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Abstract.

This paper has two goals. The first is to develop a variety of robust methods for the computation of
the Fundamental Matrix, the calibration-free representation of camera motion. The methods are drawn
from the principal categories of robust estimators, viz case deletion methods, M-estimators and random
sampling, and the paper develops the theory required to apply them to non-linear orthogonal regression
problems. Although a considerable amount of interest has focussed on the application of robust estimation
in computer vision, the relative merits of the many individual methods are unknown, leaving the potential
practitioner to guess at their value. The second goal is therefore to compare and judge the methods.

Comparative tests are carried out using correspondences generated both synthetically in a statistically
controlled fashion and from feature matching in real imagery. In contrast with previously reported meth-
ods the goodness of fit to the synthetic observations is judged not in terms of the fit to the observations
per se but in terms of fit to the ground truth. A variety of error measures are examined. The experiments
allow a statistically satisfying and quasi-optimal method to be synthesized, which is shown to be stable
with up to 50 percent outlier contamination, and may still be used if there are more than 50 percent
outliers. Performance bounds are established for the method, and a variety of robust methods to estimate
the standard deviation of the error and covariance matrix of the parameters are examined.

The results of the comparison have broad applicability to vision algorithms where the input data are
corrupted not only by noise but also by gross outliers.

1. Introduction statistical population even when the data contain

In most computer vision algorithms it is assumed
that a least squares framework is sufficient to deal
with data corrupted by noise. However, in many
applications, visual data are not only noisy, but
also contain outliers, data that are in gross dis-
agreement with a postulated model. Outliers,
which are inevitably included in an initial fit, can
so distort a fitting process that the fitted parame-
ters become arbitrary. This is particularly severe
when the veridical data are themselves degenerate
or near-degenerate with respect to the model, for
then outliers can appear to break the degeneracy.

In such circumstances, the deployment of robust
estimation methods is essential. Robust methods
continue to recover meaningful descriptions of a

outlying elements belonging to a different popula-
tion. They are also able to perform when other
assumptions underlying the estimation, say the
noise model, are not wholly satisfied.

Amongst the earliest to draw the value of such
methods to the attention of computer vision re-
searchers were Fischler and Bolles (1981). Figure
1 shows a table of #, y data from their paper which
contains a gross outlier (Point 7). Fit 1 is the re-
sult of applying least squares, Fit 2 is the result
of applying least squares after one robust method
has removed the outlier, and the solid line is the
result of applying their fully robust RANSAC al-
gorithm to the data. The data set can also be
used to demonstrate the failings of naive heuris-
tics to remove outliers. For example, discarding
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Fig. 1. A data set with an outlier comparing least squares and robust fitting.

the point with largest residual after least squares
fitting removes Point 6 not Point 7. Indeed re-
peated application of this heuristic to convergence
results in half the valid data being discarded, and
Point 7 remaining as an inlier to a completely er-
roneous fit.

The statistical literature reports a wide variety
of robust estimators (Maronna 1976; Mosteller &
Tukey 1977, Cook & Weisberg 1980; Devlin et al.
1981; Fischler & Bolles 1981; Huber 1981; Critch-
ley 1985; Hoaglin et al. 1985; Hampel et al. 1986;
Rousseeuw 1987; Chaterjee & Hadi 1988, Roth
1993, Shapiro and Brady 1993, Torr and Murray
1993, Zhang et. al 1994, Kumar and Hanson
1994, Stewart 1995). The first aim of this work is
to develop a variety of methods from several cate-
gories — viz M-estimators, Case-deletion Diagnos-
tics and Random Sampling — and apply them to
the computation of the fundamental matrix. This
in turn requires novel extensions of some of the
robust estimation techniques to handle non-linear
problems involving orthogonal regression.

The fundamental matrix provides a general and
compact representation of the ego-motion cap-
tured in two views by a projective camera, re-
quiring no knowledge of the camera calibration
(Faugeras 1992; Hartley 1992). In the computa-
tion of the fundamental matrix, outliers typically
arise from gross errors such as correspondence mis-
matches or the inclusion of movement inconsistent
with the majority. The latter might be caused by
features being on occluding contours, shadows or
independently moving objects. Robust estimation
impacts therefore not only on estimation, but also

on data segmentation. Degeneracies in the funda-
mental matrix also occur frequently.

The second aim of the work is to compare
the performance both of non-robust least squares
methods and the range of robust methods, mak-
ing both intra- and inter-category comparisons on
large controlled data sets and data from real im-
agery. This has allowed the coupling of several
robust techniques to arrive at an empirically op-
timal, and statistically satisfying method. The
techniques used and conclusions drawn have ap-
plicability to the broad sweep of computer vision
problems troubled by outlying data.

