When an event is emitted at time ¢t = T,, the integrator’s
value, Z, is taken to be the flux estimate (or representation) between T, and
the previous event emission time (T,,)—if this is the first event emission, we
assume T, = 0. Thus, from the spatiotemporal event stream, we can construct
a piece-wise constant representation of the incident flux, by traversing the

event stream backward in time; we term this process as backtracking.

Sampling. After backtracking, we obtain a spatiotemporal cube of intensity
estimates. We can now sample this cube discretely to obtain one or more
frame-based samples. The main motivation for sampling the intensity cube,
rather than processing it in its entirety, is that existing video restoration models
are not capable of inference on very long video sequences (most models infer
on 32-64 video frames at a time). In this work, we consider a very simple
sampling strategy: temporally uniform sampling. There can be, however,
more sophisticated ways to sample, potentially based on the rate of events
across time [203]—we do not explore these more sophisticated variants in
this paper.

Restoration. Having obtained a frame-based sampling (video representation)
of our backtracked cube, we can now process it using video restoration tech-

niques. The purpose of video restoration here is to remove artifacts arising

Changes detected Backtracked Restored
Blue +ve, red -ve Seuml (2, t = 41.3 ms) 658 bps/pixel

Figure A.2: Intermediate outputs and recovered intensity from
adaptive-EMA. (left) We show the changes detected on the slingshot se-
quence, across 4000 binary frames. (middle) The backtracked frame bears
noticeable artifacts, (right) however this is substantially reduced by merg-
ing information from multiple backtracked frames using a video restoration
model. Improved reconstructions can be obtained using our more sophisti-
cated methods (Sections 2.4.1, 2.4.2, and 2.4.3) involving more robust change
detection procedures.

from the independence of events between pixels (or spatial patches). For
instance, neighboring pixels may fire events at different times, which tends
to produce jagged artifacts around motion boundaries. We show these asyn-
chronous artifacts (and their removal) in the insets of Figure A.1.

A.2 Method Details

A.2.1 Adaptive EMA Event Camera

The simplest version of our adaptive exposure technique was introduced
in Section 2.3 and further specified in Section 2.4. This technique uses a
fixed threshold applied to exponential moving averages (EMAs) to determine
changes in scene intensity. Such a choice of change detector is motivated by
early works in change-point detection that have utilized exponential moving
averages [192]. We show intermediate and final outputs of adaptive-EMA on
the slingshot sequence in Figure A.2.

119

Changes detected Backtracked Restored
Blue +ve, red -ve Seuml (2, t = 41.3 ms) 495 bps/pixel

Figure A.3: Intermediate outputs and recovered intensity from
adaptive-Bayesian. (left to right) The change points detected by restarted-
BOCPD are more informative that those detected by an EMA-based change
detector. While there appears to be more change points here than in Fig-
ure A.2, the changes are transmitted more parsimoniously over time—as
a result, the overall readout is lower (495 bps/pixel for adaptive-Bayesian
versus 658 bps/pixel for adaptive-EMA). Using an improved change detector
(BOCPD) also results in backtracked images that preserve more detail, and
consequently a final reconstructed image that has significantly less blur (the
ping-pong ball is better recovered here).

A.2.2 Adaptive Bayesian Event Camera

Our generalized event camera from Section 2.4.1 uses (a variant of) restarted
Bayesian online change detection (R-BOCPD [4]) as the per-pixel change
detector. As mentioned in Section 2.4.1, our main modification is the use of
extreme pruning [239]: instead of storing one forecaster for each time step
(or per binary frame), we only retain the top-K forecasters. We found that
the performance of the change detector is not significantly impacted even
with substantial pruning where we retain just the top-3 forecasters. We now
describe a few variants of this algorithm.

Restarts and pseudo-distribution array. We can also consider the base
variant of BOCPD [1], which does not involve restarts or an array of pseudo-
distribution values. We use this simplification for our on-chip implementation
for UltraPhase [7].

Direct extensions to spatial patches. While BOCPD is a per-pixel tempo-
ral change detector, there are simple ways to exploit the correlated changes

120

Changes detected Restored
Temporal chunk Blue +ve, red -ve Backtracked 508 bps/pixel

S

Changes conveyed by events

L]

e
o\

Figure A.4: Intermediate outputs and recovered intensity from the
spatiotemporal chunk method. (left to right) We first accumulate photon
measurements into temporal chunks of, e.g., 32 binary frames. We then apply
change detection on 4x4 spatial patches. Applying a restoration model to
the backtracked outputs removes patch-boundary artifacts (e.g., patches that
recently triggered an event may appear noisier than their neighbors).

observed in a patch—although these modifications should be seen as simple
extensions and not a more principled approach, such as what we describe
in Section 2.4.2. To reduce detection delay, we can fire events whenever a
changepoint is detected in any pixel in a patch. While this may be preemptive
for pixels where change has not yet been detected, being preemptive may not
be detrimental, as a change in one pixel indicates that changes may soon be
observed at other pixels in a patch.

We show intermediate and final outputs of adaptive-Bayesian on the slingshot
sequence in Figure A.3. Notice that the dynamics of the slingshot’s elastic
band and the propelled ping-pong ball are much better preserved in Figure A.3
(as compared to Figure A.2), while entailing a reduced sensor readout as well.

121

A.2.3 Spatiotemporal-Chunk Event Camera

We now describe the spatiotemporal-chunk event camera. Recall from Sec-
tion 2.4.2 that this method generates an event whenever

||P((i)chunk(ya t) - i(:patch(y’ t))“ 2T. (Al)

Let p X p be the patch size, with ¢ = p* the number of pixels in a patch. We
use a patch size of 4x4 in all our experiments (except for Figure A.4, where
we use 8x8 for illustrative purposes). ®,.(y,t) € RY is the normalized
mean over a temporal chunk of m binary frames; we use m = 32 throughout
the paper. ipatch(y, t) € R?is the normalized cumulative mean since the last
event, excluding the current temporal chunk. P € R™1 is a feature matrix.
We use r = 16 in our main experiments; for UltraPhase experiments, we

reduce this to r = 4 due to on-chip memory constraints (see Section A.9).

We normalize via

(i)chunk(y’ t) = (I)chunk(Ya t) @c (AZ)
ipatch(y, t) = z:pattch(Y9 t) @c, (AS)

where @ indicates pointwise (Hadamard) division and c is given by

oy,) = J P01 - B0 (147, (A4)
)X atc (’t)+q)c un (7t)
Py,) = T T e (A5)

where m is the temporal chunk size, n is the number of temporal chunks
comprising 2., and the square root is pointwise. ¢* is an empirical estimate
of the variance in @, — Z,,cn Under a static assumption, in which case
@, nc and X, are binomial random variables with the same probability.
We use ghost sampling when computing p to prevent numerical instability

122

near p = 0 and p = 1; specifically, we add 8 ghost Bernoulli measurements, 4
of which are successes.

Training matrix P. We use a specialized procedure to generate outputs
that can be used to train the matrix P via backpropagation through time
(BPTT). This procedure does not involve any branched control flow, and gives
identical outputs to the base algorithm. The event-generation decision is
represented by a binary value k. On the forward pass, k is computed using a
Heaviside function. On the backward pass, we approximate the gradients of
the Heaviside using a surrogate gradient approach. Specifically, we replace
the Heaviside gradients with those of a logistic sigmoid.

Our training procedure also includes an autodiff-compatible backtracking
step, where we fill in the values of B in time-reverse order. Unlike an indexing
operation, which is not differentiable with respect to its indices, this imple-
mentation is differentiable with respect to the values of k, which delimit the

piecewise-constant segments of B.

We train using interpolated videos from the XVFI dataset [211]. We interpolate
from the native 1 kHz frame rate to 16 kHz using RIFE [90], then linearly
interpolate over time by another factor of 8 (for a total binary frame rate of
128 kHz). We use the interpolated frames as the ground truth during training.
To generate SPAD frames, we treat the ground truth values (in the range [0,
1]) as the Bernoulli photon-detection probability.

We initialize P with uniformly-distributed random values in the range [-0.0125,
0.0125]. We train for 20 epochs, using vanilla SGD with a learning rate of 0.06,
reducing the learning rate by a factor of 5 after 10 epochs. Each epoch consists
of 200 batches, with each batch containing 64 patch time series. Throughout
training, we randomly vary the contrast threshold via uniform sampling in
the range [1/1.3,1/0.7].

123

Changes detected Backtracked coded exposure Restored
(shown in white)

636 bps/pixel

3 gea (@, t = 41.3 ms)

Bucket #1 (j =1) Bucket #2 (j =2)

Figure A.5: Intermediate outputs and recovered intensity from (two-
bucket) coded-exposure events. (left) We show the changes detected
using the confidence-interval test between two coded measurements that
were computed across a temporal chunk of 1000 binary frames. (middle)

The coded-exposure measurements, Zio 4eq» differ predominantly in dynamic

regions, while being statistically similar in static regions—this fact forms the
basis of the change detector that we design for coded-exposure events. (right)
Reconstructions obtained using our video restoration model on a stack of
pre-processed (pseudo-inverse step) and backtracked coded exposures.

A.2.4 Coded-Exposure Event Camera

Mask pattern (coding) details. We choose J > 2 random binary mask
sequences of length N each, i.e., C’ € {0, 1}N. Each of these J sequences is
non-overlapping, which is

C/(n)C¥(n) =0V j#k, V1<n<N. (A.6)

The motivation behind such a choice is to ensure that the pseudo-inverse
step (Moore-Penrose inverse), which is applied to the coded measurements
as a processing step, can be computed efficiently. With these constraints, the
pseudo-inverse step involves multiplication (of the coded measurements) by
a diagonal matrix, which can be carried out efficiently.

One way to construct such a mask sequence is by choosing j* ~ Uniform(1,J)
at each sequence location n € 1,2,...,N, and then setting C/'(n) = 1 and
C/(n) = 0 for all other j # j*. In other words, we pick a random “bucket” at

124

each subframe index n.

For instance, whenJ = 2, this amounts to picking to mask sequences, C*, C* €
{0, 1}N, such that

C'(n)=1-C?*n), V1<n<N. (A.7)

This choice corresponds to the “coded two-bucket” camera [242]. Thus, these
random binary masks can be seen as a generalization of computing a single

coded measurement to computing J coded measurements [216].

Finally, we remark that we do not consider the case of J = 1 here, since we im-
plement coded exposures computationally on single-photon sensors—hence,
the “complementary” coded exposure (or the two-bucket measurement) is al-
ways readily available. In other words, there is no drastic compute or memory
overhead of a (computational) two-bucket coded exposure over a single coded
exposure. This would not be the case if an optical setup (e.g., using digital mi-
cromirror devices, DMDs) were used to implement coded exposures—where
using a two-bucket measurement would likely entail a beam splitter and a
second DMD.

Pseudo-inverse step. After backtracking, we can sample a J bucket coded-
exposure measurement at any time ¢. Of course, if the pixel is static, we only get
1 static measurement at the pixel location—so we repeat static measurements
J times. Before applying our video restoration module, we perform a pseudo-
inverse step that is derived from the linear forward model of J-bucket coded
exposures and is similar to the pseudo-inverse pre-processing step adopted
for single-bucket compressive captures [263, 255]. This pre-processing step

involves computing

J

1
Y (x,n) =
o jZ Xy CIx,m)

> (x,)CI(x, n), (A.8)

125

giving us N subframes from the J coded measurements.

To summarize, for coded-exposure events, we follow these steps: backtrack
and sample — repeat static regions by JX — pseudo-inverse pre-processing
— video restoration. We show intermediate and final outputs of (two-bucket)
coded-exposure events on the slingshot sequence in Figure A.5.

A.3 Extended Discussion

A.3.1 More Sophisticated Integrators

In this work, we propose two integrators: adaptive exposures and coded expo-
sures. There remains an extensive, unexplored space of alternate integrators.
Both adaptive and coded exposures are linear projections of a pixel’s photon
detections over time. We could consider more general linear mappings, such
as continuous-valued temporal codes. Further, we are not restricted to projec-
tions over time; it may also be advantageous to consider spatial projections,
e.g., frequency-domain transforms. With these alternate projections, we might

be able to reduce bandwidth while maintaining reconstruction quality.

We have so far assumed that our objective is intensity reconstruction. How-
ever, there may be situations where we know that the final goal is a specific
inference task. In such a scenario, we could design integrators that only
encode information relevant to the task at hand; this may be significantly
more bandwidth-efficient than transmitting a generic intensity encoding. This
integrator could take the form of a learned module, e.g., a neural network,
that operates near-sensor and computes a compressed, task-specific scene
representation. We could train this module end-to-end with the downstream
layers that perform final inference. The resulting system would involve a
neural network that spans multiple compute devices, with an event-based
communication layer in the middle. This setup somewhat resembles spiking
neural networks and other event-based networks, although the goal with such

126

methods is generally reduced computation costs (arising from sparse layer
inputs) and not reduced bandwidth along a data-transfer interface.

A.3.2 Entropy Coding and Quantization

Generalized event cameras encode intensity levels, in the range [0, 1], rep-
resenting the photon-detection rate. In our experiments, we apply uniform
quantization to the transmitted values; this keeps our comparisons straight-
forward and fair.

However, in a practical deployment, it may be more bandwidth-efficient to
encode changes rather than values and apply entropy coding to the changes.
When transmitting changes, the first event encodes a value in [0, 1], and
subsequent events encode a difference in [-1, +1]. This approach is function-
ally equivalent to transmitting levels or values, assuming the event camera
correctly tracks quantization effects (to avoid drift). For natural scenes, the
distribution of changes is non-uniform. The shape of this distribution de-
pends in part on the change-detection algorithm; in general, we would expect
changes near zero to be unlikely, as these would not trigger an event. We can
apply entropy coding (e.g., Huffman coding) to exploit the non-uniformity in
the distribution and achieve some additional compression. Entropy coding
could give substantial bandwidth savings, albeit at the cost of some increased
near-sensor computation.

In addition to entropy coding, we could apply non-uniform quantization,
either to values or changes. For example, we could non-uniformly quantize
values in [0, 1] based on perceptual considerations (e.g., human sensitivity to
intensity differences). With changes, we could exclude portions of the range
[-1, +1] based on the characteristics of the change detector; for example, with
a fixed contrast threshold 7, there is no need to represent changes in (—z, 7).

127

A.3.3 Spatial Compression

One advantage of patch-wise events (e.g., as described in Section 2.4.2) is that
they permit some spatial compression. For example, we can apply JPEG block
compression to the payload of an 8x8 patch-wise event. Such a change would
bring our techniques more in line with existing video-compression algorithms,
which compress in both space and time. The compression ratio we observe
would depend on the sensor resolution; with higher resolution, we would
expect image patches to be more uniform, and thus more easily compressible.
Likewise, patches with more noise (e.g., due to a short adaptive integration
window) would be more difficult to compress. Under ideal conditions, patch-
wise compression might give us an additional ~5X reduction in bitrate. We
leave this idea as a topic for future work.

A.3.4 Alternate Sparse Formats

As described in Section A.1, we assume a COO event format (x, t, A) when
evaluating the bandwidth requirements of our methods. We could improve
the sparse format to reduce bandwidth costs further. One such improvement
would be to use an implicit time encoding. Specifically, on each binary frame,
we would transmit a header (¢, n) indicating the current timestamp and the
number of events on this frame. We would then send n event packets (x, A).
If n > 1, this approach would virtually eliminate the overhead associated
with transmitting values of t. Note, however, that this approach assumes we
communicate events in time order; i.e., if t, > t;, all events at time ¢, are sent

before any events at time ¢,.

To reduce the overhead associated with x, we could employ sparse matrix
formats such as compressed sparse row (CSR) or compressed sparse column
(CSC). These formats compress one of the two spatial coordinates (the row
and column indices, respectively). The savings relative to COO would depend
on the density of events on each frame, with denser events leading to more

128

compression with CSR or CSC.

For pixel-wise methods (i.e., adaptive-EMA, Bayesian, and coded), another
potential optimization is to adaptively group events into patch-wise packets.
Assume we are using the COO format (x, t, A). If a spatial patch contains many
events, it may be more efficient to transmit them in a single packet, as this
amortizes the overheads of x and ¢. To implement this optimization, we would
add an indicator bit b to each event packet. If b = 0, then the packet should
be treated as a pixel-wise event; if b = 1, it is a patch-wise event, meaning
A encodes integrator information for an entire patch. Within a patch-wise
event we would use dense format for A, marking the pixels that triggered an
event with a one-bit mask. Each patch would adaptively determine whether
to encode its events pixel-wise or patch-wise. This decision would be based on
the number of events, with the optimal threshold depending on the number
of bits required for x, t, and A, as well as the patch size.

A.3.5 Latency of the Adaptive Integrator

One limitation of the adaptive integrator X_,,,(X, T;) is that it creates some
latency in the intensity estimates. The estimate for the duration [T,, T;]—
which the adaptive integrator computes as the mean of ®(x, t) over [T, T;|—
is not known until T;. Thus, there is a latency of T; — ¢ to obtain an estimate
fort € [Ty, T,]. The expected delay depends on the frequency of events, with
lower delay in more dynamic regions. The latency of £_,,,./(X, T;) is not an
issue for offline reconstruction and inference (which we assume throughout
this paper). However, it may be of concern for certain real-time applications.

As a potential solution, we could introduce a second type of event, which we
call an eager event, in contrast to the change events we have considered thus
far. Assume again an event is generated at time T,. In addition to transmit-
ting ., mu(X, T;) at that moment, we could send an eager event encoding a
noisy estimate of ®(x, T;). We could then send periodic eager events encoding

129

refinements to the value of the adaptive integrator. Assuming constant flux
after T, the adaptive integrator converges to the true flux value as time passes;
transmitting refinements would allow downstream components to leverage
this improved estimate in the absence of a subsequent change event. We
could consider various schedules for sending refinements—e.g., at exponen-
tially increasing intervals, or at fixed intervals until some maximum time has
passed. Note, however, that to keep the event camera’s bandwidth coupled
with (proportional to) the scene dynamics, there would need to be an upper
bound to the number of eager refinement events, i.e., with each change event
triggering at most N refinements.

The solution described above would involve some additional bandwidth costs.
We can thus imagine a generalized event camera that operates in two modes:
“online mode” and “offline mode,” with eager events only being used in the

online mode, where low latency is necessary.

A.4 Restoration Model Details

A.4.1 Model Architecture

While any video restoration model could be used, we choose the densely-
connected residual network proposed in Wang et al. [231] (EfficientSCI)
for our video restoration architecture—which was successful at restoring
backtracked outputs of all of our generalized event cameras (adaptive-EMA,
adaptive-Bayesian, spatiotemporal chunk, and coded-exposure events). We
also experimented with the spatial-temporal shift-based model of Li et al. [125]
(ShiftNet): while this architecture was successful at restoring three of our
four proposed events, it did not succeed at restoring backtracked coded expo-
sures. We attribute this to the fact that EfficientSCI was designed with video
compressive sensing in mind, whereas ShiftNet is targeted for more general
video-restoration tasks.

130

The memory cost of EfficientSCI scales with the number of input frames.
Thus, we are constrained by the device memory in the number of frames we
can reconstruct. For example, with 24 GB of GPU memory and a resolution
of 512X256, we can reconstruct about 96 video frames—which can cover a
temporal extent of 3000-9000 binary frames (30-90 ms). Increasing the tem-
poral extent requires sampling the backtracked cube at an increased temporal
stride, which can lead to blurring and lower-quality results. One solution to
this problem might be to employ a recurrent architecture with a fixed-size
memory. However, forward-mode recurrent inference must be causal; i.e.,
the predicted frame at time ¢t may only consider backtracked samples from
times before ¢t. An efficient recurrent model may enable reconstructing videos
at frame-rates faster than what we show in this work (~3000 FPS)—indeed,
our methods that operate the granularity of individual binary frames (e.g.,
Section 2.4.1) can, in principle, provide reconstructions at the frame-rate of
SPAD photon-detections, i.e., 96.8 kHz.

A.4.2 Dataset

We use 4403 high-speed videos from the training split of the XVFI dataset [211]
to train our restoration models. We temporally interpolate these 1000 FPS
to 16000 FPS using RIFE [90] and treat each video frame, normalized be-
tween 0 and 1 as the photon-detection probability. We then draw 6 binary
frames per video frame (as a per-pixel Bernoulli random variable, based on the
photon-detection probabilities)—thereby giving us binary-valued responses
at 96 kHz. We remark that our dataset generation approach here (unlike in
Sections 2.5.3 and A.8) is not physically accurate, since we directly treat the
video’s values as photon-detection probabilities instead of average photon-
arrival rates. We adopt this approach for its simplicity and note that the
difference (between detection probabilities and Poisson rates) manifests as a
tone-mapping operation by the SPAD’s response function (f(x) = 1—e™). We
did not see any generalization issues when applying our models trained this

131

synthetic dataset to real SPAD data—in both ambient and low-light scenarios.

A.4.3 Training Parameters

All restoration models were trained until convergence (40-60 epochs) using
the Adam optimizer [113] and the mean squared error (MSE) loss objective.
We used an initial learning rate of 10, which was decayed as per a cosine-
annealed scheduler [146] to a minimum value of 10®. When training the
spatiotemporal chunk method, we randomly choose 7 on each training itera-
tion from a uniform distribution covering the range [0.76, 1.43]. We also clip

the gradient norm to 1.0 to resolve instability during training.

A.5 Baseline Details

EDI++ construction. EDI [170] is a hybrid event-plus-frame technique
that can produce a series of sharp images from an event stream and a long
exposure spanning the same time duration. There are two practical difficulties
in implementing this method: (1) precise spatial- and temporal-alignment is
needed between the frames and events, (2) differences in imaging modalities
between conventional CMOS cameras and DVS event sensors. There is also
a third (DVS specific) difficulty, which Pan et al. [170] overcome by solving
an optimization problem (either across one pair of event streams and frames
or across multiple such inputs): the contrast threshold in conventional event
cameras is not necessarily known and can have inherent randomness [85, 67].
In contrast, when implementing EDI using SPAD-events and frames, we
have none of these difficulties: frames and events are perfectly aligned (by
construction), the same imaging modality (SPAD photon detection) is used to
obtain both events and frames, and finally, the forward (or event generation)
model is precisely controlled (no optimization problem has to be solved).
Thus, SPAD-based EDI can be thought of as an ideal version of EDI. We
further refine EDI outputs using a trained restoration model (with the same

132

architecture used for video restoration of our generalized events), and call
this idealized, refined version of EDI “EDI++.”

8-bucket compressive sensing. We use the multi-bucket video compressive
sensing method described in Sundar et al. [216], with 8 buckets and spanning
32 subframes—where the sum of 64 binary frames comprises a single subframe.
For restoring these coded 8-bucket capture, we use EfficientSCI [231], while
retaining the same densely-connected residual architecture that constitutes
the video restoration model for the proposed generalized events.

Burst denoising baseline. We perform burst denoising on a stack of 32
short exposures—where the sum of 64 binary frames constitutes one short
exposure—using the align-and-merge technique of Hasinoff et al. [75]. Af-
ter the merging step, we additionally perform BM4D denoising [154] (with
o = 0.02, after binomial variance stabilization [262]). Further, we find that
BM4D applied directly to the stack of short exposures (with binomial variance
stabilization) results in poor performance (~28 dB PSNR on the rate-distortion
plot of Figure 2.8).

A.6 Camera Motion Experiments

In this subsection, we provide a qualitative analysis of the impact of ego-
motion on the event-generation rate and the output-image quality. We con-
sider three scenes with camera motion: the “building” sequence that features a
significant amount of spatial structure and image detail (downtown buildings);
the “Ramanujan bust” sequence, which is an indoor scene with a moderate
amount of texture (from the bust and metal plaque); and a nighttime driving
sequence where the SPAD was placed on the car’s dashboard.

We show the change points and reconstructions obtained using one of our
proposed generalized events (adaptive-Bayesian, Section 2.4.1) for these se-
quences in Figures A.6, A.7, and A.8. To bring out the effect of camera motion,

133

we speed up the SPAD’s output response (by skipping binary frames) by fac-
tors of 2%, 4x and 8X. Thus, a 4X sped up sequence sees 4X as much camera
motion. For additional context, we also show the extent of motion using a
long exposure and the response of a (SPAD-based) event camera across the

same duration.

Across all sequences, we observe that even with an exaggerated amount of
camera motion (e.g., 4X and 8% sped-up sequences), we still see a significant
amount of compression (reported with respect to raw photon readout) and a

modest sensor readout (reported in bps/pixel).

A.7 Plug-and-Play Event Inference

Expanded results. Figure A.9 shows an expanded set of plug-and-play
inference results. This figure includes results for a 42 ms long exposure (4096
binary frames, second row) and a burst reconstruction method [150], run on
consecutive 0.3 ms short exposures (32 binary frames). The long exposure
fails to capture fast-moving objects; there is significant blur in the arm, racket,
and ball, causing inference to fail in these regions. The burst reconstruction
gives good-quality inference in both static and dynamic regions; however, it
requires a high readout bandwidth (about 30x higher than our method).

Experiment details. We manually trim the Prophesee outputs to a temporal
extent corresponding to the SPAD capture (consisting of 8192 binary frames).
We run a Prophesee-provided E2VID model on these events to reconstruct
a video. For our method and the burst reconstruction in Figure A.9, we
run pose detection, corner detection, object detection, and segmentation on
the reconstructed frame corresponding to the 2224 binary frame. For the
long exposure results in Figure A.9, we run these methods on the mean over
binary frames 0-4095. See below for optical flow extents. Below we provide
additional details for some of the experiments in Figures 2.7 and A.9.

134

Long exposure Conventional events Change points (ours) Reconstruction (ours)

motion

1x camera

163 bps/pixel 403 bps/pixel 518 bps/pixel, 187x compression

2x camera
motion

640 bps/pixel

4x camera
motion

¥ N bl * i

163 bps/pixel 1150 bps/pixel 1160 bpsixel, 83x compression

8x camera
motion

163 bps/pixel 1620 bps/pixel 56 bps/pixel, 66x compression

Figure A.6: Ego-motion results on the “building” sequence. We run
our generalized event technique on 8000 binary frames in each row. In the
second to fourth rows, we speed up photon-detections by processing only
every n-th binary frame (n =2, 4, 8)—this exaggerates ego-motion. (left to
right columns) We depict the extent of motion using a long exposure across
the same duration. We also show the changes detected by a (SPAD-based)
event camera [216]. With increasing ego-motion, our techniques output more
change points (as expected), but the reconstructions remain relatively sharp
(there is some amount of blur induced), even with 8x more motion.

Long exposure

1x camera
motion

2x camera
motion

4x camera
motion

8x camera
motion

163 bps/pixel

135

Conventional events

Change points (ours) Reconstruction (ours)
— e
|

] T
}

317 bps/pixel, 305x compression

105 bps/pixel

170 bps/pixel

265 bps/pixel

524 bps‘./pixel‘ 1056 bps/pixel, 92x compression

Figure A.7: Ego-motion results on the “Ramanujan bust” sequence.
The sequence comprises 8000 binary frames, each acquired at a frame rate
0f 96.8 kHz. Column and row descriptions are identical to Figure A.6. This
sequence has comparatively less texture than the building sequence, conse-
quently, the blur in our output reconstructions (at 8x the camera motion) is

far less perceptible.

+ HRNet pose: We use the HRNet-W48 version of the model.

« Harris corners: We run a standard Harris corner detector with o = 4.

« RAFT flow: For our method and the burst reconstruction in Figure A.9,

we run RAFT between the reconstructions corresponding to the 2224"

and 2864 binary frames. For the long exposure results in Figure A.9,
we consider the interval between the 0-4095 and 4096-8191 exposures.

We use the RAFT-Large version of the model.

« DETR detection: In most cases, we use a confidence threshold of 90%.

https://github.com/open-mmlab/mmpose/blob/ffcfa39b073d1b20add2bd8611bf3b5fca9fe576/configs/body_2d_keypoint/topdown_heatmap/coco/td-hm_hrnet-w48_8xb32-210e_coco-256x192.py
https://pytorch.org/vision/main/models/generated/torchvision.models.optical_flow.raft_large.html#torchvision.models.optical_flow.raft_large

136

Long exposure Conventional events Change points (ours) Reconstruction (ours)

e @ B

1x camera
motion

160 bps/pixel 109 bps/pixel

o ®

2x camera
motion

160 bps/pixel 120 bps/pixel

i A @

4x camera
motion

160 bps/pixel 150 bps/pixel

n @

8x camera
motion

160 bps/pixel 160 bps/pixel 270 bps/pixel, 61x compression

Figure A.8: Ego-motion results on the nighttime driving sequence.
Column and row descriptions are identical to Figure A.6. The SPAD was
operated at a lower speed in this sequence (16.6 kHz instead of 96.8 kHz)—
we report compression factors with respect to photon-detection readout at
16.6 kHz. While this sequence also has lesser texture than Figure A.6, the
low-light conditions here make it more challenging. When ego-motion is
exaggerated by 4x (or higher, last two rows), we observe that details of the
bushes are blurred out. However, the pedestrian crossing sign, which is has
better contrast, is still recovered.

137

Conventional events (Prophesee EVK4, 331 bps/pixel)

LAy
WV { '\ .
L}
A2) ,
person 85%
Arc* corners E-RAFT flow DETR on E2VID+ SAM on E2VID+

42 ms long exposures (120 bps/pixel at 10 FPS)
ball >99%

person 96%

RAFT flow DETR detection

HRNet pose Harris corners SAM segmentation

0.3 ms burst reconstruction (15100 bps/pixel)

P

racket 99%

ball >99%

person 94% person 96%
Harris corners RAFT flow DETR detection

HRNet pose SAM segmentation

Generalized events (Spatiotemporal chunk, Sec 4.2, 520 bps/pixel)

\
™
A

ball >99%

person 97%
DETR detection

HRNet pose Harris corners RAFT flow SAM segmentation

Figure A.9: Expanded plug-and-play results. In addition to the results
shown in Figure 2.7, we show results for long exposures (consisting of 4096
binary frames) and burst reconstructions [150].

We lower the threshold to 80% for the E2VID reconstruction given the
lack of high-confidence predictions. We use the ResNet-50 version of
the model.

« Arc* corners: We run the algorithm on the entire event sequence. We
temporally trim the predicted corners to a 0.8 ms window around the
target instant. In the figure, we show events within an 8 ms window to
provide visual context.

+ E-RAFT flow: We prepossess events into a voxel grid with 30 bins
(divided into 2 sub-durations), with a time span corresponding to that
used in the RAFT experiments.

https://huggingface.co/facebook/detr-resnet-50

138

A.8 Rate-Distortion Evaluation

Dataset details. We source 15 videos from YouTube that were captured by a
Phantom Flex 4K camera at 1000 FPS. See the supplement of our paper [217]
for thumbnails depicting the scene content in each video. We download these
videos at a resolution of 854x480 pixels and further downsize (by 1.6x) and
vertically crop them to the SPAD’s resolution of 512X256 pixels.

We did not utilize the XVFI dataset [211], which we used for training our
video restoration models, for evaluating rate-distortion tradeoffs to prevent
the possibility of data leakage. Further, we find that these YouTube-sourced
videos have a more extreme range of motion than XVFI videos.

Simulating SPAD responses. To simulate SPAD photon detections from
high-speed videos, we adopt the following steps:

1. We interpolate videos at 1000 FPS by 16x using RIFE [90] to 16000 FPS.

2. We treat the videos as SRGB-encoded frames, convert them to linear
RGB images, and then grayscale.

3. Next, we determine the average count of incident photo-electrons as
N, t) =ad(x,t)+d, (A9)

where we J(x,t) represents a video frame, d is number of spurious
detections ((7.74x10*) counts per binary frame, using values reported
in Ulku et al. [223]). We choose a such that the average value of aJ(x, t)
over each pixel location x and time ¢ is 1—we find that our ambient
captures with the SwissSPAD2 have an average photon per pixel per
binary frame (PPP) of 1.

139

4. Finally, we draw binary frames with the probability of a 1 given by
Prob{®(x,t) =1} =1 — e N&D, (A.10)

From each frame at 16000 FPS, we draw 6 binary frames, thereby simu-
lating photon detections at 96000 Hz.

Computing metrics. We evaluate perceptual distortion using PSNR (com-
puted from the average mean squared error across the entire video [108]),
SSIM (computed per-frame and averaged) and MS-SSIM (computed per-frame
and averaged) metrics. Both metrics are converted with respect to linear
values. Specifically, each of our generalized event cameras and baselines
(EDI++, burst denoising, coded 8-bucket) recovers the time-varying estimate
of 1 — e™N®D je., the probability of photon detection. Let us denote this by
p(x,t). We can obtain linear estimates by computing

1 1
a(log(—l ~ ek, t)) — d). (A.11)

Baseline parameter sweeps. We implement EDI++ with SPAD events,
with an exponential decay of 0.95, and sweep the threshold between 0.3-0.54.
The other baselines (burst denoising, long exposure, compressive sensing)
are frame-based, and do not feature a tunable parameter that controls their
readout rate.

Generalized-event parameter sweeps. For adaptive-EMA, we set the
exponential decay (of the EMA) to 0.95, and sweep the threshold between 0.3-
0.54. For adaptive-Bayesian (Section 2.4.1), we retain the top-3 forecasters and
vary the sensitivity y of BOCPD uniformly (on a logarithmic scale) between
107 and 102, For the spatiotemporal chunk method (Section 2.4.2), we use a
patch size of 4x4 pixels, average 32 binary frames per temporal chunk, and
vary the threshold (7) of the change detector uniformly between 0.6 to 1.28.

140

For coded-exposure events, we use a chunk size of 1024 binary frames, with 4
coded buckets (measurements per chunk) that multiplex 16 subframes each—
thus, each subframe consists of 1024/16 = 64 binary frames. We vary the
confidence level of Wilson’s score (“a” parameter) uniformly between 1.2 to
6.8.

Extended results. In addition to the PSNR-based rate-distortion plot shown
in Figure 2.8, we include evaluations based on SSIM and MS-SSIM metrics
in Figure A.10 (top). Across metrics, we see that generalized event cameras
provide a pronounced difference in performance over the considered baselines
(shown in shades of gray). (bottom) We include another evaluation on 4096
binary frames (instead of 2048). We observe that the readout rate, measured
as bps/pixel, is lower across this extended duration—since the fixed readout
costs of static (and less dynamic) regions is amortized over a longer duration,
unlike frame-based cameras that involve fixed readout for all regions of an
image. Finally, we remark that the performance gap between EDI++ and our

techniques is further widened across this longer duration.

A.9 UltraPhase Experiments

System description. UltraPhase consists of 3X6 cores, each of which pro-
cesses data from a 4x4 patch of SPAD pixels. The chip operates at a frequency
of 0.42 GHz, implying a maximum of 4341 instructions per binary frame at
96.8 kHz. We additionally refer readers to Ardelean [7] for a detailed descrip-
tion of the chip architecture.

Implementing event cameras on UltraPhase. We implement our event
camera designs in UltraPhase assembly code. At this point, UltraPhase does
not have native hardware for computing divisions—so we modify our meth-
ods to work avoid division operations. For the Bayesian method, we skip
restarts and avoid division when computing the likelihood by multiplying

141

2048 binary frames

Jr—————————————————~ - pR— 7

0.98 > =3
™ ﬁ' a 095 Fm. — 1 "
T S09% et

A

PSNR
8
e,
S-SSI
o
®
SSIM

s 2 —8—Sec 4.2, chunk-based
0.92 0.85 —8— Sec 4.1, Bayesian

ol Al 1 1 | 0.90 —®— Sec 4.3, coded events
“5300" - _—
1000 2000 3000 4000 9000 1000 2000 3000 4000 9000 1000 2000 3000 4000 9000 Sec 3, adaptive EMA

Bits per second (bps) per pixel Bits per second (bps) per pixel Bits per second (bps) per pixel e EDls

Compr. sensing

4096 binary frames

Long exposure

T < A Burst denoising
0.975 f‘ ¥
34 #‘:H A 095 N
A
> *
X

= 09501 awy -~
2 N

PSNR

%
3 & 0925
A, g

0,900 0.85

N S R N L
1000 2000 3000 ~ 5000 6000 1000 2000 3000 ~ 5600 6000 1000 2000 3000 © 5000 6000
Bits per second (bps) per pixel Bits per second (bps) per pixel Bits per second (bps) per pixel

Figure A.10: Extended rate-distortion evaluation. (top) Rate-distortion
evaluations based on PSNR, SSIM and MS-SSIM metrics across 2048 binary
frames. (bottom) When considering a longer temporal extent, i.e., 4096
binary frames, we see that the readout rate at which a significant PSNR (or
other metrics) drop-off is noticed becomes smaller—in other words, we obtain
more compression of raw photon detections.

arguments with their least common multiple—this is possible because the
min and argmax operations carried out in BOCPD are invariant to the scale
(of forecaster values). For the spatiotemporal chunk method, we skip the nor-
malization step and use a 4X16, 8-bit quantized feature matrix P, in contrast
to the 16Xx16 matrix we use in the rest of our experiments. For the coded-
exposure method, we consider (2-bucket, 8-subframe) masks; additionally, we
replace Wilson’s score by a fixed confidence interval (essentially amounting
to a fixed threshold operation). For most scenes, the above modifications do
not significantly reduce the quality of the results. See the supplement of our
paper [217] for a comparison.

Clock cycle measurements. Due to circumstances beyond our control, we
were unable to run our methods on a physical testbed system. We evaluate the
runtime characteristics of our methods by assembling them for UltraPhase
and measuring the number of compute cycles required to execute them. Given
the deterministic nature of the digital hardware, the compute and memory

142

requirements we measure in this evaluation are identical to those we would

measure in physical hardware.

We confirm that all methods operate within the memory budget of the chip.
In Table A.1, we show the measured clock cycles (the average per binary
frame) for each method. In the case of branching, we assume the more
computationally expensive branch is taken. Therefore, all compute values are
an upper bound.

Readout estimation. The chip readout depends on the dynamics of the
scene. To estimate the readout, we run our methods on a 12x24 crop from
the tennis sequence in Figure 2.7, over 2500 binary frames. We show frames
from this crop in the supplement of our paper [217]. We scale the measured
readout values to units of kilobytes per second; see Table A.1 for results.

Power estimation. We estimate two components of power consumption:
compute power and chip readout power. We base our analysis on [216]. We
assume the chip consumes 3.5 picojoules per clock cycle spent executing an
instruction, and that the chip expends 54 nanowatts per kilobit of readout.
Table A.1 shows our estimated compute and readout power.

Table A.1: UltraPhase results. We measure the number of compute cycles (per binary frame) required to
implement each of our methods, and estimate the readout bandwidth. Based on these values, we estimate the
power required for on-chip computation and readout. All of our methods fit within the chip’s computational
budget of 4341 instructions per binary frame and give two orders of magnitude reduction in bandwidth compared
to reading out raw photon detections. Due to these bandwidth reductions, our methods are also much more
power efficient than raw photon readout.

Method Cycles Bandwidth estimate (kB/s) Compute power (W) Readout power (W) Total power (W)
Raw photons 12 3600 5.43%107 1.57x10° 1.57x10°
Adaptive-EMA 2367 59.0 2.11x10* 2.57x107 2.37x10*
Bayesian 3095 57.6 3.62x10* 2.51x107 3.87x10*
Spatiotemporal chunk 380 53.3 5.45x10° 2.32x10? 2.87x10°
Coded 177 33.1 1.18x10°¢ 1.44x10° 1.56x107

134!

144

B Compute: Event Neural
Networks

In this appendix we provide further details, results, and discussion for the
Event Neural Networks work in Chapter 3. The supplementary material of
our paper [50] contains additional result samples and complete result tables.

B.1 Results on Low-Level Tasks

In this section, we describe our experiments for low-level vision tasks. We
consider HDRNet [63] for image enhancement and PWC-Net [214] for optical
flow.

Note that these models include some specialized operations (i.e., the bilateral
transform for HDRNet [63] and flow warping in PWC-Net [214]). These
operations represent a small portion of the overall computational cost of the
models. For simplicity, we exclude them when counting multiply-accumulate
operations.

Image enhancement. HDRNet [63] can be trained to reproduce several
image enhancement effects. We use the Local Laplacian [177] version of
the model. HDRNet has two sub-networks: a deep, low-resolution feature
network and a shallow, high-resolution guidemap network. The guidemap
network represents only about 10% of the overall operations, and converting it

145

to an EvNet has a noticeable effect on the visual quality of the output. There-
fore, we only convert the feature network to an EvNet. We report operation
savings for both the overall model (both sub-networks) and the feature net-
work (the EvNet portion). We refer to these operation counts as “HDRNet-a”
and “HDRNet-f,” respectively. We use a threshold of 4 = 0.1 and evaluate
using the PSNR metric. We resize all images to 540Xx960 before applying the
model.

We use the original authors’ pretrained weights. However, these weights were
trained on a non-public dataset. Therefore, instead of evaluating the model
against ground truth labels, we compute the agreement between the outputs
of the event model and conventional model. We evaluate on a subset of the
MPII video dataset [6] (see Section B.4 for details on the dataset). See Table B.1
and Table B.2 for results.

Optical flow. We also consider the PWC-Net model [214] for optical flow
computation. Unlike the other models (OpenPose, YOLO, HDRNet) which
take a single frame as input, this model takes a pair of frames. We use a
threshold of h = 0.01 and evaluate using the EPE metric [10]. We resize all
images to 288x512 before applying the model. We use the original authors’
weights trained on Sintel [22]. Like with HDRNet, we evaluate the agreement
between the event and conventional outputs. Results are shown in Table B.1
and Table B.2. We also evaluate on the ground-truth labels in the Sintel
training dataset. On this data, the conventional model achieves EPE 2.86 and
the event model achieves EPE 3.33.

B.2 Additional Analysis Experiments

Varying granularity. Table B.3 shows the effect of increasing the granularity
of the policy. We evaluate the OpenPose model [28] on the JHMDB dataset [99].
We test both a spatial chunking policy and a policy that chunks along the

146

Table B.1: Results on low-level tasks. Results for image enhancement and
optical flow. The tables gives the overall computation savings, agreement
between the conventional and event models, and overhead percentages (num-
ber of extra operations expended for each operation saved).