Recovery of motion, and then structure, using
the fundamental matrix, and it calibrated ana-
logue the essential matrix, has a long history.
Spetsakis and Aloimonos (1991) divided research
in the area into three epochs. The first was spent
finding out whether the problem in the broadest
terms had a solution. Once it was ascertained
it had, the next epoch saw researchers devising
constructive proofs of the uniqueness of the so-
lution involving the minimum number of points
(e.g. Longuet-Higgins 1981; Tsai & Huang 1984).
Unfortunately these ‘minimalist’ algorithms were
highly sensitive to noise, leading to an erroneous
belief that recovery of structure and motion was
essentially an ill-posed problem and that only
qualitative solutions were possible. The third
epoch was then directed towards minimizing the
effects of noise by using more correspondences
(Weng et al. 1989) and more images (Spetsakis
& Aloimonos 1991; Weng et al. 1993). This has
usually been done within a least-squares frame-
work, with the concomitant difficulties highlighted



above. A fourth epoch is required, where the em-
phasis is on robust estimation that provide as out-
put not only the inlying solution, but also a list of
data that are in gross disagreement with it. Some
previous work has been carried out using robust
estimators within the context of structure from
motion recovery by Torr and Murray (1993), Ku-
mar and Hanson (1994) and Zhang et al. (1994).
Their conclusions and ours will be discussed later.

The paper is organised as follows. Section 2
reviews best practice in least squares estimation
methods for the fundamental matrix, and dis-
cusses the variety of error measures used. Sec-
tion 3 describes our method for comparing both
non-robust and robust estimators, together with
the method of generating synthetic data. Theory
for the M-estimators, Case deletion diagnostics,
and Random Sampling is developed in Sections
4-6, and Section 7 comments briefly on the im-
practicability of Hough transforms for problems
with large parameter spaces. A requirement of all
robust methods is an estimation of the standard
deviation, and a method to achieve this which is
itself robust is given in Section 8.

The best estimators from the intra-category
competitions are compared in an inter-category
competition described in Section 9. Several tech-
niques are blended into an quasi-optimal method,
the results of which is demonstrated on real im-
agery in Section 10. Finally in Section 11 we dis-
cuss our results and draw conclusions.

2. Linear least squares methods

2.1. The example application: the fundamental
matriz

Consider the movement of a set of point image
projections from an object which undergoes a ro-
tation and non-zero translation between views.
After the motion, the set of homogeneous image
points {x;},i=1,...n, as viewed in the first im-
age is transformed to the set {x;'} in the second
image, positions related by

x{ Fx; = 0 (1)
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where x = (z,y,()" is a homogeneous image co-
ordinate and

fi f2 /s
F=|fisf5 fs
I fs fo

is the Fundamental Matrix (Faugeras 1992). Al-
though 3 x 3, the matrix has only seven degrees
of freedom because only the ratio of parameters
is significant and because det F = 0. Through-
out, underlining a symbol z indicates the per-
fect or noise-free quantity, distinguishing it from
xz = z+Aux, the value corrupted by noise (assumed
Gaussian).

2.2. Orthogonal Least
Method OR

Squares  Regression:

Ignoring for the moment the problem of enforc-
ing the rank 2 constraint, given n > 8 correspon-
dences this system appears an archetype for solu-
tion by linear least squares regression. Linear here
refers to linearity in the parameters f; — equation
(1) written out is just

haizy + foziy, + fszi{ + fayiz;+

Fsyiy; + foyiC + fraeiC + fsy,C + foC® = 0.

Because errors exist in all the measured coordi-
nates z,y, ', y', orthogonal least squares (Pearson
1901) rather than ordinary least squares should be
used, minimizing the sum of the squares of the dis-
tances shown in part (a) rather than (b) of Figure
2.

Consider fitting a  hyperplane f =
(fi, f2,..., fp) through a set of n points in R
with coordinates z; = (zi,,%,,...,2,), taking

the centroid of the data as origin. (Centring is a
standard statistical technique that involves shift-
ing the coordinate system of the data points so
that the centroid lies at the origin. The best fit-
ting hyperplane passes through the centroid of the
data (Pearson 1901).) Assuming that the noise is
Gaussian and that the elements of z have equal
variance®, the hyperplane f with maximum likeli-
hood is estimated by minimizing the perpendicu-
lar sum of Euclidean distances from the points to
the plane (Pearson 1901; Kendall & Stuart 1983)
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Fig. 2. The (a) orthogonal and (b) ordinary least squares distances.

mfin z:(f—rzi)2
i=1

subject to fTf = 1. The constraint ensures that
the estimate will be invariant to equiform trans-
formation — rotation, translation and scaling —
of the inhomogeneous coordinates. For example
the best fitting line to a 2 dimensional scatter
(x5,4;), ¢ = 1...n is estimated by minimizing
¢ (ax; + by; + ¢)? subject to the constraint
a’ +b? = 1 (Pearson 1901).

To reformulate as an eigen-problem, let Z be
the n x p measurement matrix with rows z;, and
let M = Z'Z be the p X p moment matrix, with
eigenvalues, in increasing order, A; ... A, and with
u; ...u, the corresponding eigenvectors forming
an orthonormal system. The best fitting hyper-
plane is given by the eigenvector u; correspond-
ing to the minimum eigenvalue A; of the moment
matrix. It is evident that

n n
AL = Z(u]—zi)Q = 27'22
i=1

i=1

which is the sum of squares of residuals r;, which
in this case are the perpendicular distances to the
hyperplane.