Model Savings Agreement Math Load/Store

HDRNet-a 5.78X 39.4PSNR 2.57% 3.79%
HDRNet-f 23.9x 39.4PSNR 2.57% 3.79%
PWC-Net 2.68X 0.335 EPE 0.44% 0.74%

Table B.2: Camera motion for low-level tasks. The savings factor for
different levels of camera motion, evaluated on our custom MPII dataset (see
Section B.4).

Model None Minor Major

HDRNet-a 6.19x 6.02x 5.55X
HDRNet-f 34.9x 29.7x 20.0%
PWC-Net 541x 3.29x 211X

Table B.3: Varying granularity. Results for the OpenPose model on the
JHMDB dataset. Using larger chunks, especially channel chunks, reduces
the computational gains somewhat. However, chunking may have practical
benefits on some hardware.

Variant Threshold PCK Operations
Conventional — 0.7640 7.055x10'°
No chunking 0.05 0.7581 6.166x10°
2x2 chunks 0.05/4/2 07575 8.574x10°
4x4 chunks 0.05/4/4 07662 1.191x10'°
8x8 chunks 0.05/y/8 07431 1.646x10%

Channel chunks 0.02 0.7600 1.782x10'°

channel dimension (e.g., [72]). Because each neighborhood computes a mean
of several |d|, the thresholds must be reduced to keep the accuracy from drop-
ping. The threshold-setting strategy 0.05/ ﬁ is a heuristic that we found to
give relatively stable accuracy with varying n. The results show that increasing
the chunk size reduces the operation savings. However, chunking may, in
practice, allow more efficient execution on certain hardware.

147

Comparison against output interpolation. One alternate strategy for effi-
cient video inference is to run a model once every n frames and interpolate its
predictions for the remaining n—1 frames. We apply this strategy to OpenPose
on JHMDB and compare it to the EvNet approach. We use n =16 and linearly
interpolate the joint positions between model predictions (the value 16 was
chosen to give a computational cost close to the EvNet in Table 3.1). The in-
terpolated model expends 6.764x10° ops per frame on average and achieves a
PCK of 68.52% (a reduction of 7.88% from the conventional model). Compare
this to the EvNet in Table 3.1, which expends 6.780x10° ops on average while
achieving a PCK score of 76.37% (a reduction of 0.03% from the conventional
model). Compared to output interpolation, the EvNet gives much higher
accuracy at a similar computation cost. Note that we trim the inputs for the
interpolation model to have a length of kn + 1 frames, where k is a positive
integer. This ensures that the video can be divided into uniform blocks of n
frames (with one extra frame at the end). If we trim to the same length for
the EvNet, it achieves a PCK of 76.82% with average cost 7.265x10° ops. The
conventional model achieves PCK 76.67% at 7.055x10'° ops on the trimmed

video.

Temporal smoothness. We have anecdotally observed improved tempo-
ral smoothness in the outputs of EvNets. We hypothesize that this is one
of the reasons for the slightly increased accuracy for some models (e.g., Ta-
ble 3.1) over the conventional baselines. We quantitatively measure temporal
smoothness for OpenPose on JHMDB by measuring the mean L2 joint motion
between frames. The average joint motion for the conventional model is 10.3
pixels. For the EvNet with threshold & = { 0.01, 0.02, 0.04, 0.06, 0.08 }, the
average motion was { 9.77, 9.26, 7.98, 7.14, 5.81 } pixels. This confirms that the
EvNet outputs are more temporally smooth than those of the conventional
model, with smoothness increasing with the policy threshold.

148

Table B.4: HRNet Results. Results for the HRNet model on JHMDB.

Model Threshold PCK Operations
Conventional — 90.37% 1.019x10'°
EvNet 0.05 90.43% 1.112x10°
EvNet 0.1 90.46% 7.361x108
EvNet 0.2 86.44% 4.187x10%
Skip-Conv 0.05 89.17% 1.035%x10°
Skip-Conv 0.1 84.45% 6.473x10%
Skip-Conv 0.2 78.72% 3.307x10%

B.3 HRNet Experiments

We test HRNet [215], a state-of-the-art model for various location-based tasks
(e.g., object detection) on the JHMDB pose recognition dataset [99]. We use
the HRNet-W32 version of the model.

Training procedure. We initialize with pretrained MPII weights from [215].
We fine-tune the model on JHMDB for 20 epochs using the Adam optimizer
and a learning rate of 10°. We set aside 20% of the training data for validation
and save the model at the epoch with the lowest validation loss. JHMDB
defines three train/test splits—we train and evaluate a model on each train-
ing split and average the results (accuracy and computation costs) over the
three splits. Where not otherwise specified, we adopt the training and data
augmentation parameters of [72]. All of our training code will be publicly
released and included with the supplementary material.

Evaluation. We evaluate three model variants: the conventional model, an
EvNet and Skip-Conv (without periodic resets). See Table B.4 for results. We
report the PCK metric (as in our experiments on OpenPose). The accuracy
and savings we observe are in line with our other experiments.

149

B.4 Experiment Details

Custom MPII dataset. Here we describe the dataset that we use in our
camera motion experiments (Table B.2) and for evaluating HDRNet and PWC-
Net (Table B.1). We take a subset of the MPII video dataset [6]—specifically,
the first 246 videos that have exactly 41 frames (most, but not all videos in
MPII have 41 frames). We then label each video in this dataset as having “no
camera motion” (perfectly stationary camera), “minor camera motion” (slight
camera shake), or “major camera motion.” These splits contain 59, 46, and
141 videos, respectively.

Overhead counting. We count overhead operations as follows. An update
to an accumulator requires one load (a), one addition (a + g(A;,)), and one
store (a). An update to a gate requires two loads (b and d), three additions
(d + f(a) — b and |d| — h), and two stores (b and d). A transmission requires
one load (d), one subtraction (d — A,,,), and one store (d).

B.5 Derivation of Equation 3.4

The equation for a'” is a consequence of the update to a®® defined in Equa-
tion 3.3, combined with the linearity of g (g of a sum is equal to the sum of
the g). The equation for b is a direct consequence of the update rule in
Equation 3.3.

The equation for d” in Equation 3.4 comes from combining Equation 3.3 and
the post-transmission subtraction of A,,. Let d® = 0 as stated in Section 3.4.2.
With Equation 3.3, and noting that b® = f(a®),

T
d® =" (f(@®) - btV) = b® — p©®, (B.1)

t=1

150

®

oup» WE have

Adding in the post-transmission subtraction of A

T
dD = bp® —p©O — 3 AL (B.2)

out”
t=1

B.6 Thoughts on Theoretical Guarantees

For certain special cases of transmission policies (e.g., a threshold policy
with h = 0), we can guarantee that the output of an EvNet will be equal to
that of the equivalent conventional network. As we make the policy more
selective (e.g., by increasing h), the efficiency of the EvNet improves, but its
output increasingly deviates from that of the conventional network. While
we currently describe this behavior qualitatively, developing the rigorous
theoretical tools necessary for a quantitative description is an important next

step.

We can describe a neural network as a composition of functions,

Y = qn(. (@2(q1 (X)) ..). (B.3)

We can think of an event network as perturbing the output of each g; by some
€;. That is,
Y = qu((@(q1(x) +6) +6)...) + €y (B4)

If we assume a threshold policy with threshold h, then ||¢;||, < h. Given these
facts and some knowledge of the properties of the g; (e.g., the distribution of
their weights), can we bound the norm of y — y’? This question has important
implications for applications that require accuracy guarantees and should be
studied in future work.

151

C Compute: Eventful
Transformers

This appendix expands on Chapter 4. The supplementary material for our
paper [51] contains additional result tables not included here.

C.1 Further Discussion

The ViViT temporal sub-model. Recall that, for ViViT action recognition,
we fine-tune the non-Eventful temporal model on the outputs of the Eventful
spatial model. We now provide some intuition as to why this is necessary to

preserve the prediction accuracy.

The outputs of an Eventful Transformer are approximations of the “correct”
outputs (those of the original, non-Eventful Transformer). In the case of
the ViViT spatial model, individual outputs are fairly close to the correct
values. However, the pattern of temporal changes between outputs may be
quite different from the original model. Token gates reduce the number of
updated tokens on each frame, but each update tends to be larger (a single
update may contain accumulated changes from several time steps). Given the
nature of the prediction task—action recognition on highly dynamic videos—
the temporal sub-model is sensitive to the pattern of temporal changes. Fine-

tuning allows us to correct for the shifts in these temporal changes that result

152

from using an Eventful spatial model.

Compatibility with spatial redundancy methods. We now provide further
discussion regarding the compatibility of our method with spatial redundancy
approaches. Abstractly, we can think of spatial redundancy methods as sum-
marizing a set of tokens x € RV*? using a reduced set of tokens £ € RMxP,
The simple method in our experiments summarizes tokens using uniform
pooling; however, we could also use adaptive pruning or merging.

Assume we apply a gate to the reduced tokens xX. The gate assumes that the
definitions of its input tokens are relatively stable. This assumption clearly
holds for non-reduced or uniformly pooled tokens. However, we need to be
careful when applying arbitrary reductions to x.

For example, say we have an image containing a region of blue sky. An
adaptive token merging method might combine all sky-colored tokens from
x into a single token in X. Assume that on frame ¢ = 1, the first token in X
represents the sky. Ideally, on frame ¢ = 2, the first token in X should again
represent the sky. Note that this is not a strict constraint—our gating logic
can deal with non-consistent definitions for a few tokens. However, if the
definitions for all tokens in X completely change between frames, then the
gate will not be able to keep up (i.e., the number of tokens with significant
changes will exceed the policy r-value).

C.2 Additional Experiments

Video action recognition on Kinetics-400. We evaluate our method on the
Kinetics-400 action recognition dataset [106]. Kinetics-400 contains over 300k
video clips, each annotated with one of 400 action categories. We evaluate
top-1 accuracy. We use the same ViViT model architecture as in our EPIC-
Kitchens experiments; the only difference is the input size (224x224 rather
than 320x320).

153

Table C.1: Kinetics-400 video action recognition. Results for Kinetics-400
action recognition using the ViViT model. We report the total TFlops per
video (spatial + temporal sub-models).

Variant r Accuracy (%) TFlops
Base model — 79.06 3.360
Temporal 96 77.62 1.814
Temporal 48 75.88 1.016
Temporal 24 75.16 0.618

As in our EPIC-Kitchens experiments, we fine-tune the non-Eventful tempo-
ral model on the outputs of the Eventful spatial model. We fine-tune three
variants of the model with r =24, 48, and 96 (out of a maximum of 197 tokens).
We train for 10 epochs on a subset of the training set containing 39729 videos.
We use the AdamW optimizer [147] with a learning rate of 2x10°¢, weight
decay of 0.05, and a batch size of 16 videos. We add 50% dropout before the
final classification layer.

Table C.1 shows our results. The accuracy-compute tradeoff is generally
consistent with our results on EPIC-Kitchens. For example, with r = 96, we

sacrifice 1.48% accuracy for a speedup of approximately 2x.

A threshold policy. We evaluate the ViTDet object detection model with a
threshold policy. The threshold policy selects all tokens where the L2 norm of
e exceeds a threshold h. We test h = 0.2, 1.0, and 5.0. See Table C.2 for results.
The accuracy-compute tradeoff for the threshold policy is generally worse
than for the top-r policy. This is likely due to the use of a constant threshold
for all gates (we would ideally use a unique threshold for each gate).

C.3 Experiment Details

Fine-tuning ViTDet for VID. We initialize our model using COCO [138]
pre-trained weights, and then trained on a combination of the ImageNet VID
and ImageNet DET datasets, following common protocols in [38, 274]. We

154

select images from the DET dataset that are of of the same 30 classes as in the
VID dataset. The training uses a batch size of 8, a maximum input resolution
of 1024x1024, an initial learning rate of 10, and a weight decay of 0.1. We
use the AdamW optimizer [147] with linear warmup for a total of 5 epochs,
with 10x learning rate decay from the 3rd epoch.

Fine-tuning the ViViT temporal model. We fine-tune the temporal sub-
model for 5 epochs. We use the AdamW optimizer [147] with a learning rate
of 107, weight decay of 0.05, and a batch size of 8 videos. We add 50% dropout

before the final classification layer.

Arithmetic precision. We compute the product Av at half precision in the
global self-attention operators of the Eventful model. Using half precision
reduces the model’s computational cost and memory footprint and has a
negligible effect on accuracy. When evaluating runtimes, we also compute
Av at half precision in the base model (this ensures a fair comparison).

Runtime experiments. For ViTDet, we evaluate CPU runtimes using one
random video from VID (ID 00023010, containing 242 frames). On the GPU,
we use 5 random videos. For ViViT, we evaluate CPU runtimes using 5 random
videos from EPIC-Kitchens. On the GPU, we use 100 random videos. We use

a consistent random seed across all experiment runs.

Operation counting. Our GFlop counts include the following types of oper-
ations: linear transforms, matrix multiplications, einsum operations (used in
relative position embeddings), and additions. We count a multiply-accumulate
as a single operation. In Eventful Transformers, we additionally count opera-
tions required for updating the gate (additions and subtractions) and the extra
additions in the sparse attention-value update. We only report operations
in the Transformer backbones (e.g., we do not count anything in the object
detection head).

155

Table C.2: A threshold policy. Results for a threshold policy with the 1024-
resolution ViTDet model. The policy selects tokens where the error e exceeds

a threshold h.

Variant h mAP50(%) GFlops
Base model — 82.93 467.4
Temporal 0.2 83.00 431.8
Temporal 1.0 82.75 294.1
Temporal 5.0 78.11 133.5

156

D Stability and Robustness:
Instant Video Models

D.1 Proofs

This section contains proofs of the oracle and collapse bounds from Section 5.4.

D.1.1 Oracle Bound

We assume that § takes the form &(a, b) = {(a — b) where ¢ is a norm on R¢.
We define

u(j)’y)=Za(yt’yt)+/125(j’tsyt+1) (D.1)
zzg(yl_yt)+/12§(j’t_yt+1) (D.2)

as the bracketed expression in Equation 5.4, using the shorthand y, = f(e,(x,)).
Our objective is to show that for any y # y, there exists some y' # P such

that u(y’, y) < u(p, y).

There are two possible cases: (1) , # y, for at least one of the endpoints,
meaning y, # y; or ¥, # y.; and (2) y, = y, at both endpoints.

We start with the first case. We assume that y, # y,, with the proof being

157

symmetric for p, # y,. We propose y* where yl' =y, and y'[=y fort>1.
Starting with the definition of u,

u(y',¥) =5 —y) + A8 = P2) + . (D.3)
=y, =) + ... (D.4)
w(,y) = —y1) + A4 —) + ... (D.5)

By the triangle inequality and absolute homogeneity of ¢,

u@,y) =2 -9)+.. (D.6)
= =)+ P —P)) + . (D.7)
Sy =)+ AP = Po) + . (D.8)
=P —y) + AP — P2) + .. (D.9)

Assume that 1 < 1. Then,

u(y',y) < AP —y1) + AP —P2) + . (D.10)
<l =y)+ AP = P2) + ... (D.11)
=u(p,y). (D.12)

Therefore, u(y', y) < u(p,y).

To summarize, we have shown that if 1 < 1, any y where y, # y; cannot
minimize u. The same is true for y. # y,.

Now we consider the second case, where y # y but their endpoints are the
same. In this case, we must have y, # y, for some 1 < s < 7. We propose

158

yI =y, and yj' = y, for t # 5. Starting again with the definition of u,

ot P =y —y) + A (Y = P + .. (D13)
=+ AP —Y) + ALY = D) + - (D.14)
u@,y) =+ AP =)+ —¥) + AP — Y1) +... (D.15)

u(y’,y)

By the triangle inequality and absolute homogeneity of ¢,

u@y,y) =+ 8@ —)+ Ay, - Vi) + - (D.16)
=+ AP =)+ @ =YD+ AV =)+ (P, = P +
(D.17)
S+ WP =)+ XK@ —y) + Ay — 1) + AP — Pig1) + -
(D.18)
=+ /lg(yt—l -y)+ 2/1§(j’t -y)+ lg(j’t - j’t+1) + .. (D.19)

Assume that 4 < 1/2. Then,

u(y,y) <+ APy =) + 248, — ¥1) + AP, — Piy1) + ... (D.20)
<.t /lg(j’t—l - j’t) + {(j’t - .Vt) + Ag()’)t - j)t+1) + .. (D.21)
=u(®,y) (D.22)

Therefore, u(y', y) < u(y, y).

We have now shown that if 1 < 1/2, any y where y, # y,forl < s <t
cannot minimize u. Combining this with the result from the first case, we
have shown that for 1 < 1/2, y = y is the unique global minimizer of u. []

D.1.2 Collapse Bound

To prove the collapse bound, we first prove the convexity of u. We then show
that, if y, is fixed (cannot be modified by the stabilizer), y, = y, for1 <s <t

159

is alocal minimizer of u for 1 > 7 —1. Because u is convex, this makes y, = y,

the global minimizer.

Define q as the concatenation (y, y), i.e., the vector input to u. Consider two
such inputs q and q'. u satisfies the triangle inequality;

-1

u@+qN=D{F =+ -y +AD LP = Ve + P - ¥,) (D23)

t=1 t=1

T -1 T -1
<@ =Y+ AP = D) + 8P =YD+ AP -9,
t=1 t=1 =1 t=1

(D.24)
= u(q) +u(g"), (D.25)

and is absolutely homogeneous;
ueq) = 2 (P —cy) + 12,8 — cPinn) (D:26)

t=1 t=1
= [e| 24 =¥ +1cA 2, {0 = D) (D27)
=1 =1
= [clu(g). (D:28)
implying u is convex;

u(rg + (1 —r)q") < u(rq) + u((1 —r)q") (D.29)
= |rlu(g) + 11 - rlu(g") (D.30)
=ru(q) + (1 — ru(q"). (D.31)

where 0 < r < 1. Because u is jointly convex on gq, it is also convex with
respect to (5, ..., ¥;) when y and y, are fixed.

Our goal is now to show that, assuming y and y, are fixed, y, = y, for

160

1 < 5 < tis alocal minimizer of u. That is, we want to find the 4 regime
where any small movement away from this point increases the value of u.
Assume a perturbed prediction

Y= +p. 3 +Ps .31+ D), (D.32)

where p, = 0. Starting with the definition of u,

T 7—1
u@.y) =2, =)+, - P) (D.33)
=2 ¢ -) (D.34)

-1

u(y',y) = Z {1+ p—y)+4 Z S+ p)— D1+ piy)) (D35)

t=1 t=1

T -1
= Z S +p—y)+4 z S(pi — Pis1) (D.36)
t=1 t=1
Let
0 = argmax{(p,) (D.37)
tel:t

be the time step with the largest-magnitude perturbation, and let ¢ = {(p,) be
the magnitude of this perturbation. Applying the reverse triangle inequality

to the first summation in Equation D.36 (the accuracy term), we have

D+ P —y) =D, —y)-(=py)

> Z [E(P1 = y) = {(=po)]

= Z S —y) - Z S(py)

T

=>4 —-y)— 2. ¢(p)

t=2

>3 - y) - (- D¢

t=1

161

(D.38)

(D.39)

(D.40)

(D.41)

(D.42)

So, introducing the perturbation reduces the accuracy term by at most (7 —1)¢.

Now considering the second summation (the stability term),

-1]
AZ S(P: — Pe1) 2 /12 $(Pi — Prs1)
t=1 t=1

> A{(p; — Pe)
= A$(ps)
= 1¢.

(D.43)

(D.44)
(D.45)
(D.46)

That is, introducing the perturbation increases the stability term by at least

2.

Therefore, if 1 > 7 — 1, the overall change in u is positive, and we have shown

that y, = p, for 1 < s < 7 is a local minimizer of u. By convexity of u, this

point is also a global minimizer. []

162

D.2 Transport Metric

In this section, we propose an alternate metric for use with our unified loss.
Specifically, we describe a variant of the Wasserstein metric that accounts for
the spatial structure of an image or feature tensor.

Let z;, 2, € R™¥ be two image or feature map channels, and let a = z; — 2,.
We define the transport distance J(a) = {(a) = §(z;,2,) as the minimum
cost of a linear optimization. Intuitively, this optimization finds the short-
est correspondence from m to zero. The correspondence can employ three
mechanisms: (1) mass movement from a positive region to a negative region,
with cost proportional to mass and distance, (2) mass destruction, with cost
proportional to mass, and (3) mass creation, also with cost proportional to
mass. The cost to create or destroy a unit of mass is y.

Formally, we solve the following optimization:

J(a) = mi d..m; 4+ D.47
() = min ZJ M+ Y 2 (Pt) (D.47)
subject to

a+p—c—ym;=0 Vi (D.48)

j
pi>0 Vi (D.49)
>0 Vi (D.50)
m;; >0 Vi, j (D.51)

where d;; is the distance (Euclidean) from pixel i to pixel j, m;; is the mass
moved from pixel i to pixel j, and p; and c; are the mass production and
consumption at pixel i. Both i and j are in the range 1... h X w.

At first glance, this problem may seem computationally infeasible because

163

the number of d;; parameters equals the number of pixels squared, e.g., a
trillion parameters for a one-megapixel image. Fortunately, we can reduce
the number of parameters to ~ (h X w) by pruning all edges where d;; > 2y.
Intuitively, if d;; > 2y, the cost to destroy a unit of mass at location i and

recreate it at location j is less than the cost to move it from i to j.

Despite pruning, this optimization remains somewhat impractical. Finding
a solution takes ~seconds using the open-source solvers available in SciPy.
These runtimes make loss evaluation the primary bottleneck during training.
We might be able to reduce runtime using other solvers—either general-
purpose commercial solvers or specialized optimal transport solvers. We leave
this as future work.

D.3 Composing Stabilizers

Often, a deployed model will be faced with several simultaneous corruptions.
One option in this scenario is to train a single stabilizer on the expected
combination of corruptions. However, doing so requires full knowledge of the
corruptions at training time. In this section, we explore an alternate approach:
composing (fusing) single-purpose stabilizers without additional training.

We consider controlled stabilizers without spatial fusion. Assume we have
two single-corruption stabilizers, denoted by superscripts 1 and 2. The output
Z;, of the fused stabilizers at layer i is

Z,=FL02,+1-£)0O%, 1, (D.52)
z,=p,0z,+1-6)0OZ,_, (D.53)
Bi, = o(hi(g"(x:,x,_1))), (D.54)

2 = o(h (g% (%1 x,-1)))- (D.55)

Note that we have removed the feature-space inputs z;, Z,_;, and z,_; to the

164

stabilization heads. In experiments, we found this was necessary to prevent

unintended interactions between the stabilizers.

The above formulation is roughly equivalent to applying a single stabilizer
with decay g, © g7, We can modify the method slightly to make this strictly

1

true, thereby obtaining a commutative composition. We replace Z;, | in

Equation D.53 with Z;,_,, obtaining

Ziy = l-z,, © (ﬁil,t Oz, +1- 11[) Oz, +A- th) OZiias (D.56)
=B, OB, Oz, + B, — B, OB, +1—-B)OZy, (D.57)
= ﬁlz’[Qﬁll,t ®zi,[+(1 - iz,t Qﬁl‘l’[)in,t—l' (DSS)

Intuitively, the fused stabilizer retains the current features z,; only if both
decays are near one; this indicates that neither controller backbone detected

corruption-induced instability.

In our experiments, we use the initial non-commutative version (it was slightly
easier to implement). However, we expect the two formulations to give similar

results in general.

D.4 Method Details

This section provides further details of our method and implementation,
including the particular architecture we use for the controller, our approach
for training initialization, and a more formal definition of the spatial fusion

mechanism.

D.4.1 Controller Architecture

The controller backbone uses a simple convolutional architecture with 7 layers.
The backbone has 32 channels for HDRNet and NAFNet, and 16 channels
for Depth Anything. Controller heads have 4 layers. The number of channels

165

in the last head layer depends on the shape of z and the size of the fusion
kernel. For other head layers, we use 64 channels for HDRNet and NAFNet,
and 32 channels for Depth Anything. All convolutions use a 3x3 kernel, and
all except the head outputs are followed by a leaky ReLU with negative slope
0.01.

D.4.2 Initialization

When training, we initialize such that the predicted 8 values are near 1. This
corresponds to a rapid decay of the past state and less stabilization; i.e., the
stabilizers are initialized close to an identity. For controlled stabilizers, this
can be achieved by adding a final bias to & (before the sigmoid) and initializing
this bias to a sufficiently positive value v. For the simple learned stabilizer
(without a controller), the trained parameters are logit values [used to generate
a decay € [0,1] via § = o(l). Again, we initialize these logits to a positive
value v. For both the simple learned and controlled variants, we find that

v = 4 (resulting in 8 ~ 0.98) works well.

D.4.3 Spatial Fusion

Let V" be a spatial neighborhood around the pixel to be stabilized. Let c denote
the channel index, j the index of the stabilized pixel, k € V' the neighbor
pixel index, and [€ 1 : m an index into the kernel 5. The output Z, . ; of the
spatial fusion stabilizer is given by

Zt,c,k = 77t,c,m+lzt,c,j + Z 77t,c,th,c,k (D-Sg)
(k,He(N,1:m)

N = Softmax([h(g(x,,x,_,), 2,z — 1)] 0), (D.60)

cm:cm+m—1’°

The summation iterates over locations in the neighborhood, with the kernel

index [always corresponding to the neighbor index k. The indexing on the

166

output of h extracts the m channels needed to construct the kernel 5, .. Note
that we have dropped the layer index i here for brevity.

D.5 Experiment Details

This section contains experiment details and hyperparameter values.

D.5.1 Image Enhancement

Base model fine-tuning. We train for 80 epochs (2k iterations per epoch),
using the Adam optimizer [112], an MSE loss, and batches of 8 randomly
sampled frames. The learning rate is initially set to 10* and is scaled by 0.1
after epochs 40 and 60.

Stabilizer training and evaluation. Each training batch consists of one ran-
domly sampled video snippet containing 7 = 8 consecutive frames. Gradients
are computed using BPTT. Stabilizers are trained for 20 epochs (4k iterations
per epoch) using the Adam optimizer and our unified loss with § = || - ||.
The learning rate is initialized to 10~ for the simple learned stabilizer and 10*
for other variants, and is reduced by a factor of 10 after epochs 10 and 15. We
evaluate stabilizers on the validation set, processing each video in a single
pass per video (i.e., 7 > 8 at evaluation).

D.5.2 Video Denoising

Base model fine-tuning. Each batch consists of 8 randomly sampled, ran-
domly cropped patches of size 256x256. We train for 20 epochs (2k steps per
epoch) with Adam and an MSE loss. We set the initial learning rate to 10,
scaling by 0.1 after epochs 10 and 15.

Stabilizer training and evaluation. Each batch consists of one randomly
sampled, randomly cropped video snippet of size 256x256 containing 7 = 8

167

Figure D.1: VisionSim sequences. Showing scenes bachelors-quarters,
classroom, library-homeoffice, and restaurant. For each, we show frames 10,
110, 210, 310, 410, and 510.

consecutive frames. We train for 20 epochs (2k steps per epoch) using Adam
and the unified loss with 6 = || - ||,. The initial learning rate is set to 10" for
the simple learned stabilizer and 10 for the controlled and spatial variants. In
all cases, we scale the learning rate by 0.1 after epochs 10 and 15. We evaluate
stabilizers on the validation set in a single pass per video (t > 8).

D.5.3 Corruption Robustness

Depth training dataset. We use the VisionSim [100] framework to generate
a dataset with ground-truth depth labels, according to the instructions pro-
vided at the following URL:

168

==

Figure D.2: Elastic transform. A dummy image before and after applying the
elastic transform, using the same parameters as our experiments (magnitude
a = 50.0 and smoothness ¢ = 5.0). The image size is 256x256, and the lines
have width 16.

https://visionsim.readthedocs.io/en/latest/tutorials/large-dataset.
html

The resulting dataset contains 50 scenes with 59950 total frames and resolu-

tion 800x800. All scenes are indoor and exclusively contain ego-motion. See
Figure D.1 for several representative sequences.

Depth metrics. Depth Anything predicts relative disparity (inverse depth),
which requires an affine alignment to the ground truth before computing
metrics (see [183] for details). After this alignment, we evaluate the standard
AbsRel and Delta-1 (§ > 1.25) metrics. We exclude outliers by clipping
the aligned depth to a maximum of 200. It is critical to measure instability
after alignment; otherwise, the network can achieve arbitrarily low instability
without harming AbsRel and Delta-1 by scaling predictions to a small range
around zero.

Depth stabilizer training. We train Depth Anything stabilizers on randomly
sampled snippets of length 7 = 8, randomly cropped to size 512x512. We
train using Adam for 20 epochs (4k iterations per epoch) with a batch size of
one. The learning rate is initialized to 10* and reduced by 0.1 after epochs 10

and 15. We evaluate the unified loss (6 = || - ||,) after affine alignment.

https://visionsim.readthedocs.io/en/latest/tutorials/large-dataset.html
https://visionsim.readthedocs.io/en/latest/tutorials/large-dataset.html

169

Image corruptions. We generate elastic distortions using the Torchvision
ElasticTransform class with default settings (magnitude « = 50.0 and
smoothness o = 5.0). See Figure D.2 for a visualization of the elastic trans-
form.

For image denoising, we add all corruptions after Gaussian noise. For example,

dropped frames contain zeros, not zero-mean Gaussian noise.

D.5.4 Adverse Weather Robustness

Base model fine-tuning. We use the same schedule and hyperparameters

as in Section D.5.2. Each epoch consists of 1k training steps.

Stabilizer training and evaluation. We again use the same schedule and
hyperparameters as in Section D.5.2. The initial learning rate is set to 10,
and each epoch consists of 800 steps.

D.5.5 Compute Requirements

We train and evaluate on a compute cluster largely using RTX A4500 GPUs.
Fine-tuning and stabilizer training take 1-2 days on a single GPU, and full
evaluation takes 1-3 hours.

D.6 Additional Results

D.6.1 Stabilizer Composition

We evaluate composed stabilizers (Appendix D.3) on the NFS denoising task
(o = 0.1) using the NAFNet model. We train single-purpose corruption stabi-
lizers using the same hyperparameters as other experiments, then evaluate
composition under all possible two-corruption pairings. Results are shown in
Table D.1. Generally, stabilizer composition is effective if the second corrup-

170

Ours (stabilized) Base model (unstabilized)
First corruption ~ Second corruption PSNR SSIM Instability PSNR SSIM Instability
Patch drop Elastic distortion 29.53 0.838 22.64 18.56 0.660 152.40
Patch drop Frame drop 33.88 0.919 19.15 17.47 0.658 218.69
Patch drop JPEG artifacts 29.07 0.845 31.67 18.51 0.637 152.60
Patch drop Impulse noise 2483 0.769 60.89 1749 0.367 153.96
Elastic distortion ~ Patch drop 29.93 0.850 19.24 18.42 0.657 155.24
Elastic distortion =~ Frame drop 28.01 0.780 17.79 25.65 0.769 129.61
Elastic distortion JPEG artifacts 29.11 0.842 18.46 2594 0.759 53.75
Elastic distortion = Impulse noise 27.20 0.785 16.22 2295 0.480 69.70
Frame drop Patch drop 33.84 0.916 19.79 17.50 0.659 218.18
Frame drop Elastic distortion 29.67 0.844 18.69 25.65 0.768 130.22
Frame drop JPEG artifacts 2599 0.737 17.59 26.56 0.720 124.21
Frame drop Impulse noise 28.95 0.807 57.28 23.14 0.467 103.00
JPEG artifacts Patch drop 30.55 0.857 21.88 18.41 0.638 154.20
JPEG artifacts Elastic distortion 29.19 0.844 18.16 2581 0.755 54.48
JPEG artifacts Frame drop 25.87 0.737 17.16 26.56 0.720 124.21
JPEG artifacts Impulse noise 28.40 0.810 19.74 2393 0.475 65.24
Impulse noise Patch drop 30.14 0.831 24.61 16.98 0.351 163.34
Impulse noise Elastic distortion 26.73 0.790 17.86 23.38 0.600 62.01
Impulse noise Frame drop 28.94 0.794 21.21 22.66 0.460 138.58
Impulse noise JPEG artifacts 2525 0.599 39.47 21.55 0.352 89.25

Table D.1: Stabilizer composition. The effectiveness of composing stabi-
lizers for different combinations and orderings of input corruptions. Results
are for NAFNet on the NFS dataset with moderate noise (¢ = 0.1). The base
model evaluated without corruptions achieves PSNR 36.6, SSIM 0.945, and
instability 26.2.

tion does not significantly change the appearance of the first. For example,
JPEG — impulse works better than impulse — JPEG. JPEG compression
obscures high-frequency impulse noise, thereby interfering with the impulse
noise controller backbone. This limitation could likely be addressed through
data augmentation during stabilizer training, which would make the back-
bones more robust to changes in corruption appearance.

D.6.2 Semantic Segmentation

Task, dataset, and base model. In this subsection, we analyze a higher-level
prediction task: semantic segmentation. We use the DeepLabv3+ model [34]—

171

specifically, the MobileNet variant published by [54]. We train and evaluate
on the VIPER dataset [191], which contains video sequences captured in a
game engine (GTA V) and automatically labeled for various vision tasks. The
predefined training and validation splits contain 77 sequences (134097 frames)
and 47 sequences (49815 frames), respectively. We measure prediction quality
using pixel accuracy and mIoU on the predefined validation set. Due to the
discrete nature of predictions, we report categorical instability—the fraction
of pixels whose category changes between frames (equivalent to || - ||,).

Experiment protocol. We fine-tune the unstabilized model, starting with
the Cityscapes [43] weights published by [54]. A 1x1 convolution is applied to
the output logits to adapt the number of classes for VIPER. We fine-tune for 60
epochs (1925 batches per epoch), using a batch size of 16 and a cross-entropy
loss. Adam was used with an initial learning rate of 10, scaled by 0.1 after
epochs 20 and 40.

After fine-tuning, stabilizers are attached to the model input, the model out-
put, each InvertedResidual layer, the aspp block, the project block, and the
classifier block. We then freeze the fine-tuned weights and train stabilizers
on snippets of length 7 = 8 with 4 = 0.4. Here we tried both || - ||, and cross-
entropy for 8. Cross-entropy gave slightly better results, despite not satisfying
the formal criteria in Section 5.4 (e.g., it is not symmetric). Therefore, we
report results with cross-entropy in the remaining experiments.

When training stabilizers, each batch consists of one snippet of length 7 = 8
frames. We train for 60 epochs (3080 steps per epoch), using Adam with the
same learning rate schedule as in fine-tuning.

Results. The unstabilized model achieves categorical instability 0.079, mIoU
0.406, and pixel accuracy 0.900. After adding stabilizers, we obtain instability
0.059, mIoU 0.411, and pixel accuracy 0.901. Similar to other tasks, there
is a significant improvement in stability, along with an increase in accuracy
(mIoU).

172

Corruption Method mloU Accuracy Instability
Patch drop Base model 0.060 0.164 0.454
Ours 0.405 0.896 0.064
Elastic distortion =~ Base model 0.377 0.888 0.090
Ours 0.403 0.898 0.064
Frame drop Base model 0.369 0.829 0.209
Ours 0.406 0.898 0.063
JPEG artifacts Base model 0.109 0.313 0.216
Ours 0.337 0.862 0.066
Impulse noise Base model 0.051 0.300 0.312
Ours 0.399 0.894 0.065

Table D.2: Segmentation robustness. For all corruptions, our method simul-
taneously improves mloU, pixel accuracy, and instability. The improvement is
largest for corruptions that significantly change the appearance of the input,
e.g., impulse noise.

D.6.3 Segmentation Robustness

Task, dataset, and base model. In this subsection, we evaluate the DeepLabv3+
segmentation model against the five corruptions from Section 5.6.3 (patch
drop, elastic distortion, frame drop, JPEG artifacts, and impulse noise). We
use the same dataset (VIPER) and metrics as in Section D.6.2.

Experiment protocol. We follow the same protocol as in Section D.6.2 when

training and evaluating corruption stabilizers.

Results. See Table D.6.3 for metric values, and Figure D.8 for sample pre-
dictions. Our method improves both task metrics and stability across all
corruptions. For patch drop, JPEG artifacts, and impulse noise, adding stabi-

lizers allows the model to recover from catastrophic prediction failures.

D.6.4 DAVIS Denoising

Task, dataset, and base model. In addition to NFS, we evaluate NAFNet
denoising on the standard DAVIS benchmark [133, 180, 219]. DAVIS contains

173

50 videos (3455 frames) collected at 24 FPS. We use the dataset’s predefined
train/validation split and scale images to a short edge length of 480 [219].
Following from prior work [133, 219], we evaluate with a noise level of
40/255 = 0.16.

Experiment protocol. We fine-tune the base model and train stabilizers
following the same procedure as for NFS (see Sections 5.6.2 and D.5.2). Fine-
tuning epochs contain 3k steps, and stabilizer training epochs contain 2.4k
steps.

Results. See Figure D.3 and Table D.5 for results. Overall, the behavior is
similar to the NFS results in Section 5.6.2. However, the “win-win” region
(where both accuracy and stability are improved) is smaller for DAVIS. This is
likely caused by DAVIS’s 10x lower frame rate, which corresponds to higher

inter-frame motion and lower frame-to-frame correlation.

D.6.5 Adversarial Robustness

In addition to natural corruptions, we evaluate our method in the presence
of adversarial corruptions. We consider a setting where the attacker has
knowledge of the base model and its parameters, but not of the stabilizers.
We reason that because the stabilizers have fewer parameters than the base
model and can be trained more quickly, a defender could update the stabilizer
parameters after a weight leak rather than retrain the entire model.

Task and model. We evaluate adversarial robustness on a binary classifica-
tion task derived from the DAVIS dataset. Frames are processed by tightly
cropping around an object’s segmentation mask, treating individual instances
as separate images, and labeling each crop as human or nonhuman. As our
backbone, we use ResNet-50 [79] pre-trained on ImageNet. We replace the
original 1000-class output layer with a two-class linear layer.

Experiment protocol. We freeze all pre-trained weights except those in the

174

final residual block (1ayer4) and the new classification head. We fine-tune
these parameters for 100 epochs on the binary classification task. We start
with a learning rate of 102, decreasing it by a factor of 0.1 at epochs 40 and
80, and employ frame-level data augmentation consisting of random rota-
tion, horizontal flip, and color jitter. To preserve temporal context for future
stabilizers, each training sample consists of a sequence of eight consecutive
frames.

Then, we generate adversarial examples using the iterative Fast Gradient
Sign Method (I-FGSM) with an overall perturbation bound ¢ = 0.1 and 20
iterations per image [65]. As the attacker does not know the ground-truth
class, for each image, we randomly apply either the sign of the gradient step
or its negation. We selected these hyperparameters because they produce
a substantial drop in baseline accuracy, creating a clear opportunity for the
stabilizers to improve performance. Then, to defend against the attack, we
add controlled stabilizers to each bottleneck block of the ResNet model. All
original ResNet parameters are frozen, and only stabilizers are trained for
20 epochs under the same I-FGSM attack settings as above. The stabilizer
training uses an initial learning rate of 10, reduced by a factor of 0.1 after
epochs 1 and 10, and each batch consists of two sequences of eight frames
to ensure well-defined gradients. No additional augmentations are applied
during this phase.

Results. Under our adversarial setup, the ResNet-50 fine-tuned baseline
achieves 77.0% accuracy, while our stabilizer-augmented model reaches 88.8%,
an absolute improvement of 11.8%. These results demonstrate that the pro-
posed stabilizer modules can significantly improve resilience to adversarial

attacks without requiring complete retraining.

175

324
- Base model
314 - Output fixed
-e- Simple fixed

o 30+ / Simple learned
Z -e- Controlled
L 29 .
a9 -*- Spatial

284

274

8 100 120
Instability

Figure D.3: DAVIS denoising. We obtain the best quality/stability tradeoff
when using a stabilization controller (“controlled” and “spatial”). On DAVIS,
spatial fusion does not offer a significant advantage compared to a basic
controlled stabilizer. DAVIS has relatively high inter-frame motion, which
often exceeds the size of the spatial kernel (i.e., the maximum translation
achievable with spatial fusion).

D.6.6 Spatial Fusion Failures

Discussion. In the denoising experiments (Section 5.6.2), we observed a sig-
nificant PSNR reduction when using the spatial fusion method under extreme

noise. This reduction only appears when evaluating on long sequences.

A closer examination of the outputs reveals blurring/ghosting artifacts that
appear after some time has passed. These artifacts look like hard edges “bleed-
ing out” into the surrounding regions. We believe these failures are related to
the spatial fusion stabilizer on the output layer. Without this stabilizer, the
network output is biased toward the current input frame (due to the network
architecture, which predicts a noise residual). Adding a spatial fusion stabi-
lizer to the output provides an independent mechanism for information to
flow between pixels, thereby weakening this bias.

Experiment protocol. We ran an experiment to determine whether spatial
fusion failures can be mitigated by training on longer sequences. We trained
the spatial fusion stabilizer under extreme noise on sequences of length 7 = 8
(the default in our other experiments) and 7 = 16. We reduced the training

176

patch size from 256X256 to 180180 to compensate for increased training
memory requirements on longer sequences. For r = 8, we doubled the num-
ber of iterations per epoch due to the lower number of frames in each iteration.
We evaluated the resulting models on the full validation set containing long
sequences.

Results. Training with 7 = 8 gave validation PSNR 22.70 and instability
11.04, whereas training with 7 = 16 gave PSNR 23.80 and instability 10.16. We
expect this trend of improvement to hold as we further increase the training

sequence length.

D.6.7 Uncertainty Estimate

Experiment protocol. To estimate uncertainty in our results, we train and
evaluate the spatial fusion stabilizer eight times with different random seeds.
We consider image enhancement (HDRNet) for the moderate-strength local
Laplacian operator (a = 0.25). The random seed determines the stabilizer
weight initialization and the training data shuffle. The training and evaluation
protocol is identical to that in Sections 5.6.1 and D.5.1.