For the fundamental matrix,

T

z = (2}z; 2ly; 2{C yiai vy vi¢ @il viC ¢7)
and the measurement matrix is
wioy wiyr ¥C Yo
7Z =W : :

/ !, Al s
TLTn TuYn T, YpTn

viyr i z1¢ ¢ P

y;yn y;’LC TnC YnC CZ

where W is a diagonal matrix of the weights given
to each feature correspondence, corresponding to
the inverse standard deviation of each error. (This
is assumed to be homogeneous at present. In
the next section its estimation by iteratively re-
weighted least squares is explained.) If the vari-
ances of the image coordinates are different along
the two axes, o2 and 05 say, the image coordinates
are weighted by dividing them by their respective
variances.
The estimate f = u; actually minimizes

£fTMf

but now subject to £'Jf = constant, where J =
diag(1,1,1,...,1,0)is the normalization chosen to
realize a solution from the equivalence class of so-
lutions with different scalings. Again, for best nu-
merical stability, the origin of coordinate system
should be placed at the data centroid. Centring
the moment matrix is achieved by subtracting 1 Z;
from each column of Z, where 1 is an n dimen-
sional vector 1 = (1,1,1,...,1)T and z; is the
mean of column j.

2.3. Iteratwvely Re-weighted Least
Methods S1 and S2

Squares:

The orthogonal least squares method (OR) will in
fact produce a sub-optimal estimate of F because
the residuals that are minimized
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are not Gaussianly distributed. The cause of this
is now outlined, and different residuals which are
more nearly Gaussianly distributed are discussed.
These require a working knowledge of the solution,
and so an iteratively re-weighted least squares
minimization is required (Bookstein 1979; Samp-
son 1982).

The expression for r; given in Equation (2) is
known as the algebraic distance. It has no geo-
metrical significance, and does not, for example,
measure the perpendicular distance of a feature
to the quadric variety represented by F in 4D im-
age coordinate space (z,y,z’,y'). The variance of
r; is said to be heteroscedastic, meaning that it
depends on the location of the feature correspon-
dences.

Sampson (1982) discovered a similar het-
eroscedascity when fitting algebraic residuals to
conics. If each point is perturbed by Gaussian
noise, minimization of the algebraic distance using
the eigenvector of the moment matrix was found
to be sub-optimal. It was shown by Kendall &
Stuart (1983) that the best fitting, maximum like-
lihood, quadratic curve is such that the sum of
squares of the perpendicular geometric distances
of points to the curve is a minimum?, as illus-
trated in Figure 3(b). Furthermore, this solution
is invariant to Euclidean transformations of the
coordinate system. The reason this problem does
not arise when fitting a hyperplane to residuals
that are linear in the measurements is that the
algebraic and geometric distances coincide (Fig-
ure 3(a)). The joins of the different points to
the conic in Figure 3(b) are neither parallel nor
unique, and a closed form solution is unobtain-
able. In his work, Sampson proposed using a first
order approximation to the distance.

Method S1. Noting that the expression for the
residuals for the fits to a conic and to the fun-
damental matrix were both bilinear in the mea-
surements, Weng et al. (1989) adapted Sampson’s
method to the computation of the fundamental
matrix. They estimated f by computing
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f = min ws, £ 2;)?

where wg, is the optimal weight, the variance of
the residual. Dropping subscripts ¢, and following
Sampson and Weng et al., the optimal weighting
is

1

ws =
Vr

where the gradient is
Vr=(rZ+rl+ri +rl)?

and where the partial derivatives r,, and so on, are
found from Equation (2) as r; = fiz'+ fay' + f(,
and so on. This is a first order approximation to
the standard deviation of the residual.

Because calculation of the weights requires a
value for the fundamental matrix, and vice versa,
an iterative method is called for. We have modi-
fied the method proposed for conics by Sampson
(1982), exploiting the fact that the fundamental
matrix defines a quadratic in the image coordi-
nates. The method computes an algebraic fit to
f by an eigenvalue method, then re-weights the
algebraic distance from each sample point {x,x’}
by 1/Vr~(x,x'), where Vr~ is the gradient com-
puted at the previous iteration, using unit weights
on the first iteration.

The fundamental matrix should have zero de-
terminant, but in the presence of noise this con-
straint has to be imposed on the minimization. If
it were not, the epipolar lines would not all inter-
sect at a unique epipole. To force the estimated
fundamental matrix to be rank 2, at each itera-
tion F is replaced by the nearest rank 2 matrix
before calculating the weights. The procrustean®
approach adopted here proceeds as follows. Let
the singular value decomposition (Golub & van
Loan 1989) of the recovered F be

F=VAU' .

Due to noise F will have full rank with non zero

singular values: A = diag(v/A1,vVA2,vA3). To

approximate F by a rank two matrix, let AT =
diag(v/A1,vA2,0) whence the reduced rank ap-

proximation of the fundamental matrix is

F=VAtUT .
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(a)

(b)

Fig. 3. For both line and conic fitting minimizing the perpendicular geometric distances is optimal. For the line this is
equivalent to minimizing the algebraic residuals, but for the conic, as for the quadric surface of F, it is not.

The optimal weights convert the algebraic dis-
tance of each point into the statistical distance
in noise space, which is equivalent to the first or-
der approximation of the geometric distance, as
shown by Sampson (1982) and Pratt (1987). The
weighting breaks down at the epipole, as the nu-
merator and the denominator both approach zero,
indicating that there is less information about cor-
respondences the closer they are to the epipole. In
practice to remove unstable constraints all points
within a pixel of the estimated epipole are ex-
cluded from that iteration of the calculation. We
note that Kanatani (1996) recently proposed a
modification to Sampson’s distance for estimating
the essential matrix, the calibrated analogue to F.
We have found both distances yield almost identi-
cal results for the fundamental matrix on our test
data, and we continue to use Sampson’s distance.

Method S2. Luong and Faugeras (1993) ex-
amined Sampson’s weighting, ws = 1/Vr, and
suggested that marginally better results could be
obtained by using the distance of a point to its
epipolar line as the error to be minimized. As al-
ready noted, the fundamental matrix F defines the
epipolar geometry, and any point corresponding to
x in image one must lie on the epipolar line Fx
in image two. Noisy measurements will however
not lie on their associated epipolar lines exactly.
The perpendicular distance of a point (2, y) to the
epipolar line in the first image is

Tre + yry +1¢ . r
R R C RN

€1 =

and the distance of a point (z',y') to the epipolar
line in the second image is

r

T e

In order to minimize the geometric distance of
each point to its epipolar line within an image
the root mean square over the two image planes
of each point to its epipolar line is used. This en-
sures that each image receives equal consideration.
The distance e = (7 + €3)1/? is referred to as the
epipolar distance. It is assumed that the errors in
the measured location of each point are Gaussian
with variance ¢2. If the coordinate system were
rotated so that one axis aligned with the epipolar
line, the distance of each point to its (true) epipo-
lar line has Gaussian distribution with variance o2
equal to the variance on the image point locations,
hence e? approximately follows a y? distribution
with two degrees of freedom.

As in S1, Method S2 uses iterative re-weighted
least squares to estimate the solution, and again
F must be forced to be rank 2. The quantity mini-
mized is equivalent to weighting the algebraic dis-
tance r by wg, so that e = rwg. Effectively then
the epipolar weighting is

1/2
1 n 1
we — ’
B r2+ 7’5 72, + T’;,

which is not dissimilar to the Sampson/Weng
weighting
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In summary, three least squares methods with
different error terms have been discussed:
1. Method OR uses the sum of squares of algebraic
distances:

’
R? =3 r?, where r; = x;" Fx;.

2. Method S1 uses the sum of squares of the Samp-
son/Weng distances:

D? = 3 (wsiri)® = 3o(ri/Vri)® = 30 d?.

3. Method S2 uses the sum of squares of the epipo-
lar distances:

B? =3 (wpiri)? = Yo(el; +e3;) = 2o €f.

In terms of probability distributions, the first cor-
responds to something intractable, the second is
a first order approximation to a y? distribution,
and the third is a y? distribution.

We do not show all the comparisons made be-
tween least squares methods (Torr 1995) here. In
summary, the error criteria D? and E? of meth-
ods S1 and S2 are indeed similar in performance
and superior to OR, the more so when D? and
E? were used as cost function in a non-linear gra-
dient descent minimization, such as that of Gill
and Murray (1978). More important is the result
that even the best least-squares method performs
feebly in the presence of outliers.

Given that both the mean square Samp-
son/Weng distance D? and the mean square
epipolar distance E? are both popular measures
accuracy of a solution, both measures will be eval-
uated in the comparison of the robust estimators.
But which measure is more justifiable? Although
the epipolar distance has the merit of being image-
based and physically intuitive, the adoption of the
Sampson/Weng distance has several things to rec-
ommend it.

First it represents the sum of squares of
the algebraic residuals divided by their standard
deviations, whereas the standard deviations of
the epipolar distances are unknown. Secondly,
Kendall & Stuart (1983) suggested that the set of
parameters that minimize the orthogonal distance
of each point to a curve/surface are the maximum
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likelihood solution. This distance turns out to be
intractable, but D? provides a first order approx-
imation to it.

Thirdly, as discussed more fully in (Torr 1996),
d = wgr 1s the first order approximation of the
distance of a correspondence in the 4D space de-
fined by (z,y,z’,y’) to the manifold defined by F
in that space, an approximation good to 4 or 5
significant figures. It is also shown there that d
is a similarly good approximation of the distance
of point to its optimally estimated correspondence
as given by Hartley and Sturm (1994) .

Fourthly, the value D?/(n —7) provides a max-
imum likelihood estimate of the variance of the
error on each coordinate. Experiment has con-
firmed this. If the data are perturbed by noise
o = 1.0, the estimate of ¢ provided is near 1.
Given the ground truth, which is known in our
tests using synthetic data, the r.m.s. distance D
of the noise-free points x from F estimated using
the noise-corrupted points x tends to zero as the
fit improves.