Results. PSNR ranges from a minimum of 32.17 to a maximum of 32.32, with
a mean of 32.25. SSIM has range 0.926-0.929 (mean 0.927), and instability
has range 28.61-28.80 (mean 28.71). For all metrics, variations around the
mean are < 0.5%.

D.6.8 Figures

Figure D.4 shows example sequences denoised under extreme Gaussian noise
(o = 0.6). We highlight regions of the image where instability is especially
prominent. Differences are more noticeable in videos; we encourage the

reader to view the video files included with the supplementary material.

177

Unstabilized

Stabilized

Unstabilized

Stabilized

Figure D.4: Denoising under extreme noise. As we increase the level of
image noise, frame-wise temporal inconsistency becomes more severe, to
the point that it becomes apparent when comparing static images. In the
top sequence, we see shifting texture in the duck’s head in the unstabilized
features. In the jellyfish sequence, the denoiser hallucinates inconsistent
spatial structure between frames. In both cases, adding a stabilizer noticeably
improves temporal consistency. We encourage the reader to view the corre-
sponding video files included with the supplement.

Figures D.5, D.6, D.7, and D.8 contain examples of corruption robustness
for image enhancement, denoising, depth estimation, and segmentation,
respectively. Figure D.9 illustrates improved weather robustness for denoising
on RobustSpring D.9.

178

Input Unstabilized Stabilized

Frame drop Elastic distortion Patch drop

JPEG artifacts

Impulse noise

Figure D.5: Image enhancement robustness. The effect of stabilization
for image enhancement (HDRNet) under various image corruptions. See
Section 5.6.3.

179

Input Unstabilized Stabilized

Patch drop

Elastic distortion

Frame drop

JPEG artifacts

Impulse noise

Figure D.6: Denoising robustness. The effect of stabilization for denoising
(NAFNet) under various image corruptions. See Section 5.6.3.

180

Input Unstabilized Stabilized

Patch drop

Elastic distortion

Frame drop

JPEG artifacts

Impulse noise

Figure D.7: Depth estimation robustness. The effect of stabilization for
depth estimation (Depth Anything v2) under various image corruptions. Im-
provements are most prominent for the patch drop, elastic distortion, and
frame drop corruptions. The base model already has reasonable robustness to
JPEG artifacts and noise. See Section 5.6.3.

181

Input Unstabilized Stabilized

Patch drop

Elastic distortion

Frame drop

JPEG artifacts

Impulse noise

Figure D.8: Segmentation robustness. The effect of stabilization for seg-
mentation (DeepLabv3+) under various image corruptions. See Section D.6.2.
Note that the method we use to generate the color map may cause color-class
correspondences to vary across rows.

182

Input Unstabilized Stabilized

Rain

Snow

Figure D.9: Adverse weather robustness. The effect of stabilization for
denoising (NAFNet) under weather corruptions on the RobustSpring dataset.
See Section 5.6.4.

D.6.9 Tables

Table D.3 provides complete results for image enhancement (Figure 5.4).
Tables D.4 and D.5 contain complete results for denoising (Figures 5.5 and D.3).

183

Moderate intensity (o = 0.5) High intensity (o« = 0.25)

Method Strength Instability PSNR SSIM Instability PSNR SSIM
Gaussian u =0.50 29.46 30.70 0.917 36.26 2573 0.852
Gaussian u =1.00 22.23 29.26 0.894 27.20 2490 0.824
Gaussian u=2.00 16.49 27.38 0.848 19.99 23.65 0.773
Gaussian u=3.00 13.34 26.18 0.811 16.09 2279 0.732
Gaussian u =4.00 11.29 25.33 0.782 13.57 22.15 0.700
Gaussian u=6.00 8.76 2418 0.739 10.49 21.26 0.654

Output fixed B =099 32.74 3092 0919 40.38 25.84 0.856
Output fixed B =0.98 3242 3091 0.919 39.99 25.83 0.856
Output fixed B =095 31.50 30.87 0.919 38.82 2581 0.855
Output fixed B =0.90 30.00 30.76 0.917 36.94 25.76 0.852
Output fixed B =0.80 27.16 30.40 0912 33.37 25.57 0.846
Output fixed B =0.60 21.80 29.26 0.893 26.65 2491 0.824

Simple fixed B =099 32.81 3092 0919 40.64 25.84 0.856
Simple fixed B =098 32.55 30.90 0.919 40.47 25.83 0.855

Simple fixed B =0.95 31.61 30.82 0.918 39.67 25.77 0.853
Simple fixed B =0.90 29.76 30.59 0914 37.59 25.62 0.848
Simple fixed B =0.80 25.88 29.90 0.903 32.57 2520 0.833
Simple fixed B =0.60 19.28 28.10 0.865 23.85 23.99 0.788
Simple learned 1 =0.1 32.44 30.92 0.920 39.58 25.84 0.856
Simple learned 1 =0.2 31.34 30.87 0.919 37.64 25.79 0.854
Simple learned 1 =04 28.96 30.66 0.917 33.74 25.60 0.849
Simple learned 1 =0.8 23.60 29.75 0.903 26.43 2490 0.825
Controlled A=01 31.78 31.25 0.922 38.31 26.26 0.865
Controlled A=02 30.57 31.13 0.920 36.11 26.11 0.859
Controlled A=04 28.00 30.86 0.917 31.98 2592 0.855
Controlled A=038 21.79 29.85 0.901 24.64 2517 0.824
Spatial A=0.1 32.38 32.81 0.934 40.32 2797 0.891
Spatial A=02 31.29 3270 0.933 38.29 27.79 0.890
Spatial A=04 28.66 32.30 0.928 34.22 2745 0.881
Spatial A=038 22.31 31.00 0.910 25.61 26.27 0.849

Table D.3: Image enhancement results. These results correspond to the
experiments in Section 5.6.1 (Figure 5.4). We additionally include results for
simple Gaussian smoothing of the output, where u is the standard deviation
of the smoothing kernel.

NFS moderate (¢ = 0.1)

NFS strong (o = 0.2)

Method Strength Instability PSNR SSIM Instability PSNR SSIM
Gaussian 1 =0.50 22.87 36.77 0.945 24.50 33.52 0.903
Gaussian u=100 16.33 3541 0940 16.67 33.10 0904
Gaussian 1 =2.00 11.90 3296 0.920 11.77 31.64 0.889
Gaussian U= 3.00 9.63 31.31 0.900 9.45 3043 0.874
Gaussian 1 =4.00 8.18 30.15 0.883 8.01 29.50 0.860
Gaussian U = 6.00 6.39 28.60 0.857 6.25 28.17 0.837
Output fixed B =0.99 25.93 36.67 0.943 28.18 33.30 0.900
Output fixed B =0.98 25.64 36.70 0.943 27.83 33.33 0.900
Output fixed B =095 24.79 36.76 0.944 26.81 3340 0.901
Output fixed B =0.90 2343 36.79 0.945 25.20 33.50 0.902
Output fixed B =0.80 20.91 36.58 0.945 22.22 33.54 0.904
Output fixed B =0.60 16.37 3534 0.940 16.97 33.07 0.903
Simple fixed B =0.99 27.40 3595 0.927 32.19 3222 0.847
Simple fixed B =0.98 30.21 34.67 0.885 39.59 30.51 0.741
Simple fixed B =095 40.44 31.30 0.734 63.31 26.52 0.491
Simple fixed B =0.90 53.94 28.14 0.565 91.84 2311 0.322
Simple fixed B =0.80 65.09 25.62 0.437 114.95 20.51 0.226
Simple fixed B =0.60 56.70 24.89 0.405 100.92 19.83 0.205
Simple learned 4 =0.1 22.98 36.82 0.947 22.34 33.58 0.908
Simple learned 1 =10.2 21.80 36.74 0.947 20.58 33.51 0.908
Simple learned 1 =0.4 19.46 36.36 0.946 17.63 3321 0.907
Simple learned 4 =0.8 15.38 35.00 0.939 13.48 3224 0.898
Controlled A=01 22.21 37.51 0.952 21.41 3436 0.916
Controlled 1=02 21.28 3741 0951 20.21 3430 0915
Controlled A=04 19.01 37.00 0.949 17.24 33.93 0912
Controlled 1=0.38 14.61 3576 0.942 12.95 33.05 0.903
Spatial A=01 22.13 37.65 0.953 21.08 3452 0.917
Spatial 1=02 21.10 37.57 0.952 19.80 3445 0.917
Spatial A=04 18.94 37.15 0.950 16.99 34.06 0.913
Spatial 1=0.38 14.25 3494 0931 11.84 32.53 0.895

184

Table D.4: Denoising results, part 1/2. These results correspond to the
experiments in Section 5.6.2 (Figure 5.5). We additionally include SSIM and
results for simple Gaussian smoothing of the output, where u is the standard
deviation of the smoothing kernel. See Table D.5 for the second half of the

data.

NFS extreme (o = 0.6)

DAVIS (o = 40/255)

Method Strength Instability PSNR SSIM Instability PSNR SSIM
Gaussian um = 0.50 30.23 2798 0.794 105.62 30.67 0.864
Gaussian u=1.00 18.55 28.26 0.804 70.68 26.18 0.795
Gaussian M =2.00 11.82 28.02 0.803 45.38 23.22 0.717
Gaussian u=3.00 9.12 27.59 0.797 34.27 21.92 0.677
Gaussian um=4.00 7.59 27.17 0.790 27.95 21.15 0.653
Gaussian U =6.00 5.84 26.45 0.778 21.01 20.25 0.626
Output fixed B =0.99 35.64 27.72 0.787 121.46 31.65 0.873
Output fixed B =0.98 35.13 27.75 0.788 119.95 31.64 0.872
Output fixed B =0.95 33.65 27.83 0.790 115.50 3148 0.871
Output fixed B =0.90 31.30 27.94 0.793 108.36 30.96 0.867
Output fixed B =0.80 26.98 28.12 0.798 94.92 29.54 0.853
Output fixed B =0.60 19.53 28.27 0.804 70.52 26.60 0.810
Simple fixed B =0.99 45.83 26.35 0.616 120.92 31.14 0.844
Simple fixed B =0.98 64.92 24.36 0.415 121.40 30.05 0.777
Simple fixed B =0.95 119.74 20.09 0.191 130.25 26.85 0.581
Simple fixed B =0.90 180.81 16.56 0.105 148.51 23.76 0.415
Simple fixed B =0.80 230.73 13.86 0.067 164.16 21.26 0.309
Simple fixed B =0.60 205.99 12.97 0.059 137.79 20.09 0.270
Simple learned A=0.1 20.24 28.29 0.812 118.48 31.63 0.873
Simple learned 1 =10.2 17.73 28.27 0.813 114.84 3149 0.871
Simple learned A=04 14.25 28.13 0.812 107.17 30.94 0.865
Simple learned A1=08 10.21 27.69 0.806 80.09 27.89 0.821
Controlled A=0.1 19.47 29.22 0.824 117.58 31.85 0.876
Controlled A1=02 17.26 29.15 0.824 113.44 31.69 0.873
Controlled A=04 13.67 28.92 0.822 104.21 31.02 0.864
Controlled A1=038 10.12 28.45 0.813 77.15 27.86 0.815
Spatial A=0.1 15.20 22.00 0.665 117.57 31.86 0.876
Spatial A1=0.2 16.55 21.73 0.637 113.49 31.70 0.874
Spatial A=04 9.09 22.28 0.692 104.26 31.05 0.865
Spatial A1=038 11.66 22.45 0.669 81.86 28.15 0.824

185

Table D.5: Denoising results, part 2/2. These results correspond to the
experiments in Section 5.6.2 (Figure 5.5). We additionally include SSIM and
results for simple Gaussian smoothing of the output, where u is the standard
deviation of the smoothing kernel. See Table D.4 for the first half of the data.

186

D.7 Licenses and Copyright

Code. We use our own implementation of HDRNet. For NAFNet, we use

the authors’ code (https://github.com/megvii-research/NAFNet, MIT li-

cense). For Depth Anything, we use the depth-anything/Depth-Anything-V2-Small-hf
HuggingFace module (available under an Apache 2.0 license). VisionSim

is released under the MIT license. All scenes are licensed under a Creative

Commons variant; see this Google Drive folder for attributions and further

license details:
https://drive.google.com/drive/folders/1gRxhL3rbGDTfgKytre8WkbBu-QDJFy15

Datasets and assets. We were unable to find license information for the
Need for Speed dataset. DAVIS uses the BSD license. We use frames from the

following YouTube videos in our figures:
« https://www.youtube.com/watch?v=ANeMCOpx_84
« https://www.youtube.com/watch?v=HZ8VFOEdITk
e https://www.youtube.com/watch?v=MPZbIEQ3Wjs

« https://www.youtube.com/watch?v=obSH5F2DYvk

https://github.com/megvii-research/NAFNet
https://drive.google.com/drive/folders/1gRxhL3rbGDTfgKytre8WkbBu-QDJFy15
https://www.youtube.com/watch?v=ANeMCOpx_84
https://www.youtube.com/watch?v=HZ8VF0EdITk
https://www.youtube.com/watch?v=MPZb9EQ3Wjs
https://www.youtube.com/watch?v=obSH5F2DYvk

187

Bibliography

[4]

[5]

Ryan Prescott Adams and David J. C. MacKay. Bayesian online change-
point detection. arXiv, 2007.

Naveed Akhtar, Ajmal Mian, Navid Kardan, and Mubarak Shah. Ad-
vances in adversarial attacks and defenses in computer vision: A survey.
IEEE Access, 9:155161-155196, 2021.

Filipp Akopyan, Jun Sawada, Andrew Cassidy, Rodrigo Alvarez-Icaza,
John Arthur, Paul Merolla, Nabil Imam, Yutaka Nakamura, Pallab
Datta, Gi-Joon Nam, Brian Taba, Michael Beakes, Bernard Brezzo,
Jente B. Kuang, Rajit Manohar, William P. Risk, Bryan Jackson, and
Dharmendra S. Modha. TrueNorth: Design and tool flow of a 65
mW 1 million neuron programmable neurosynaptic chip. IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and Systems,
34(10):1537-1557, October 2015.

Réda Alami, Odalric Maillard, and Raphael Féraud. Restarted bayesian
online change-point detector achieves optimal detection delay. In Pro-
ceedings of the International Conference on Machine Learning (ICML),
pages 211-221, 2020.

Ignacio Alzugaray and Margarita Chli. Asynchronous corner detec-
tion and tracking for event cameras in real time. IEEE Robotics and
Automation Letters, 3(4):3177-3184, 2018.

[8]

[9]

[10]

188

Mykhaylo Andriluka, Leonid Pishchulin, Peter Gehler, and Bernt
Schiele. 2D human pose estimation: New benchmark and state of
the art analysis. In Proceedings of the Conference on Computer Vision
and Pattern Recognition (CVPR), pages 3686-3693, 2014.

Andrei Ardelean. Computational Imaging SPAD Cameras. PhD thesis,

Ecole polytechnique fédérale de Lausanne, 2023.

Anurag Arnab, Mostafa Dehghani, Georg Heigold, Chen Sun, Mario
Luci¢, and Cordelia Schmid. ViViT: A video vision transformer. In
Proceedings of the International Conference on Computer Vision (ICCV),
pages 6836-6846, October 2021.

Aharon Azulay, Tavi Halperin, Orestis Vantzos, Nadav Bornstein, and
Ofir Bibi. Temporally stable video segmentation without video an-
notations. In Proceedings of the Winter Conference on Applications of
Computer Vision (WACV), pages 3449-3458, January 2022.

Simon Baker, Daniel Scharstein, J. P. Lewis, Stefan Roth, Michael J.
Black, and Richard Szeliski. A database and evaluation methodology for
optical flow. International Journal of Computer Vision (IJCV), 92(1):1-
31, March 2011.

Souptik Barua, Yoshitaka Miyatani, and Ashok Veeraraghavan. Direct
face detection and video reconstruction from event cameras. In Pro-
ceedings of the Winter Conference on Applications of Computer Vision
(WACV), pages 1-9, 2016.

Philipp Benz, Chaoning Zhang, Adil Karjauv, and In So Kweon. Re-
visiting batch normalization for improving corruption robustness. In
Proceedings of the Winter Conference on Applications of Computer Vision
(WACYV), pages 494-503, January 2021.

[19]

[20]

189

Raphael Berner, Christian Brandli, Minhao Yang, S-C Liu, and Tobi
Delbruck. A 240x180 120 dB 10 mW 12 us-latency sparse output vision
sensor for mobile applications. In Proceedings of the International Image
Sensors Workshop, pages 41-44, 2013.

Gedas Bertasius, Lorenzo Torresani, and Jianbo Shi. Object detection
in video with spatiotemporal sampling networks. In Proceedings of the
European Conference on Computer Vision (ECCV), September 2018.

Gedas Bertasius, Heng Wang, and Lorenzo Torresani. Is space-time
attention all you need for video understanding? In Proceedings of the
International Conference on Machine Learning (ICML), Proceedings of

Machine Learning Research, 2021.

Anthony Bisulco, Fernando Cladera Ojeda, Volkan Isler, and Daniel D.
Lee. Fast motion understanding with spatiotemporal neural networks
and dynamic vision sensors. In Proceedings of the International Confer-
ence on Robotics and Automation (ICRA), pages 14098-14104, 2021.

Daniel Bolya, Cheng-Yang Fu, Xiaoliang Dai, Peizhao Zhang, Christoph
Feichtenhofer, and Judy Hoffman. Token merging: Your ViT but faster.
arXiv, 2022.

Nicolas Bonneel, James Tompkin, Kalyan Sunkavalli, Deqing Sun, Syl-
vain Paris, and Hanspeter Pfister. Blind video temporal consistency.
Transactions on Graphics (TOG), 34(6), 2015.

Assim Boukhayma, Arnaud Peizerat, and Christian Enz. A sub-0.5
electron read noise VGA image sensor in a standard CMOS process.
IEEE Journal of Solid-State Circuits, 2016.

Christian Brandli, Raphael Berner, Minhao Yang, Shih-Chii Liu, and
Tobi Delbruck. A 240x180 130 dB 3 us latency global shutter spatiotem-

[21]

[22]

[26]

[27]

190

poral vision sensor. IEEE Journal of Solid-State Circuits, 49(10):2333-
2341, 2014.

Christian Brandli, Lorenz Muller, and Tobi Delbruck. Real-time, high-
speed video decompression using a frame-and event-based DAVIS sen-
sor. In 2014 IEEE International Symposium on Circuits and Systems
(ISCAS), pages 686-689, 2014.

Daniel J. Butler, Jonas Wulff, Garrett B. Stanley, and Michael J. Black.
A naturalistic open source movie for optical flow evaluation. In Pro-
ceedings of the European Conference on Computer Vision (ECCV), pages
611-625, 2012.

BuzzFarmers. flickr.com/photos/buzzfarmers/7318008726, 2011.
Accessed March 2023, CC BY 2.0 license.

Zhaowei Cai and Nuno Vasconcelos. Cascade R-CNN: High quality
object detection and instance segmentation. Transactions on Pattern
Analysis and Machine Intelligence (TPAMI), 43(5):1483-1498, 2021.

Victor Campos, Brendan Jou, Xavier Gir6-i Nieto, Jordi Torres, and
Shih-Fu Chang. Skip RNN: Learning to skip state updates in recurrent
neural networks. In Proceedings of the International Conference on
Learning Representations (ICLR), 2018.

Marco Cannici, Marco Ciccone, Andrea Romanoni, and Matteo Mat-
teucci. Asynchronous convolutional networks for object detection in
neuromorphic cameras. In Proceedings of the Conference on Computer
Vision and Pattern Recognition (CVPR) Workshops, pages 1656-1665,
June 2019.

Alfredo Canziani, Adam Paszke, and Eugenio Culurciello. An analysis

of deep neural network models for practical applications. arXiv, 2016.

flickr.com/photos/buzzfarmers/7318008726

[30]

[34]

[35]

191

Zhe Cao, Tomas Simon, Shih-En Wei, and Yaser Sheikh. Realtime multi-
person 2D pose estimation using part affinity fields. In Proceedings
of the Conference on Computer Vision and Pattern Recognition (CVPR),
pages 7291-7299, 2017.

Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier,
Alexander Kirillov, and Sergey Zagoruyko. End-to-end object detec-
tion with Transformers. In Proceedings of the European Conference on
Computer Vision (ECCV), pages 213-229, 2020.

Lukas Cavigelli, Philippe Degen, and Luca Benini. CBinfer: Change-
based inference for convolutional neural networks on video data. In
Proceedings of the 11th International Conference on Distributed Smart
Cameras, September 2017.

Andrea Censi and Davide Scaramuzza. Low-latency event-based visual
odometry. In Proceedings of the International Conference on Robotics
and Automation (ICRA), pages 703-710, 2014.

Ya-Liang Chang, Zhe Yu Liu, Kuan-Ying Lee, and Winston Hsu. Learn-
able gated temporal shift module for deep video inpainting. arXiv,
2019.

Dongdong Chen, Jing Liao, Lu Yuan, Nenghai Yu, and Gang Hua.
Coherent online video style transfer. In Proceedings of the International
Conference on Computer Vision (ICCV), October 2017.

Liang-Chieh Chen, George Papandreou, Florian Schroff, and Hartwig
Adam. Rethinking atrous convolution for semantic image segmentation.
arXiv, 2017.