3. The method for comparing robust esti-
mators

Although considerable work appears in the sta-
tistical literature on the detection of outliers in
the context of ordinary, non-orthogonal, regres-
sion (see Chaterjee & Hadi (1988) for a review),
little work has been done on outlier detection in
orthogonal regression — the work of Shapiro and
Brady (1993) on hyperplane fitting appears an ex-
ception both in the statistical and computer vi-
sion literature. Moreover, it appears that no large
scale comparative studies have been reported on
the robust estimation of general hyper-surfaces,
into which category the estimation of the funda-
mental matrix falls now that we are to minimize
the geometric rather than algebraic distance.

We have therefore developed and evaluated
a number of robust methods to this last prob-
lem. Our evaluation places emphasis on two per-
formance criteria: (i) relative efficiency and (ii)
breakdown point, defined as follows.

(i) The relative efficiency of a regression
method is defined as the ratio between the low-
est achievable variance for the estimated param-
eters (the Cramér-Rao bound (Kendall & Stuart
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1983)) and the actual variance provided by the
given method. An empirical measure of this is
achieved by calculating the distance (either d; or
e;) of the actual noise free projections of the syn-
thetic world points to F provided by each esti-
mator. Traditionally the goodness of fit has been
assessed by seeing how well the parameters fit the
observed data. But we point out that this is the
wrong criterion as the aim is to find the set of
parameters that best fit the (unknown) true data.
The parameters of the fundamental matrix them-
selves are not of primary importance, rather it is
the structure of the corresponding epipolar geom-
etry. Consequently it makes little sense to com-
pare two solutions by directly comparing corre-
sponding parameters in their fundamental matri-
ces; one must rather compare the the difference
in the associated epipolar geometry weighted by
the density of the given matching points. The in-
adequacy of using the fit to the observed data to
assess efficiency, in the presence of outliers, will be
demonstrated in the results section.

(ii) The breakdown point of an estimator is the
smallest proportion of outliers that may force the
value of the estimate outside an arbitrary range.
For a normal least squares estimator one outlier is
sufficient to arbitrarily alter the result, therefore
it has a breakdown point of 1/n where n is the
number of points in the set. An indication of the
breakdown point is gained by conducting the tests
with varying proportions of outliers.

The overall plan for comparison involves two
levels — an initial simple test to weed out meth-
ods that are completely ineffective, followed by a
more detailed testing of the remaining methods,
involving evaluation on a range of real and syn-
thetic data. We return to characterize the tests
below, but first describe the generation of syn-
thetic data.

Data X are randomly generated in the region of
R3 visible to two positions of a synthetic camera
having intrinsic coordinates

1.00 0.00 0.36
C=10.00 150 0.36
0.00 0.00 0.0014

3

equivalent to an aspect ratio of 1.5, an optic centre
at the image centre (256, 256), and a focal length

of f = 703 (notionally pixels), giving a field of
view of 40°, and giving 0 < z,y < 512. These val-
ues were chosen to be similar to the camera used
for capturing real imagery. The projection of a
point X in the first position is x = C[I|0]X and
in the second is x’ = C[R|t]X where the cam-
era makes a rotation [R] and translation t. The
motion is random and different in each test. In
order to simulate the effects of the search window
commonly employed in feature matchers, and to
limit the range of depths in 3D, correspondences
were accepted only if the disparity lay between
4 < § < 30 pixels. (Some notion of the limits
depth Z can be obtained for pure translation as
|t]f/émax < Z < [t]/émin-)

In Figure 4 we show a typical set of point corre-
spondences as image motion vectors arising from
some arbitrary random motion. The blob end is
the position (z,y) and the other end is at (2, y').
Overlaid are the epipolar lines computed in im-
age one using the motion, camera intrinsics and
positions (z',y").

The initial weeding was achieved by testing
on 10 sets of 200 synthetic correspondences. In
each set, 180 point correspondences were gener-
ated in accordance with the synthetic camera mo-
tion and an additional 20 correspondences were
outliers. Each image point x was perturbed to
x by Gaussian noise with standard deviation 1.0.
The standard deviation of the actual noise free
projections of the synthetic world points to the
estimated epipolar lines were calculated. If the
standard deviation exceeded 4.0 (four times the
noise on the point positions), that method was
rejected outright.

Those methods that passed this initial test were
then tested more exhaustively using increasing
outlier contamination, up to 50% in steps of 5%.
The outliers (or mismatches) were generated so as
to be in a random direction on the image plane
between minimum and maximum allowable dis-
parity in pixels from their position in image one.
Each experiment, with a different percentage of
outliers, was repeated on 100 different data sets,
each of size 200, giving 20,000 correspondences
for each proportion of outliers, and 200,000 cor-
respondences over all.

As mentioned at the end of §2, to assess the
performance of a method, the variance of the
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Fig. 4. A set of synthetically generated correspondences perturbed by noise; superimposed is the true epipolar geometry of

the synthetic camera pair.

weighted distances (d;, ¢; etc) from the noise-
free (ie ground truth) projections of the synthetic
world points was derived as a function of the frac-
tion of outliers.

4. Category I: M-estimators

We now turn to the first category of robust es-
timators, that of M-estimators. Our description
will be for the Sampson/Weng distance measure
— to use the epipolar distance measure, D and d
are replaced by the ' and e derived earlier.
Given a set of correspondences x; < X}, sup-
pose we wish to find F which has maximum like-
lihood given the data. If there is no preferred a
priort value of F this is equivalent to maximiz-
ing Pr(D|F). This joint probability is identical to
the noise distribution, which assuming the noise is
Gaussian, has zero mean, i1s independent at each
datum, and has the same standard deviation o, 1s
1 2762
Pr(D|F) = (\/ﬂ(r)” exp( D? /20 )
Maximizing this is equivalent to minimizing the
negative of its logarithm

2
—— -+ constant terms ,
202

which of course is the proof that least squares is
the maximum likelihood estimator when the errors
are Gaussian.

Under real conditions this Gaussian assump-
tion is rather poor. The aim of M-estimators
(Maronna 1976; Huber 1981; Hampel et al. 1986)
is to follow maximume-likelihood formulations by
deriving optimal weighting for the data under non-
Gaussian conditions. Outlying observations have
their weights reduced rather than being rejected
outright. The estimators minimize the sum of a
symmetric, positive-definite function p(d;) of the
errors d;, with a unique minimum at d; = 0. That
is, the parameters are sought that minimize

> olds)
2

The form of p is derived from the particular cho-
sen density function in the manner shown for
the case of Gaussian errors. Usually the density
function is chosen so that p is some weighting,
p(di) = (7:id;)?, of the squared error that reduces
the effects of outliers on the estimated parame-
ters. A typical weighting scheme in the statistics
literature is that proposed by Huber (1981):

1 d; <o
vi =14 o/ldi| o <d; <30 (3)
0 d; > 30.

The standard deviation of the error (scale) o is
either known a priori or is found as a maximum
likelihood estimate using the median

medi dZ

— . 4
7= 06745 (4)
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Further discussion of the estimation of ¢ is de-
ferred until §8.

Within computer vision M-estimation has been
used by Luong (1992), Olsen (1992), and Zhang
et al (1994) for the estimation of epipolar geom-
etry. Within the statistics literature most of the
analytical work on M-estimators has been applied
to ordinary least squares. The only work done
for orthogonal regression has been in the area of
Principal Component Analysis where Devlin et al.
(1981) conducted a comparison of a number of ro-
bust techniques for estimating the principal com-
ponents of data (ie, the eigenvectors). Of the sev-
eral weightings explored, they concluded that Hu-
ber’s weighting and a weighting due to Maronna
(1976)

. 1+ d;
1+ d?

Vi

gave the best estimates of the principal compo-
nents. For large and small d; this tends to weight-
ing by the inverse residual and to unity, respec-
tively.

Numerical calculation of M-estimators is prob-
lematic at best and, so far, no closed form so-
lutions exist — indeed the problem appears in-
tractable. Note that the weights cannot be com-
puted without an estimate of the residuals, which
in turn requires knowledge of the solution. Huber
(1981) suggests an iterative computational scheme
in which the weights are held constant at values
equal to those found at the last iteration, whilst
the set of parameters are estimated. Huber proves
that if these iterations are repeated a local (possi-
bly global) minimum of the objective function (4)
is reached. The algorithm, presented in the Ap-
pendix, is a modification of the iterative least
squares method of Sampson (S1), combining the
Sampson/Weng distance weighting wg with the
robust weighting of the M-estimators. An initial
solution is obtained using orthogonal regression
(Method OR).

Figure 5 gives the results of test using synthetic
data on two M-estimators, using the weightings of
Huber and Maronna, and assuming o is known
(i.e. the best possible case). Figure 5 (a) shows
the results when the sum of squares of Samp-
son’s distance D is minimized and the graph shows
the variance of Sampson’s distance for the true

or noise free correspondences to the estimated
epipolar geometry. Although Huber wins, both
M-estimators are similar and typically poor for
more than 20 — 25% outliers in the data set with
variance on the error term in excess of 4.0 (recall
the initial Gaussian noise used has variance 4.0).
Figure 5 (b) shows the results when the distance
E is minimized, showing the distance of the true
points to their predicted epipolar lines obtained
from the estimated F. It can be seen that Huber
provides a more graceful degradation with out-
liers than Maronna which totally fails beyond 20%
outliers. This is because M-estimators are highly
vulnerable to poor starting conditions — the al-
gorithm converges to a local minimum. Unfortu-
nately, the linear least squares estimator used for
initialization will almost certainly produce poor
starting conditions in the presence gross outliers!
The observed variance of the estimate is very high
when compared with what we would expect given
that the added Gaussian noise has a variance of
02 = 4.0. In fact many of the trials produced
a much lower standard deviation, but the overall
standard deviation of the error was inflated by a
small proportion of estimates that totally failed to
converge.

Some other weighting functions have been ex-
plored, notably the biweight function of Mosteller
and Tukey (1997):

p(d;) = { di[2 - di/2a* + dj[6a" if d; <a

a’/6 otherwise

with a = 1.960, as used by Kumar and Hanson
(1994). This error function has the advantage of
performing locally like a Gaussian for small er-
rors, and tapering off to a constant for large er-
rors, thus limiting their effect. Our tests failed
to reveal any significant improvement for the use
of this error function, and indeed in most cases
Huber performed marginally better.