Liangyu Chen, Xiaojie Chu, Xiangyu Zhang, and Jian Sun. Simple base-
lines for image restoration. In Proceedings of the European Conference
on Computer Vision (ECCV), pages 17-33, 2022.

[36]

[37]

[38]

[42]

192

Tian Qi Chen and Mark Schmidt. Fast patch-based style transfer of
arbitrary style. arXiv, 2016.

Xinghao Chen, Yiman Zhang, Yunhe Wang, Han Shu, Chunjing Xu,
and Chang Xu. Optical flow distillation: Towards efficient and sta-
ble video style transfer. In Proceedings of the European Conference on
Computer Vision (ECCV), pages 614-630, 2020.

Yihong Chen, Yue Cao, Han Hu, and Liwei Wang. Memory enhanced
global-local aggregation for video object detection. In Proceedings of the
Conference on Computer Vision and Pattern Recognition (CVPR), June
2020.

Rewon Child, Scott Gray, Alec Radford, and Ilya Sutskever. Generating
long sequences with sparse transformers. arXiv, 2019.

Ting-Wu Chin, Ruizhou Ding, and Diana Marculescu. AdaScale: To-
wards real-time video object detection using adaptive scaling. In Pro-
ceedings of Machine Learning and Systems, volume 1, pages 431-441,
2019.

Krzysztof Marcin Choromanski, Valerii Likhosherstov, David Do-
han, Xingyou Song, Andreea Gane, Tamas Sarlos, Peter Hawkins,
Jared Quincy Davis, Afroz Mohiuddin, Lukasz Kaiser, David Benjamin
Belanger, Lucy J. Colwell, and Adrian Weller. Rethinking attention with
Performers. In Proceedings of the International Conference on Learning
Representations (ICLR), 2021.

Matthew Cook, Luca Gugelmann, Florian Jug, Christoph Krautz, and
Angelika Steger. Interacting maps for fast visual interpretation. In
The International Joint Conference on Neural Networks, pages 770-776,
2011.

[45]

[46]

193

Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld,
Markus Enzweiler, Rodrigo Benenson, Uwe Franke, Stefan Roth, and
Bernt Schiele. The Cityscapes dataset for semantic urban scene un-
derstanding. In Proceedings of the Conference on Computer Vision and
Pattern Recognition (CVPR), 2016.

Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. Bina-
ryConnect: Training deep neural networks with binary weights during
propagations. Proceedings of the Conference on Neural Information
Processing Systems (NeurIPS), 28:3123-3131, 2015.

Dima Damen, Hazel Doughty, Giovanni Maria Farinella, Sanja Fidler,
Antonino Furnari, Evangelos Kazakos, Davide Moltisanti, Jonathan
Munro, Toby Perrett, Will Price, and Michael Wray. Scaling egocentric
vision: The EPIC-KITCHENS dataset. In Proceedings of the European
Conference on Computer Vision (ECCV), September 2018.

Mike Davies, Narayan Srinivasa, Tsung-Han Lin, Gautham Chinya,
Yonggiang Cao, Sir Harsha Choday, Georgios Dimou, Prasad Joshi,
Nabil Imam, Shweta Jain, Yunyun Liao, Chit-Kwan Lin, Andrew Lines,
Ruokun Liu, Deepak Mathaikutty, Steven McCoy, Arnab Paul, Jonathan
Tse, Gurugahanathan Venkataramanan, Yi-Hsin Weng, Andreas Wild,
Yoonseok Yang, and Hong Wang. Loihi: A neuromorphic manycore
processor with on-chip learning. IEEE Micro, 38(1):82-99, January
2018.

Yingying Deng, Fan Tang, Weiming Dong, Haibin Huang, Chongyang
Ma, and Changsheng Xu. Arbitrary video style transfer via multi-
channel correlation. In Proceedings of the AAAI Conference on Artificial
Intelligence (AAAI), pages 1210-1217, May 2021.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weis-
senborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani,

[51]

[52]

[53]

194

Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, and
Neil Houlsby. An image is worth 16x16 words: Transformers for image
recognition at scale. In Proceedings of the International Conference on
Learning Representations (ICLR), 2021.

Nathan Drenkow, Numair Sani, Ilya Shpitser, and Mathias Unberath.
A systematic review of robustness in deep learning for computer vision:
Mind the gap? arXiv, 2022.

Matthew Dutson, Yin Li, and Mohit Gupta. Event neural networks. In
Proceedings of the European Conference on Computer Vision (ECCV),
pages 276-293, 2022.

Matthew Dutson, Yin Li, and Mohit Gupta. Eventful Transformers:
Leveraging temporal redundancy in vision transformers. In Proceedings
of the International Conference on Computer Vision (ICCV), pages 16911
16923, October 2023.

Neale A. W. Dutton, Istvan Gyongy, Luca Parmesan, Salvatore Gnecchi,
Neil Calder, Bruce R. Rae, Sara Pellegrini, Linsay A. Grant, and Robert K.
Henderson. A SPAD-based QVGA image sensor for single-photon
counting and quanta imaging. IEEE Transactions on Electron Devices,
63(1):189-196, January 2016.

Haoqi Fan, Bo Xiong, Karttikeya Mangalam, Yanghao Li, Zhicheng Yan,
Jitendra Malik, and Christoph Feichtenhofer. Multiscale vision trans-
formers. In Proceedings of the International Conference on Computer
Vision (ICCV), pages 6824-6835, October 2021.

Gongfan Fang. Pretrained DeepLabv3 and DeepLabv3+ for
Pascal VOC and Cityscapes. https://github.com/VainF/
DeepLabV3Plus-Pytorch, 2022.

https://github.com/VainF/DeepLabV3Plus-Pytorch
https://github.com/VainF/DeepLabV3Plus-Pytorch

[57]

[58]

[60]

195

Mohsen Fayyaz, Soroush Abbasi Koohpayegani, Farnoush Rezaei Jafari,
Sunando Sengupta, Hamid Reza Vaezi Joze, Eric Sommerlade, Hamed
Pirsiavash, and Juergen Gall. Adaptive token sampling for efficient
vision transformers. In Proceedings of the European Conference on
Computer Vision (ECCV), pages 396-414, 2022.

Christoph Feichtenhofer, Haoqi Fan, Jitendra Malik, and Kaiming
He. SlowFast networks for video recognition. In Proceedings of the
Conference on Computer Vision and Pattern Recognition (CVPR), pages
6202-6211, 2019.

Michael Figurnov, Maxwell D. Collins, Yukun Zhu, Li Zhang, Jonathan
Huang, Dmitry Vetrov, and Ruslan Salakhutdinov. Spatially adaptive
computation time for residual networks. In Proceedings of the Confer-
ence on Computer Vision and Pattern Recognition (CVPR), July 2017.

Chang Gao, Derun Gu, Fangjun Zhang, and Yizhou Yu. ReCoNet:
Real-time coherent video style transfer network. In Proceedings of the
Asian Conference on Computer Vision (ACCV), pages 637-653, 2019.

Wei Gao, Yijun Li, Yihang Yin, and Ming-Hsuan Yang. Fast video multi-
style transfer. In Proceedings of the Winter Conference on Applications
of Computer Vision (WACV), March 2020.

Yue Gao, Siqi Li, Yipeng Li, Yandong Guo, and Qionghai Dai. SuperFast:
200x video frame interpolation via event camera. Transactions on
Pattern Analysis and Machine Intelligence (TPAMI), 45(6):7764-7780,
2023.

Daniel Gehrig, Henri Rebecq, Guillermo Gallego, and Davide Scara-
muzza. EKLT: Asynchronous photometric feature tracking using events

and frames. International Journal of Computer Vision (IICV), 128(3):601-
618, 2020.

[62]

[63]

[64]

196

Mathias Gehrig, Mario Millhéusler, Daniel Gehrig, and Davide Scara-
muzza. E-RAFT: Dense optical flow from event cameras. In 2021
International Conference on 3D Vision (3DV), pages 197-206, 2021.

Michaél Gharbi, Jiawen Chen, Jonathan T. Barron, Samuel W. Hasi-
noff, and Frédo Durand. Deep bilateral learning for real-time image
enhancement. Transactions on Graphics (TOG), 36(4), July 2017.

Amir Ghodrati, Babak Ehteshami Bejnordi, and Amirhossein Habibian.
Frameexit: Conditional early exiting for efficient video recognition. In
Proceedings of the Conference on Computer Vision and Pattern Recogni-
tion (CVPR), pages 15608-15618, 2021.

Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining
and harnessing adversarial examples. arXiv, 2015.

Saurabh Goyal, Anamitra Roy Choudhury, Saurabh Raje, Venkatesan
Chakaravarthy, Yogish Sabharwal, and Ashish Verma. POWER-BERT:
Accelerating BERT inference via progressive word-vector elimination.
In Proceedings of the International Conference on Machine Learning
(ICML), volume 119 of Proceedings of Machine Learning Research, pages
3690-3699, July 2020.

Rui Graca, Brian McReynolds, and Tobi Delbruck. Shining light on
the DVS pixel: A tutorial and discussion about biasing and optimiza-
tion. In Proceedings of the Conference on Computer Vision and Pattern
Recognition (CVPR) Workshops, pages 4045-4053, June 2023.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with
selective state spaces. In First Conference on Language Modeling, 2024.

Qipeng Guo, Xipeng Qiu, Pengfei Liu, Yunfan Shao, Xiangyang Xue,
and Zheng Zhang. Star-transformer. arXiv, 2019.

[70]

[73]

197

Agrim Gupta, Justin Johnson, Alexandre Alahi, and Li Fei-Fei. Charac-
terizing and improving stability in neural style transfer. In Proceedings
of the International Conference on Computer Vision (ICCV), October
2017.

Istvan Gyongy, Neale A. W. Dutton, and Robert K. Henderson. Single-
photon tracking for high-speed vision. Sensors, 18(2):323, 2018.

Amirhossein Habibian, Davide Abati, Taco S. Cohen, and Babak Ehte-
shami Bejnordi. Skip-convolutions for efficient video processing. In
Proceedings of the Conference on Computer Vision and Pattern Recogni-
tion (CVPR), pages 2695-2704, June 2021.

Song Han, Jeff Pool, John Tran, and William Dally. Learning both
weights and connections for efficient neural network. Proceedings of
the Conference on Neural Information Processing Systems (NeurIPS),
28:1135-1143, 2015.

Chris Harris, Mike Stephens, et al. A combined corner and edge detector.
In Alvey vision conference, volume 15, pages 10-5244, 1988.

Samuel W. Hasinoff, Dillon Sharlet, Ryan Geiss, Andrew Adams,
Jonathan T. Barron, Florian Kainz, Jiawen Chen, and Marc Levoy. Burst
photography for high dynamic range and low-light imaging on mobile
cameras. Transactions on Graphics (TOG), 35(6):1-12, November 2016.

Babak Hassibi and David Stork. Second order derivatives for network
pruning: Optimal brain surgeon. Proceedings of the Conference on
Neural Information Processing Systems (NeurIPS), 5:164-171, 1992.

Botao He, Haojia Li, Siyuan Wu, Dong Wang, Zhiwei Zhang, Qianli
Dong, Chao Xu, and Fei Gao. Fast-dynamic-vision: Detection and track-
ing dynamic objects with event and depth sensing. In 2021 IEEE/RSJ

[78]

[80]

[81]

[82]

[85]

198

International Conference on Intelligent Robots and Systems (IROS), pages
3071-3078, 2021.

Kaiming He, Georgia Gkioxari, Piotr Dollar, and Ross Girshick. Mask
R-CNN. In Proceedings of the International Conference on Computer
Vision (ICCV), October 2017.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep resid-
ual learning for image recognition. In Proceedings of the Conference on
Computer Vision and Pattern Recognition (CVPR), June 2016.

Dan Hendrycks and Thomas Dietterich. Benchmarking neural network
robustness to common corruptions and perturbations. In Proceedings of
the International Conference on Learning Representations (ICLR), 2019.

Javier Hidalgo-Carri6, Guillermo Gallego, and Davide Scaramuzza.
Event-aided direct sparse odometry. In Proceedings of the Conference
on Computer Vision and Pattern Recognition (CVPR), pages 5781-5790,
June 2022.

Yasunobu Hitomi, Jinwei Gu, Mohit Gupta, Tomoo Mitsunaga, and
Shree K. Nayar. Video from a single coded exposure photograph using
a learned over-complete dictionary. In Proceedings of the International
Conference on Computer Vision (ICCV), pages 287-294, 2011.

Sepp Hochreiter and Jiirgen Schmidhuber. Long short-term memory.
Neural Computation, 9(8):1735-1780, 1997.

Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko,
Weijun Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam.
MobileNets: Efficient convolutional neural networks for mobile vision
applications. arXiv, 2017.

Yuhuang Hu, Shih-Chii Liu, and Tobi Delbruck. v2e: From video frames
to realistic DVS events. In Proceedings of the Conference on Computer

[86]

[87]

[88]

[89]

[90]

[91]

199

Vision and Pattern Recognition (CVPR) Workshops, pages 1312-1321,
June 2021.

Gao Huang, Danlu Chen, Tianhong Li, Felix Wu, Laurens Van
Der Maaten, and Kilian Q Weinberger. Multi-scale dense networks for
resource efficient image classification. In Proceedings of the Interna-
tional Conference on Learning Representations (ICLR), 2018.

Gao Huang, Yu Sun, Zhuang Liu, Daniel Sedra, and Kilian Q Wein-
berger. Deep networks with stochastic depth. In Proceedings of the
European Conference on Computer Vision (ECCV), pages 646—661, 2016.

Haozhi Huang, Hao Wang, Wenhan Luo, Lin Ma, Wenhao Jiang, Xi-
aolong Zhu, Zhifeng Li, and Wei Liu. Real-time neural style transfer
for videos. In Proceedings of the Conference on Computer Vision and
Pattern Recognition (CVPR), July 2017.

Jing Huang, Menghan Guo, and Shoushun Chen. A dynamic vision sen-
sor with direct logarithmic output and full-frame picture-on-demand.
In 2017 IEEE International Symposium on Circuits and Systems (ISCAS),
pages 1-4, 2017.

Zhewei Huang, Tianyuan Zhang, Wen Heng, Boxin Shi, and Shuchang
Zhou. Real-time intermediate flow estimation for video frame interpo-
lation. In Proceedings of the European Conference on Computer Vision
(ECCV), 2022.

Kyuyeon Hwang and Wonyong Sung. Fixed-point feedforward deep
neural network design using weights +1, 0, and -1. In 2014 IEEE
Workshop on Signal Processing Systems (SiPS), pages 1-6, 2014.

Forrest N. Iandola, Song Han, Matthew W. Moskewicz, Khalid Ashraf,
William J. Dally, and Kurt Keutzer. SqueezeNet: AlexNet-level accuracy
with 50x fewer parameters and 0.5MB model size. arXiv, 2016.

[95]

[99]

[100]

200

Jorge Igual. Photographic noise performance measures based on raw
files analysis of consumer cameras. Electronics, 8(11):1284, 2019.

Atul Ingle, Trevor Seets, Mauro Buttafava, Shantanu Gupta, Alberto
Tosi, Mohit Gupta, and Andreas Velten. Passive inter-photon imag-
ing. In Proceedings of the Conference on Computer Vision and Pattern
Recognition (CVPR), June 2021.

Atul Ingle, Andreas Velten, and Mohit Gupta. High Flux Passive Imag-
ing With Single-Photon Sensors. In Proceedings of the Conference on
Computer Vision and Pattern Recognition (CVPR), June 2019.

Kiyotaka Iwabuchi, Yusuke Kameda, and Takayuki Hamamoto. Image
quality improvements based on motion-based deblurring for single-
photon imaging. IEEE Access, 9:30080-30094, 2021.

Samvit Jain, Xin Wang, and Joseph E. Gonzalez. Accel: A corrective
fusion network for efficient semantic segmentation on video. In Pro-
ceedings of the Conference on Computer Vision and Pattern Recognition
(CVPR), pages 8866-8875, 2019.

Sebastian Jaszczur, Aakanksha Chowdhery, Afroz Mohiuddin,
LUKASZ KAISER, Wojciech Gajewski, Henryk Michalewski, and Jonni
Kanerva. Sparse is enough in scaling transformers. In Proceedings of
the Conference on Neural Information Processing Systems (NeurIPS),
volume 34, pages 9895-9907, 2021.

H. Jhuang, J. Gall, S. Zuffi, C. Schmid, and M. J. Black. Towards un-
derstanding action recognition. In Proceedings of the International
Conference on Computer Vision (ICCV), pages 3192-3199, December
2013.

Sacha Jungerman. VisionSim: A modular and extensible framework for
distributed simulations with rich pixel-perfect ground truth annotations

[101]

[102]

[103]

[104]

[105]

[106]

[107]

201

and realistic sensor emulation. https://visionsim.readthedocs.io, 2025.
Accessed 2025-05-15.

Kai Kang, Hongsheng Li, Tong Xiao, Wanli Ouyang, Junjie Yan, Xihui
Liu, and Xiaogang Wang. Object detection in videos with tubelet pro-
posal networks. In Proceedings of the Conference on Computer Vision
and Pattern Recognition (CVPR), July 2017.

Nikita Karaev, Ignacio Rocco, Benjamin Graham, Natalia Neverova,
Andrea Vedaldi, and Christian Rupprecht. CoTracker: It is better to
track together. arxiv, 2023.

Kevin Karsch, Ce Liu, and Sing Bing Kang. Depth transfer: Depth
extraction from video using non-parametric sampling. Transactions on
Pattern Analysis and Machine Intelligence (TPAMI), 36(11):2144-2158,
2014.

Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and Francois
Fleuret. Transformers are RNNs: Fast autoregressive transformers
with linear attention. In Proceedings of the International Conference
on Machine Learning (ICML), volume 119 of Proceedings of Machine
Learning Research, pages 5156-5165, July 2020.

Anthony Kay. Tesseract: an open-source optical character recognition
engine. Linux Journal, 2007(159):2, 2007.

Will Kay, Joao Carreira, Karen Simonyan, Brian Zhang, Chloe Hillier,
Sudheendra Vijayanarasimhan, Fabio Viola, Tim Green, Trevor Back,
Paul Natsev, Mustafa Suleyman, and Andrew Zisserman. The Kinetics

human action video dataset. arXiv, 2017.

Bingxin Ke, Dominik Narnhofer, Shengyu Huang, Lei Ke, Torben Pe-
ters, Katerina Fragkiadaki, Anton Obukhov, and Konrad Schindler.
Video depth without video models. In Proceedings of the Conference

[108]

[109]

[110]

[111]

[112]

[113]

[114]

202

on Computer Vision and Pattern Recognition (CVPR), pages 7233-7243,
June 2025.

Onur Keles, M. Ak Yilmaz, A. Murat Tekalp, Cansu Korkmaz, and
Zafer Dogan. On the computation of psnr for a set of images or video.
In 2021 Picture Coding Symposium (PCS), pages 1-5, 2021.

Hamed Kiani Galoogahi, Ashton Fagg, Chen Huang, Deva Ramanan,
and Simon Lucey. Need for Speed: A benchmark for higher frame
rate object tracking. In Proceedings of the International Conference on
Computer Vision (ICCV), October 2017.

Dahun Kim, Sanghyun Woo, Joon-Young Lee, and In So Kweon. Re-
current temporal aggregation framework for deep video inpainting.
Transactions on Pattern Analysis and Machine Intelligence (TPAMI),
42(5):1038-1052, 2020.

Hanme Kim, Ankur Handa, Ryad Benosman, Sio-Hoi Ieng, and An-
drew J. Davison. Simultaneous mosaicing and tracking with an event
camera. Proceedings of the British Machine Vision Conference (BMVC),
43:566-576, 2014.

Diederik Kingma and Jimmy Ba. Adam: A method for stochastic
optimization. arXiv, 2017.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic

optimization. arXiv, 2014.

Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rol-
land, Laura Gustafson, Tete Xiao, Spencer Whitehead, Alexander C.
Berg, Wan-Yen Lo, Piotr Dollar, and Ross Girshick. Segment any-
thing. In Proceedings of the International Conference on Computer
Vision (ICCV), pages 4015-4026, October 2023.

[115]

[116]

[117]

[118]

[119]

[120]

[121]

203

Nikita Kitaev, Lukasz Kaiser, and Anselm Levskaya. Reformer: The
efficient transformer. In Proceedings of the International Conference on
Learning Representations (ICLR), 2020.

Johannes Kopf, Xuejian Rong, and Jia-Bin Huang. Robust consistent
video depth estimation. In Proceedings of the Conference on Computer
Vision and Pattern Recognition (CVPR), pages 1611-1621, June 2021.

Wei-Sheng Lai, Jia-Bin Huang, Oliver Wang, Eli Shechtman, Ersin
Yumer, and Ming-Hsuan Yang. Learning blind video temporal consis-
tency. In Proceedings of the European Conference on Computer Vision
(ECCV), September 2018.

Alfred Laugros, Alice Caplier, and Matthieu Ospici. Are adversar-
ial robustness and common perturbation robustness independant at-
tributes? In Proceedings of the International Conference on Computer
Vision (ICCV) Workshops, October 2019.

Martin Laurenzis, Emmanuel Bacher, Trevor Seets, Atul Ingle, Andreas
Velten, and Frank Christnacher. Single photon flux imaging with sub-
pixel resolution by motion compensation. In Advanced Photon Counting
Techniques, volume 12512, pages 77-85, 2023.

Martin Laurenzis, Trevor Seets, Emmanuel Bacher, Atul Ingle, and
Andreas Velten. Comparison of super-resolution and noise reduc-
tion for passive single-photon imaging. Journal of Electronic Imaging,
31(3):033042-033042, 2022.

Yann LeCun, John Denker, and Sara Solla. Optimal brain damage.
Proceedings of the Conference on Neural Information Processing Systems
(NeurIPS), 2:598-605, 1989.

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

204

Sungho Lee, Seoung Wug Oh, DaeYeun Won, and Seon Joo Kim. Copy-
and-paste networks for deep video inpainting. In Proceedings of the
International Conference on Computer Vision (ICCV), October 2019.

Chenyang Lei and Qifeng Chen. Fully automatic video colorization
with self-regularization and diversity. In Proceedings of the Conference
on Computer Vision and Pattern Recognition (CVPR), June 2019.

Chenyang Lei, Yazhou Xing, and Qifeng Chen. Blind video temporal
consistency via deep video prior. In Proceedings of the Conference on
Neural Information Processing Systems (NeurIPS), volume 33, pages
1083-1093, 2020.

Dasong Li, Xiaoyu Shi, Yi Zhang, Ka Chun Cheung, Simon See, Xiao-
gang Wang, Hongwei Qin, and Hongsheng Li. A simple baseline for
video restoration with grouped spatial-temporal shift. In Proceedings
of the Conference on Computer Vision and Pattern Recognition (CVPR),
pages 9822-9832, June 2023.

Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter
Graf. Pruning filters for efficient ConvNets. In Proceedings of the

International Conference on Learning Representations (ICLR), 2017.

Haolong Li and Joerg Stueckler. Tracking 6-DoF object motion from
events and frames. In Proceedings of the International Conference on
Robotics and Automation (ICRA), pages 14171-14177, 2021.

Siyuan Li, Yue Luo, Ye Zhu, Xun Zhao, Yu Li, and Ying Shan. Enforcing
temporal consistency in video depth estimation. In Proceedings of the
International Conference on Computer Vision (ICCV) Workshops, pages
1145-1154, October 2021.

Xueting Li, Sifei Liu, Jan Kautz, and Ming-Hsuan Yang. Learning linear
transformations for fast image and video style transfer. In Proceedings

[130]

[131]

[132]

[133]

[134]

[135]

205

of the Conference on Computer Vision and Pattern Recognition (CVPR),
June 2019.

Yanghao Li, Hanzi Mao, Ross Girshick, and Kaiming He. Exploring
plain vision transformer backbones for object detection. In Proceedings
of the European Conference on Computer Vision (ECCV), pages 280-296,
2022.

Yawei Li, Babak Ehteshami Bejnordi, Bert Moons, Tijmen Blankevoort,
Amirhossein Habibian, Radu Timofte, and Luc Van Gool. Spatio-
temporal gated transformers for efficient video processing. In Con-
ference on Neural Information Processing Systems (NeurIPS) Workshops,
2021.

Yule Li, Jianping Shi, and Dahua Lin. Low-latency video semantic
segmentation. In Proceedings of the Conference on Computer Vision and
Pattern Recognition (CVPR), pages 5997-6005, 2018.

Jingyun Liang, Jiezhang Cao, Yuchen Fan, Kai Zhang, Rakesh Ranjan,
Yawei Li, Radu Timofte, and Luc Van Gool. VRT: A video restoration
transformer. Transactions on Image Processing (TIP), 33:2171-2182,
2024.

Youwei Liang, Chongjian G. E., Zhan Tong, Yibing Song, Jue Wang,
and Pengtao Xie. EViT: Expediting vision transformers via token reor-
ganizations. In Proceedings of the International Conference on Learning
Representations (ICLR), 2022.

Patrick Lichtsteiner. 64x64 event-driven logarithmic temporal deriva-
tive silicon retina. In Program 2003 IEEE Workshop on CCD and AIS,
2003.

[136]

[137]

[138]

[139]

[140]

[141]

[142]

206

Patrick Lichtsteiner, Christoph Posch, and Tobi Delbruck. A 128x128
120 dB 15 us latency asynchronous temporal contrast vision sensor.
IEEE Journal of Solid-State Circuits, 43(2):566-576, February 2008.

Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollar.
Focal loss for dense object detection. In Proceedings of the International
Conference on Computer Vision (ICCV), pages 2980-2988, 2017.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Per-
ona, Deva Ramanan, Piotr Dollar, and C. Lawrence Zitnick. Microsoft
COCO: Common objects in context. In Proceedings of the European
Conference on Computer Vision (ECCV), pages 740-755, 2014.

Chang Liu, Yinpeng Dong, Wenzhao Xiang, Xiao Yang, Hang Su, Jun
Zhu, Yuefeng Chen, Yuan He, Hui Xue, and Shibao Zheng. A com-
prehensive study on robustness of image classification models: Bench-
marking and rethinking. International Journal of Computer Vision
(UCV), 133:567-589, 2025.

Mason Liu and Menglong Zhu. Mobile video object detection with
temporally-aware feature maps. In Proceedings of the Conference on
Computer Vision and Pattern Recognition (CVPR), June 2018.

Songhua Liu, Tianwei Lin, Dongliang He, Fu Li, Meiling Wang, Xin Li,
Zhengxing Sun, Qian Li, and Errui Ding. AdaAttN: Revisit attention
mechanism in arbitrary neural style transfer. In Proceedings of the
International Conference on Computer Vision (ICCV), pages 6649-6658,
October 2021.

Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott
Reed, Cheng-Yang Fu, and Alexander C. Berg. SSD: Single shot Multi-
Box detector. In Proceedings of the European Conference on Computer
Vision (ECCV), pages 21-37, 2016.

[143]

[144]

[145]

[146]

[147]

[148]

[149]

207

Yihao Liu, Hengyuan Zhao, Kelvin C. K. Chan, Xintao Wang,
Chen Change Loy, Yu Qiao, and Chao Dong. Temporally consistent
video colorization with deep feature propagation and self-regularization
learning. Computational Visual Media, 10:375-395, 2024.

Yuhao Liu, Felipe Gutierrez-Barragan, Atul Ingle, Mohit Gupta, and
Andreas Velten. Single-photon camera guided extreme dynamic range
imaging. In Proceedings of the Winter Conference on Applications of
Computer Vision (WACV), pages 1575-1585, January 2022.

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang,
Stephen Lin, and Baining Guo. Swin transformer: Hierarchical vision
transformer using shifted windows. In Proceedings of the International
Conference on Computer Vision (ICCV), pages 10012-10022, October
2021.

Ilya Loshchilov and Frank Hutter. SGDR: Stochastic gradient descent
with warm restarts. In Proceedings of the International Conference on
Learning Representations (ICLR), 2016.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regular-
ization. In Proceedings of the International Conference on Learning
Representations (ICLR), 2019.

Jiachen Lu, Jinghan Yao, Junge Zhang, Xiatian Zhu, Hang Xu, Weiguo
Gao, Chunjing XU, Tao Xiang, and Li Zhang. SOFT: Softmax-free
transformer with linear complexity. In Proceedings of the Conference
on Neural Information Processing Systems (NeurIPS), volume 34, pages
21297-213009, 2021.

Xuan Luo, Jia-Bin Huang, Richard Szeliski, Kevin Matzen, and Jo-
hannes Kopf. Consistent video depth estimation. Transactions on
Graphics (TOG), 39(4), August 2020.

[150]

[151]

[152]

[153]

[154]

[155]

[156]

208

Sizhuo Ma, Shantanu Gupta, Arin C. Ulku, Claudio Bruschini, Edoardo
Charbon, and Mohit Gupta. Quanta burst photography. Transactions
on Graphics (TOG), 39(4):1-16, July 2020.

Sizhuo Ma, Paul Mos, Edoardo Charbon, and Mohit Gupta. Burst vision
using single-photon cameras. In Proceedings of the Winter Conference
on Applications of Computer Vision (WACV), pages 5375-5385, January
2023.

Wolfgang Maass. Networks of spiking neurons: The third generation of
neural network models. Neural Networks, 10(9):1659-1671, December
1997.

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris
Tsipras, and Adrian Vladu. Towards deep learning models resistant to
adversarial attacks. In Proceedings of the International Conference on
Learning Representations (ICLR), 2018.

Matteo Maggioni, Vladimir Katkovnik, Karen Egiazarian, and Alessan-
dro Foi. Nonlocal transform-domain filter for volumetric data denoising
and reconstruction. Transactions on Image Processing (TIP), 22(1):119-
133, 2012.

Dmitrii Marin, Jen-Hao Rick Chang, Anurag Ranjan, Anish Prabhu,
Mohammad Rastegari, and Oncel Tuzel. Token pooling in vision trans-

formers. arXiv, 2021.

Lingchen Meng, Hengduo Li, Bor-Chun Chen, Shiyi Lan, Zuxuan Wu,
Yu-Gang Jiang, and Ser-Nam Lim. AdaViT: Adaptive vision transform-
ers for efficient image recognition. In Proceedings of the Conference on
Computer Vision and Pattern Recognition (CVPR), pages 12309-12318,
June 2022.

[157]

[158]

[159]

[160]

[161]

[162]

[163]

209

Yue Meng, Chung-Ching Lin, Rameswar Panda, Prasanna Sattigeri,
Leonid Karlinsky, Aude Oliva, Kate Saenko, and Rogerio Feris. AR-
Net: Adaptive frame resolution for efficient action recognition. In
Proceedings of the European Conference on Computer Vision (ECCYV),
pages 86-104, 2020.

Yue Meng, Rameswar Panda, Chung-Ching Lin, Prasanna Sattigeri,
Leonid Karlinsky, Kate Saenko, Aude Oliva, and Rogerio Feris. Adafuse:
Adaptive temporal fusion network for efficient action recognition. In
Proceedings of the International Conference on Learning Representations
(ICLR), 2021.

Nico Messikommer, Daniel Gehrig, Antonio Loquercio, and Davide
Scaramuzza. Event-based asynchronous sparse convolutional networks.
In Proceedings of the European Conference on Computer Vision (ECCV),
pages 415-431, 2020.

Sparsh Mittal. A survey of techniques for approximate computing. ACM
Computing Surveys, 48(4), March 2016.

Kazuhiro Morimoto, Andrei Ardelean, Ming-Lo Wu, Arin Can Ulku,
Ivan Michel Antolovic, Claudio Bruschini, and Edoardo Charbon.
Megapixel time-gated SPAD image sensor for 2D and 3D imaging appli-
cations. Optica, 7(4):346-354, April 2020.

Norman Mu and Justin Gilmer. MNIST-C: A robustness benchmark
for computer vision. arXiv, 2019.

Gottfried Munda, Christian Reinbacher, and Thomas Pock. Real-time
intensity-image reconstruction for event cameras using manifold regu-
larisation. International Journal of Computer Vision (IJCV), 126:1381-
1393, 2018.

[164]

[165]

[166]

[167]

[168]

[169]

[170]

210

Shuichi Namiki, Shunichi Sato, Yusuke Kameda, and Takayuki
Hamamoto. Imaging method using multi-threshold pattern for pho-
ton detection of quanta image sensor. In International Workshop on
Advanced Imaging Technology (IWAIT), volume 12177, page 1217702,
2022.

Daniel Neil, Jun Haeng Lee, Tobi Delbruck, and Shih-Chii Liu. Delta
networks for optimized recurrent network computation. In Proceedings
of the International Conference on Machine Learning (ICML), pages
2584-2593, July 2017.

Xuecheng Nie, Yuncheng Li, Linjie Luo, Ning Zhang, and Jiashi Feng.
Dynamic kernel distillation for efficient pose estimation in videos. In
Proceedings of the Conference on Computer Vision and Pattern Recogni-
tion (CVPR), pages 6942-6950, 2019.

Peter O’Connor and Max Welling. Sigma delta quantized networks.
arXiv, 2016.

Bowen Pan, Wuwei Lin, Xiaolin Fang, Chaoqin Huang, Bolei Zhou, and
Cewu Lu. Recurrent residual module for fast inference in videos. In Pro-
ceedings of the Conference on Computer Vision and Pattern Recognition
(CVPR), pages 1536-1545, 2018.

Bowen Pan, Rameswar Panda, Yifan Jiang, Zhangyang Wang, Rogerio
Feris, and Aude Oliva. IA-RED2: Interpretability-aware redundancy
reduction for vision transformers. In Proceedings of the Conference on
Neural Information Processing Systems (NeurIPS), volume 34, pages
24898-24911, 2021.

Liyuan Pan, Richard Hartley, Cedric Scheerlinck, Miaomiao Liu, Xin
Yu, and Yuchao Dai. High frame rate video reconstruction based on an
event camera. Transactions on Pattern Analysis and Machine Intelligence
(TPAMI), 44(5):2519-2533, 2022.

[171]

[172]

[173]

[174]

[175]

[176]

[177]

211

Liyuan Pan, Cedric Scheerlinck, Xin Yu, Richard Hartley, Miaomiao
Liu, and Yuchao Dai. Bringing a blurry frame alive at high frame-rate
with an event camera. In Proceedings of the Conference on Computer
Vision and Pattern Recognition (CVPR), June 2019.

Zizheng Pan, Bohan Zhuang, Jing Liu, Haoyu He, and Jianfei Cai.
Scalable vision transformers with hierarchical pooling. In Proceedings
of the International Conference on Computer Vision (ICCV), pages 377-
386, October 2021.

Tianyu Pang, Kun Xu, Yinpeng Dong, Chao Du, Ning Chen, and Jun
Zhu. Rethinking softmax cross-entropy loss for adversarial robustness.
In Proceedings of the International Conference on Learning Representa-
tions (ICLR), 2020.

Federico Paredes-Valles and Guido C. H. E. de Croon. Back to event
basics: Self-supervised learning of image reconstruction for event cam-
eras via photometric constancy. In Proceedings of the Conference on
Computer Vision and Pattern Recognition (CVPR), pages 3446-3455,
June 2021.

Mathias Parger, Chengcheng Tang, Christopher D. Twigg, Cem Keskin,
Robert Wang, and Markus Steinberger. DeltaCNN: End-to-end CNN
inference of sparse frame differences in videos. In Proceedings of the
Conference on Computer Vision and Pattern Recognition (CVPR), pages
12497-12506, June 2022.

Sylvain Paris, Samuel W. Hasinoff, and Jan Kautz. Local Laplacian
filters: edge-aware image processing with a Laplacian pyramid. In
SIGGRAPH, 2011.

Sylvain Paris, Samuel W. Hasinoff, and Jan Kautz. Local Laplacian
Filters: Edge-aware image processing with a Laplacian pyramid. Trans-
actions on Graphics (TOG), page 11, 2011.

[178]

[179]

[180]

[181]

[182]

[183]

[184]

212

Vaishakh Patil, Wouter Van Gansbeke, Dengxin Dai, and Luc Van Gool.
Don’t forget the past: Recurrent depth estimation from monocular
video. Robotics and Automation Letters, 5(4):6813-6820, 2020.

Federico Perazzi, Anna Khoreva, Rodrigo Benenson, Bernt Schiele, and
Alexander Sorkine-Hornung. Learning video object segmentation from
static images. In Proceedings of the Conference on Computer Vision and
Pattern Recognition (CVPR), July 2017.

Federico Perazzi, Jordi Pont-Tuset, Brian McWilliams, Luc Van Gool,
Markus Gross, and Alexander Sorkine-Hornung. A benchmark dataset
and evaluation methodology for video object segmentation. In Pro-
ceedings of the Conference on Computer Vision and Pattern Recognition
(CVPR), June 2016.

Christoph Posch, Daniel Matolin, and Rainer Wohlgenannt. A QVGA
143 dB dynamic range frame-free PWM image sensor with lossless
pixel-level video compression and time-domain CDS. IEEE Journal of
Solid-State Circuits, 46(1):259-275, 2011.

Gilles Puy and Patrick Perez. A flexible convolutional solver for fast
style transfers. In Proceedings of the Conference on Computer Vision and
Pattern Recognition (CVPR), June 2019.

René Ranftl, Katrin Lasinger, David Hafner, Konrad Schindler, and
Vladlen Koltun. Towards robust monocular depth estimation: Mixing
datasets for zero-shot cross-dataset transfer. Transactions on Pattern
Analysis and Machine Intelligence (TPAMI), 44(3):1623-1637, 2022.

Yongming Rao, Wenliang Zhao, Benlin Liu, Jiwen Lu, Jie Zhou, and
Cho-Jui Hsieh. DynamicViT: Efficient vision transformers with dy-
namic token sparsification. In Proceedings of the Conference on Neural
Information Processing Systems (NeurIPS), volume 34, pages 13937-
13949, 2021.

[185]

[186]

[187]

[188]

[189]

[190]

[191]

213

Ramesh Raskar, Amit Agrawal, and Jack Tumblin. Coded exposure
photography: motion deblurring using fluttered shutter. In SSIGGRAPH,
pages 795-804, 2006.

Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali
Farhadi. XNOR-Net: ImageNet classification using binary convolu-
tional neural networks. In Proceedings of the European Conference on
Computer Vision (ECCV), pages 525-542, 2016.

Nikhila Ravi, Valentin Gabeur, Yuan-Ting Hu, Ronghang Hu, Chai-
tanya Ryali, Tengyu Ma, Haitham Khedr, Roman Rédle, Chloe Rol-
land, Laura Gustafson, Eric Mintun, Junting Pan, Kalyan Vasudev Al-
wala, Nicolas Carion, Chao-Yuan Wu, Ross Girshick, Piotr Dollar, and
Christoph Feichtenhofer. SAM 2: Segment anything in images and
videos. arXiv, 2024.

Henri Rebecq, René Ranftl, Vladlen Koltun, and Davide Scaramuzza.
High speed and high dynamic range video with an event camera. Trans-
actions on Pattern Analysis and Machine Intelligence (TPAMI), 2019.

Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You
only look once: Unified, real-time object detection. In Proceedings of
the Conference on Computer Vision and Pattern Recognition (CVPR),
June 2016.

Hongyu Ren, Hanjun Dai, Zihang Dai, Mengjiao Yang, Jure Leskovec,
Dale Schuurmans, and Bo Dai. Combiner: Full attention transformer
with sparse computation cost. In Proceedings of the Conference on
Neural Information Processing Systems (NeurIPS), volume 34, pages
22470-22482, 2021.

Stephan Richter, Zeeshan Hayder, and Vladlen Koltun. Playing for
benchmarks. In Proceedings of the International Conference on Com-
puter Vision (ICCV), pages 2232-2241, October 2017.

[192]

[193]

[194]

[195]

[196]

[197]

[198]

[199]

214

S. W. Roberts. Control chart tests based on geometric moving averages.
Technometrics, 42(1):97-101, 2000.

Alexis Rochas. Single photon avalanche diodes in CMOS technology.
Technical report, Citeseer, 2003.

Aurko Roy, Mohammad Saffar, Ashish Vaswani, and David Grangier. Ef-
ficient content-based sparse attention with routing transformers. arXiv,
2020.

Manuel Ruder, Alexey Dosovitskiy, and Thomas Brox. Artistic style
transfer for videos. In Proceedings of the German Conference on Pattern
Recognition, pages 26-36, 2016.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev
Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla,
Michael Bernstein, Alexander C. Berg, and Li Fei-Fei. ImageNet large
scale visual recognition challenge. International Journal of Computer
Vision (IJCV), 115(3):211-252, April 2015.

Michael S. Ryoo, A. J. Piergiovanni, Anurag Arnab, Mostafa Dehghani,
and Anelia Angelova. TokenLearner: What can 8 learned tokens do for
images and videos? arXiv, 2021.

Alberto Sabater, Luis Montesano, and Ana C. Murillo. Robust and
efficient post-processing for video object detection. In Proceedings of
the International Conference on Intelligent Robots and Systems (IROS),
pages 10536-10542, October 2020.

Nitin J. Sanket, Chethan M. Parameshwara, Chahat Deep Singh, Ash-
win V Kuruttukulam, Cornelia Fermiiller, Davide Scaramuzza, and
Yiannis Aloimonos. Evdodgenet: Deep dynamic obstacle dodging
with event cameras. In Proceedings of the International Conference on
Robotics and Automation (ICRA), pages 10651-10657, 2020.

[200]

[201]

[202]

[203]

[204]

[205]

[206]

215

Cedric Scheerlinck, Nick Barnes, and Robert Mahony. Continuous-
time intensity estimation using event cameras. In Proceedings of the
Asian Conference on Computer Vision (ACCV), pages 308-324, 2018.

Cedric Scheerlinck, Henri Rebecq, Daniel Gehrig, Nick Barnes, Robert
Mahony, and Davide Scaramuzza. Fast image reconstruction with an
event camera. In Proceedings of the Winter Conference on Applications
of Computer Vision (WACV), March 2020.