Two other implementations were tried, both
producing poorer results. First, M-estimator rou-
tines for ordinary least squares (with the error
presumed in one variable) were taken from the
Numerical Algorithm Group’s (1988) library. The
performance of these was poorer than Huber based
on orthogonal regression. Second, gradient de-
scent methods were tried with the Huber error
function, using OR as the staring point. The



Variance

9 ;" Maronna

0 5 10 15 20 25 30 35 40 45 50

Robust estimation of the fundamental matrix 11

Variance
1004 Maronna Huber
904
804
70
60+
504
404
30

204

104 -

0 5 o 15 20 25 30 35 40 45 50
Percentage of outliers

Fig. 5. Variance of the distance measures (measured from projections of the noise free points) as a function of the percentage
of outliers for the M-estimators of Huber and Maronna. (a) the distance measure is Sampson’s d (b) it is the distance to
predicted epipolar line e. Each is derived from 100 trials each with 200 data.

frequency with which the algorithm became en-
trapped within local minima led to this approach
being rejected outright using a non-robust initial-
ization, but a robust initialization provided excep-
tionally good results, as will be seen.

In conclusion, it seems that the computation of
M-estimators is highly intractable involving the
solution of n non-linear equations, where n is the
number of correspondences. Even the Huber’s
suggested approach to computing them, iterated
least squares, is only suitable if there is a prior:
knowledge of the parameters or if there are a few
gross outliers which are easily identified.

5. Category II: Case Deletion Diagnostics

This section describes the methods based on nflu-
ence measures, particularly case deletion diagnos-
tics (Chaterjee & Hadi 1988). The basic concept
underlying influence is simple. Small perturba-
tions are introduced into some aspect of the prob-
lem formulation and an assessment made of how
much these change the outcome of the analysis.
The important issues are, first, the determination
of the type of perturbation scheme; secondly, the
particular aspect of the analysis to monitor; and,
thirdly, the method of assessment.

Case deletion methods in particular monitor
the effect on the analysis of removing data. For
instance, we might ask how the epipolar geom-
etry would change given the deletion of one of
the correspondences. Several different measures

of influence have been proposed within the statis-
tical literature for case deletion. They differ in the
particular regression result on which the effect of
the deletion is measured, and the standardization
used to make them comparable over observations.
For the methods discussed below, the influence
can be computed within the regression process,
and are inexpensive relative to the cost of the re-

gression itself.

In the case of ordinary least squares the inter-
ested reader is referred to Chaterjee & Hadi (1988)
for a rigorous analytical coverage of the theory and
methods. Much less attention has been given to
orthogonal regression. Critchley (1985) suggested
the use of eigen-perturbation to arrive at influ-
ence functions assessing the first or higher order
effect on the principal eigenvalues and eigenvec-
tors. Torr and Murray (1993b) extended Cook’s
D to orthogonal regression, and this is discussed
in more detail below. Shapiro and Brady (1993)
proposed an influence measure that monitors the
effects of the deletion on the minimum eigenvalue.
Torr and Murray (1992, 1993a) gave examples of
the use of a variety of such diagnostics for the es-

timation of affine instantaneous flow.
In the next section the case deletion diagnostic

is developed for orthogonal regression, and then it

is adapted to estimate the fundamental matrix.
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5.1. Ezxtending Cook’s D to the case of orthogo-
nal regression

We now derive a formula for the influence of
a point on orthogonal regression is derived, ex-
tending the works of Cook and Weisberg (1980),
Critchley (1985) and Shapiro and Brady (1993).
An early version was presented in (Torr & Mur-
ray 1993b).

Consider the set of points lying on a hyper-
plane f and let their measured values be z;, i =
1...n, after perturbation by Gaussian noise with
uniform* standard deviation o. If Z is the matrix
whose rows are z; then the least squares estimate
f of f is given by the eigenvector of the moment
matrix M = Z T Z corresponding to the minimum
eigenvalue. By analogy with Cook’s D (Cook &
Weisberg 1980) which was developed for ordinary
least squares, we monitor the effect of deleting an
observation on the estimated parameters f. As ex-
act solutions cannot be found in closed form, the
change in the solution is calculated using eigen-
vector perturbation theory (Torr 1995, Golub &
van Loan 1989). (As noted above, examination of
the effects of perturbation on some other aspect
of the model could be made, e.g. the covariance
matrices or the minimum eigenvalue (Shapiro &
Brady 1993), but as our interest is in f it appears
best to test eigenvector perturbations directly.)

Let M be the p-dimensional symmetric moment
matrix, having eigenvalues, in increasing order,
A1...Ap with uy...u, the corresponding eigen-
vectors forming an orthonormal system. If matrix
M is perturbed into

M’ = M + §M,

and if the multiplicity of A; is 1, 1i.e. the data is not
degenerate, then the eigenvector u; is perturbed
into (Golub & van Loan 1989)

u] éMu;
u _u]—}—z ):“ _/\J k+O(6M)2.