Jenny Schmalfuss, Victor Oei, Lukas Mehl, Madlen Bartsch, Shashank
Agnihotri, Margret Keuper, and Andrés Bruhn. RobustSpring: Bench-
marking robustness to image corruptions for optical flow, scene flow
and stereo. arXiv, 2025.

Trevor Seets, Atul Ingle, Martin Laurenzis, and Andreas Velten. Motion
adaptive deblurring with single-photon cameras. In Proceedings of the
Winter Conference on Applications of Computer Vision (WACV), pages
1945-1954, January 2021.

Sanchari Sen, Balaraman Ravindran, and Anand Raghunathan. EMPIR:
Ensembles of mixed precision deep networks for increased robustness
against adversarial attacks. In Proceedings of the International Confer-
ence on Learning Representations (ICLR), 2020.

Prasan Shedligeri and Kaushik Mitra. Photorealistic image reconstruc-
tion from hybrid intensity and event-based sensor. Journal of Electronic
Imaging, 28(6):063012-063012, 2019.

Prasan Shedligeri, Anupama S., and Kaushik Mitra. A unified frame-
work for compressive video recovery from coded exposure techniques.
In Proceedings of the Winter Conference on Applications of Computer
Vision (WACV), pages 1600-1609, January 2021.

[207]

[208]

[209]

[210]

[211]

[212]

[213]

[214]

216

Mark Sheinin, Yoav Y. Schechner, and Kiriakos N. Kutulakos. Compu-
tational imaging on the electric grid. In Proceedings of the Conference
on Computer Vision and Pattern Recognition (CVPR), July 2017.

Evan Shelhamer, Kate Rakelly, Judy Hoffman, and Trevor Darrell.
Clockwork convnets for video semantic segmentation. In Proceed-
ings of the European Conference on Computer Vision (ECCV) Workshops,
volume 9915, pages 852-868, 2016.

Evan Shelhamer, Kate Rakelly, Judy Hoffman, and Trevor Darrell.
Clockwork Convnets for video semantic segmentation. In Proceed-
ings of the European Conference on Computer Vision (ECCV) Workshops,
pages 852-868, 2016.

Sillerkiil. Eesti: Aegviidu siniallikad (Aegviidu blue springs in Estonia),
April 2021.

Hyeonjun Sim, Jihyong Oh, and Munchurl Kim. XVFI: eXtreme video
frame interpolation. In Proceedings of the International Conference on
Computer Vision (ICCV), pages 14489-14498, October 2021.

Timo Stoffregen, Cedric Scheerlinck, Davide Scaramuzza, Tom Drum-
mond, Nick Barnes, Lindsay Kleeman, and Robert Mahony. Reducing
the sim-to-real gap for event cameras. In Proceedings of the European
Conference on Computer Vision (ECCV), pages 534-549, 2020.

Binyi Su, Lei Yu, and Wen Yang. Event-based high frame-rate video
reconstruction with a novel cycle-event network. In Proceedings of the
International Conference on Image Processing (ICIP), pages 86-90, 2020.

Deqing Sun, Xiaodong Yang, Ming-Yu Liu, and Jan Kautz. PWC-Net:
CNNs for optical flow using pyramid, warping, and cost volume. In Pro-
ceedings of the Conference on Computer Vision and Pattern Recognition
(CVPR), pages 8934-8943, 2018.

[215]

[216]

[217]

[218]

[219]

[220]

[221]

217

Ke Sun, Bin Xiao, Dong Liu, and Jingdong Wang. Deep high-resolution
representation learning for human pose estimation. In Proceedings
of the Conference on Computer Vision and Pattern Recognition (CVPR),
pages 5693-5703, 2019.

Varun Sundar, Andrei Ardelean, Tristan Swedish, Claudio Bruschini,
Edoardo Charbon, and Mohit Gupta. SoDaCam: Software-defined
cameras via single-photon imaging. In Proceedings of the International
Conference on Computer Vision (ICCV), pages 8165-8176, October 2023.

Varun Sundar, Matthew Dutson, Andrei Ardelean, Claudio Bruschini,
Edoardo Charbon, and Mohit Gupta. Generalized event cameras. In
Proceedings of the Conference on Computer Vision and Pattern Recogni-
tion (CVPR), pages 25007-25017, June 2024.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Du-
mitru Erhan, Ian Goodfellow, and Rob Fergus. Intriguing properties of
neural networks. arXiv, 2014.

Matias Tassano, Julie Delon, and Thomas Veit. FastDVDnet: Towards
real-time deep video denoising without flow estimation. In Proceedings
of the Conference on Computer Vision and Pattern Recognition (CVPR),
June 2020.

Zachary Teed and Jia Deng. Raft: Recurrent all-pairs field transforms
for optical flow. In Proceedings of the European Conference on Computer
Vision (ECCV), pages 402-419, 2020.

Surat Teerapittayanon, Bradley McDanel, and H. T. Kung. BranchyNet:
Fast inference via early exiting from deep neural networks. In Pro-
ceedings of the International Conference on Pattern Recognition (ICPR),
pages 2464-2469, 2016.

[222]

[223]

[224]

[225]

[226]

[227]

[228]

218

Subarna Tripathi, Zachary C. Lipton, Serge Belongie, and Truong
Nguyen. Context matters: Refining object detection in video with

recurrent neural networks. arXiv, 2016.

Arin Can Ulku, Claudio Bruschini, Ivan Michel Antolovic, Yung Kuo,
Rinat Ankri, Shimon Weiss, Xavier Michalet, and Edoardo Charbon. A
512x512 SPAD image sensor with integrated gating for widefield FLIM.
IEEE Journal of Selected Topics in Quantum Electronics, 25(1):1-12,
January 2019.

Vincent Vanhoucke, Andrew Senior, and Mark Z. Mao. Improving the
speed of neural networks on CPUs. In Conference on Neural Information
Processing Systems (NeurIPS) Workshops, 2011.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion
Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention
is all you need. In Proceedings of the Conference on Neural Information
Processing Systems (NeurIPS), volume 30, 2017.

Andreas Veit and Serge Belongie. Convolutional networks with adap-
tive inference graphs. In Proceedings of the European Conference on
Computer Vision (ECCV), September 2018.

Ziyu Wan, Bo Zhang, Dongdong Chen, and Jing Liao. Bringing old
films back to life. In Proceedings of the Conference on Computer Vision
and Pattern Recognition (CVPR), pages 17694-17703, June 2022.

Chuan Wang, Haibin Huang, Xiaoguang Han, and Jue Wang. Video
inpainting by jointly learning temporal structure and spatial details.
In Proceedings of the AAAI Conference on Artificial Intelligence (AAAI),
pages 5232-5239, July 2019.

[229]

[230]

[231]

[232]

[233]

[234]

[235]

[236]

219

Hao Wang, Weining Wang, and Jing Liu. Temporal memory attention
for video semantic segmentation. In Proceedings of the International
Conference on Image Processing (ICIP), pages 2254-2258, 2021.

Junke Wang, Xitong Yang, Hengduo Li, Li Liu, Zuxuan Wu, and Yu-
Gang Jiang. Efficient video transformers with spatial-temporal token
selection. In Proceedings of the European Conference on Computer Vision
(ECCV), pages 69-86, 2022.

Lishun Wang, Miao Cao, and Xin Yuan. EfficientSCI: Densely con-
nected network with space-time factorization for large-scale video snap-
shot compressive imaging. In Proceedings of the Conference on Computer
Vision and Pattern Recognition (CVPR), pages 18477-18486, June 2023.

Sinong Wang, Belinda Z. Li, Madian Khabsa, Han Fang, and Hao Ma.
Linformer: Self-attention with linear complexity. arXiv, 2020.

Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao Song, Ding
Liang, Tong Lu, Ping Luo, and Ling Shao. Pyramid vision transformer:
A versatile backbone for dense prediction without convolutions. In
Proceedings of the International Conference on Computer Vision (ICCV),
pages 568-578, October 2021.

Wenjing Wang, Shuai Yang, Jizheng Xu, and Jiaying Liu. Consistent
video style transfer via relaxation and regularization. Transactions on
Image Processing (TIP), 29:9125-9139, 2020.

Xin Wang, Fisher Yu, Zi-Yi Dou, Trevor Darrell, and Joseph E. Gonzalez.
SkipNet: Learning dynamic routing in convolutional networks. In
Proceedings of the European Conference on Computer Vision (ECCV),
September 2018.

Yiran Wang, Min Shi, Jiaqi Li, Zihao Huang, Zhiguo Cao, Jianming
Zhang, Ke Xian, and Guosheng Lin. Neural video depth stabilizer. In

[237]

[238]

[239]

[240]

[241]

[242]

[243]

220

Proceedings of the International Conference on Computer Vision (ICCV),
pages 9466-9476, October 2023.

Yisen Wang, Difan Zou, Jinfeng Yi, James Bailey, Xingjun Ma, and
Quanquan Gu. Improving adversarial robustness requires revisiting
misclassified examples. In Proceedings of the International Conference
on Learning Representations (ICLR), 2020.

Yulin Wang, Rui Huang, Shiji Song, Zeyi Huang, and Gao Huang. Not
all images are worth 16x16 words: Dynamic transformers for efficient
image recognition. In Proceedings of the Conference on Neural Infor-
mation Processing Systems (NeurIPS), volume 34, pages 11960-11973,
2021.

Zhaohui Wang, Xiao Lin, Abhinav Mishra, and Ram Sriharsha. Online
changepoint detection on a budget. In International Conference on Data
Mining Workshops (ICDMW), pages 414-420, 2021.

Colin Ware. Visual Thinking for Design. Morgan Kaufmann, first
edition, April 2008.

Mian Wei, Sotiris Nousias, Rahul Gulve, David B. Lindell, and Kiri-
akos N. Kutulakos. Passive ultra-wideband single-photon imaging. In
Proceedings of the International Conference on Computer Vision (ICCV),
pages 8135-8146, October 2023.

Mian Wei, Navid Sarhangnejad, Zhengfan Xia, Nikita Gusev, Nikola
Katic, Roman Genov, and Kiriakos N. Kutulakos. Coded two-bucket
cameras for computer vision. In Proceedings of the European Conference
on Computer Vision (ECCV), September 2018.

Eric Wong and J. Zico Kolter. Learning perturbation sets for robust
machine learning. arXiv, 2020.

[244]

[245]

[246]

[247]

[248]

[249]

[250]

221

Chao-Yuan Wu, Manzil Zaheer, Hexiang Hu, R. Manmatha, Alexan-
der J. Smola, and Philipp Krdahenbiihl. Compressed video action recog-
nition. In Proceedings of the Conference on Computer Vision and Pattern
Recognition (CVPR), pages 6026-6035, 2018.

Zuxuan Wu, Caiming Xiong, Yu-Gang Jiang, and Larry S Davis. LiteE-
val: A coarse-to-fine framework for resource efficient video recognition.
In Proceedings of the Conference on Neural Information Processing Sys-
tems (NeurIPS), volume 32, 2019.

Zuxuan Wu, Caiming Xiong, Chih-Yao Ma, Richard Socher, and Larry S
Davis. AdaFrame: Adaptive frame selection for fast video recogni-
tion. In Proceedings of the Conference on Computer Vision and Pattern
Recognition (CVPR), pages 1278-1287, 2019.

Bin Xiao, Haiping Wu, and Yichen Wei. Simple baselines for human
pose estimation and tracking. In Proceedings of the European Conference
on Computer Vision (ECCV), pages 466-481, 2018.

Chang Xiao, Peilin Zhong, and Changxi Zheng. Enhancing adversar-
ial defense by k-winners-take-all. In Proceedings of the International

Conference on Learning Representations (ICLR), 2020.

Fanyi Xiao and Yong Jae Lee. Video object detection with an aligned
spatial-temporal memory. In Proceedings of the European Conference
on Computer Vision (ECCV), September 2018.

Yunyang Xiong, Zhanpeng Zeng, Rudrasis Chakraborty, Mingxing Tan,
Glenn Fung, Yin Li, and Vikas Singh. Nystromformer: A Nystrom-
based algorithm for approximating self-attention. In Proceedings of the
AAAI Conference on Artificial Intelligence (AAAI), volume 35, pages
14138-14148, May 2021.

[251]

[252]

[253]

[254]

[255]

[256]

[257]

222

Kai Xu, Longyin Wen, Guorong Li, Honggang Qi, Liefeng Bo, and
Qingming Huang. Learning self-supervised space-time cnn for fast
video style transfer. Transactions on Image Processing (TIP), 30:2501-
2512, 2021.

Ran Xu, Fangzhou Mu, Jayoung Lee, Preeti Mukherjee, Somali Chaterji,
Saurabh Bagchi, and Yin Li. SmartAdapt: Multi-branch object detection
framework for videos on mobiles. In Proceedings of the Conference on
Computer Vision and Pattern Recognition (CVPR), pages 2528-2538,
June 2022.

Ran Xu, Chen-lin Zhang, Pengcheng Wang, Jayoung Lee, Subrata Mitra,
Somali Chaterji, Yin Li, and Saurabh Bagchi. ApproxDet: Content and
contention-aware approximate object detection for mobiles. In Pro-
ceedings of the 18th Conference on Embedded Networked Sensor Systems,
pages 449-462, November 2020.

Rui Xu, Xiaoxiao Li, Bolei Zhou, and Chen Change Loy. Deep flow-
guided video inpainting. In Proceedings of the Conference on Computer
Vision and Pattern Recognition (CVPR), June 2019.

Chengshuai Yang, Shiyu Zhang, and Xin Yuan. Ensemble learning
priors driven deep unfolding for scalable video snapshot compressive
imaging. In Proceedings of the European Conference on Computer Vision
(ECCV), 2022.

Le Yang, Yizeng Han, Xi Chen, Shiji Song, Jifeng Dai, and Gao Huang.
Resolution adaptive networks for efficient inference. In Proceedings
of the Conference on Computer Vision and Pattern Recognition (CVPR),
pages 2369-2378, 2020.

Lihe Yang, Bingyi Kang, Zilong Huang, Zhen Zhao, Xiaogang Xu, Jiashi
Feng, and Hengshuang Zhao. Depth Anything V2. In Proceedings of

[258]

[259]

[260]

[261]

[262]

[263]

[264]

223

the Conference on Neural Information Processing Systems (NeurIPS),
volume 37, pages 21875-21911, 2024.

Yi Yang and Deva Ramanan. Articulated human detection with flexi-
ble mixtures of parts. Transactions on Pattern Analysis and Machine
Intelligence (TPAMI), 35(12):2878-2890, December 2013.

Yixin Yang, Jinshan Pan, Zhongzheng Peng, Xiaoyu Du, Zhulin Tao,
and Jinhui Tang. BiSTNet: Semantic image prior guided bidirectional
temporal feature fusion for deep exemplar-based video colorization.
Transactions on Pattern Analysis and Machine Intelligence (TPAMI),
46(8):5612-5624, 2024.

Chun-Han Yao, Chia-Yang Chang, and Shao-Yi Chien. Occlusion-
aware video temporal consistency. In Proceedings of the International
Conference on Multimedia, pages 777-785, 2017.

Hongxu Yin, Arash Vahdat, Jose M. Alvarez, Arun Mallya, Jan Kautz,
and Pavlo Molchanov. A-ViT: Adaptive tokens for efficient vision trans-
former. In Proceedings of the Conference on Computer Vision and Pattern
Recognition (CVPR), pages 10809-10818, June 2022.

Guan Yu. Variance stabilizing transformations of Poisson, binomial
and negative binomial distributions. Statistics & Probability Letters,
79(14):1621-1629, 2009.

Xin Yuan, Yang Liu, Jinli Suo, Frédo Durand, and Qionghai Dai. Plug-
and-play algorithms for video snapshot compressive imaging. Transac-
tions on Pattern Analysis and Machine Intelligence (TPAMI), 44(10):7093—
7111, 2022.

Xiaoyu Yue, Shuyang Sun, Zhanghui Kuang, Meng Wei, Philip H.S. Torr,
Wayne Zhang, and Dahua Lin. Vision transformer with progressive

[265]

[266]

[267]

[268]

[269]

[270]

[271]

224

sampling. In Proceedings of the International Conference on Computer
Vision (ICCV), pages 387-396, October 2021.

Yanhong Zeng, Jianlong Fu, and Hongyang Chao. Learning joint spatial-
temporal transformations for video inpainting. In Proceedings of the
European Conference on Computer Vision (ECCV), pages 528-543, 2020.

Bo Zhang, Mingming He, Jing Liao, Pedro V. Sander, Lu Yuan, Amine
Bermak, and Dong Chen. Deep exemplar-based video colorization. In
Proceedings of the Conference on Computer Vision and Pattern Recogni-
tion (CVPR), June 2019.

Fan Zhang, Yu Li, Shaodi You, and Ying Fu. Learning temporal con-
sistency for low light video enhancement from single images. In Pro-
ceedings of the Conference on Computer Vision and Pattern Recognition
(CVPR), pages 4967-4976, June 2021.

Haokui Zhang, Chunhua Shen, Ying Li, Yuanzhouhan Cao, Yu Liu,
and Youliang Yan. Exploiting temporal consistency for real-time video
depth estimation. In Proceedings of the International Conference on
Computer Vision (ICCV), October 2019.

Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian Sun. ShuffleNet:
An extremely efficient convolutional neural network for mobile de-
vices. In Proceedings of the Conference on Computer Vision and Pattern
Recognition (CVPR), pages 6848-6856, 2018.

Zelin Zhang, Anthony J. Yezzi, and Guillermo Gallego. Formulating
event-based image reconstruction as a linear inverse problem with deep
regularization using optical flow. Transactions on Pattern Analysis and
Machine Intelligence (TPAMI), 45(7):8372-8389, 2023.

Yuzhi Zhao, Lai-Man Po, Kangcheng Liu, Xuehui Wang, Wing-Yin Yu,
Pengfei Xian, Yujia Zhang, and Mengyang Liu. SVCNet: Scribble-based

[272]

[273]

[274]

[275]

[276]

[277]

225

video colorization network with temporal aggregation. Transactions on
Image Processing (TIP), 32:4443-4458, 2023.

Yuzhi Zhao, Lai-Man Po, Wing-Yin Yu, Yasar Abbas Ur Rehman,
Mengyang Liu, Yujia Zhang, and Weifeng Ou. VCGAN: Video col-
orization with hybrid generative adversarial network. Transactions on
Multimedia, 25:3017-3032, 2023.

Xizhou Zhu, Jifeng Dai, Lu Yuan, and Yichen Wei. Towards high
performance video object detection. In Proceedings of the Conference
on Computer Vision and Pattern Recognition (CVPR), pages 7210-7218,
2018.

Xizhou Zhu, Yujie Wang, Jifeng Dai, Lu Yuan, and Yichen Wei. Flow-
guided feature aggregation for video object detection. In Proceedings of
the International Conference on Computer Vision (ICCV), pages 408-417,
2017.

Xizhou Zhu, Yuwen Xiong, Jifeng Dai, Lu Yuan, and Yichen Wei. Deep
feature flow for video recognition. In Proceedings of the Conference
on Computer Vision and Pattern Recognition (CVPR), pages 2349-2358,
2017.

Alex Zihao Zhu, Nikolay Atanasov, and Kostas Daniilidis. Event-based
visual inertial odometry. In Proceedings of the Conference on Computer
Vision and Pattern Recognition (CVPR), July 2017.

Yunhao Zou, Yingiang Zheng, Tsuyoshi Takatani, and Ying Fu. Learn-
ing to reconstruct high speed and high dynamic range videos from
events. In Proceedings of the Conference on Computer Vision and Pattern
Recognition (CVPR), pages 2024-2033, June 2021.

	List of Tables
	List of Figures
	Abstract
	Introduction
	Frame-Based Vision
	Bandwidth
	Compute
	Stability and Robustness
	Recap

	Bandwidth: Generalized Event Cameras
	Introduction
	Related Work
	What is an Event Camera?
	Single-Photon Generalized Event Cameras
	Experimental Results
	Limitations and Discussion

	Compute: Event Neural Networks
	Introduction
	Related Work
	Event Neurons
	Event Networks
	Experiments
	Discussion

	Compute: Eventful Transformers
	Introduction
	Related Work
	Background: Vision Transformers
	Eventful Transformers
	Experiments
	Discussion

	Stability and Robustness: Instant Video Models
	Introduction
	Related Work
	Defining Stability and Robustness
	Learning to Balance Stability and Robustness
	Designing Stabilization Adapters
	Experiments
	Discussion

	Discussion and Outlook
	Trends
	Tradeoffs
	Why?

	Bandwidth: Generalized Event Cameras
	Pipeline Overview
	Method Details
	Extended Discussion
	Restoration Model Details
	Baseline Details
	Camera Motion Experiments
	Plug-and-Play Event Inference
	Rate-Distortion Evaluation
	UltraPhase Experiments

	Compute: Event Neural Networks
	Results on Low-Level Tasks
	Additional Analysis Experiments
	HRNet Experiments
	Experiment Details
	Derivation of Equation 3.4
	Thoughts on Theoretical Guarantees

	Compute: Eventful Transformers
	Further Discussion
	Additional Experiments
	Experiment Details

	Stability and Robustness: Instant Video Models
	Proofs
	Transport Metric
	Composing Stabilizers
	Method Details
	Experiment Details
	Additional Results
	Licenses and Copyright

	Bibliography