In this case the deletion of the ith observation
means that éM = —z; z . This allows calculation
of what would have been the estimate of the pa-
rameters with the ith element had been excluded

fuy = ZU1EA1— u; + uy, (5)
E#1

where f(;) is the estimate of f with the ith element
deleted. As f = u; then

u; z;
f()—f_—z ulz/\lk—)\k (6)
E£1

In §5.4 some comments are made on how to im-
prove the estimate of f(;), but the above form is
used for the analysis below as it provides some in-
tuition into the nature of how the outliers effect
the solution.

To be most useful, influence should be a scalar
quantity. It is therefore necessary to use a norm
to characterize influence; this norm will map the
p vector, f(;) — £, to a scalar. The norm is defined
in terms of a symmetric, positive definite p x p
matrix L, to give an influence measure

Ti(L) = (fi) —f) "L (fs) — ).

Using Equation (6) this is

T:(L) = | 7 ulz/\uk_z)l\
i M k

u/ z;
xLL zulz !
e )\1—>\1

and noting that z;-rul = r;, the residual for the
1th observation,

11 Z;
T;(L) k=
@) =rf| > 5
7 (7)

Contours of constant 7;(L) are ellipsoids of dimen-
sion equal to the rank of L, centred at f or equiv-
alently at f(;). Clearly the character of T;(L) is
determined by L, which may be chosen to reflect
specific concerns. The norm is chosen to make 7T;
both scaleless and invariant to non-singular linear
transformations of the data.



Now suppose the matrix M is used for L. In
(Torr 1995) it is shown that Mo =2 is approxi-
mated by the pseudo inverse of 'y, the covariance
matrix of the parameter estimate:an improved es-
timate is given in §5.4. Choosing the covariance
matrix as the norm in which to measure change in
the solution allows the alterations in each element
of the parameter vector to be given equal weight,
so that changes in the parameters approximate the
changes in the error measure D?. Furthermore,
when L — M, T;(L) defines a conic in parame-
ter space with principal axes determined by the
eigenvalues and eigenvectors of M. That is, if f;)
is f computed without z;, then from Equation (5)

T T T
T;(M) = f(i)Mf(i) —2f Mf(i) +f Mf
= fEE)Mf(i) — 2/\1fo(2') + A1

Equation (7) leads to

1 uk Z;
E(M):F ZU1Z)\1—A1«
E#£1

u/ z;
xM z u L
1 Z A — /\,
1£1
Noting that u}rZTZuk = )\ku;ruk = A6jr, the
influence measure becomes

n) = & (a3 (V)

o

E#£1

The singular value decomposition (Golub & van
Loan 1989; Thisted 1988; Teukolsky et al. 1988)
is used to derive a computationally simple form
for Equation (8). Let the singular value decompo-
sition of Z be

Z=VAUT,

where V is a n X p matrix whose columns are
the left hand singular vectors of Z, Uis a p x p
matrix whose columns are the right hand sin-
gular vectors of Z and A is the diagonal ma-
trix of the corresponding singular values of Z:

A = diag (‘/Al, Vs, ., \/A_p) in ascending or-
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der such that y/A; is the smallest singular value.
Then if V;;, is the ikth element of V, it is easy to
see that

.
u, z; = ViV A,

and so

ik Ak
rion) = 73 (Y )’

E#£1

The leverage factor is defined as

def Viede \°
=2 <A1 - Ak)
E#1
This leverage factor will be large only if the or-
thogonal projection of the observation z; onto ug,
k # 1, is large and the corresponding eigenvalue
Ar is small. The leverage gives a measure of the
influence of each point and is large for outliers
even when the residual is small. The leverage is a
key factor distinguishing use of T;(M) from con-
sideration of the algebraic residual r; alone. For
an outlier r; might be small but 7;(M) will tend
to be large.

Note that the scale ¢ need not be known to
calculate the relative values of T;. Temporarily
ignoring the scaling, the measure 7; has both a
revealing and computationally efficient form

T; = r}l;

which is the residual multiplied by the leverage
factor. The statistic 7;(M) gives the relative in-
fluence of each point in the regression, and to re-
move outliers the point with maximal influence
is deleted and the regression recomputed, repeat-
ing this procedure until the data falls below a y?
threshold determined by o.

5.2. A worked example

Here, the case deletion outlier detection scheme is
applied to the z,y data set of Fischler and Bolles
(1981) given in the introduction.

The data is first centred, giving u; =
(u11,u12) = (0.18,—0.98) and sum of squares
A1 = 8.19. The singular value decomposition for
the centred data matrix is
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Fig. 6. Ellipses of constant 7; in parameter space which are concentric about u; = (0.178136,—0.984006). The ellipses are
determined by the covariance matrix of the parameter estimate. The perturbed solutions that have arisen from the deletion
of points are also plotted. It can be seen that points 1 and 7 lie furthest from the centre of the ellipses.

Z=VAUT

which on inserting values is

—3.28 —2.00 0.48 —0.44
—2.28 —1.00 0.20 —0.30
—~1.28 0.00 —0.08 —0.15
—0.28 000| = | —0.017 —0.03
—0.28 1.00 —0.36 —0.01
0.71 2.00 —0.64 0.3
6.71 0.00 0.41 0.81
8.08 0.00] [ 0.18 —0.98
X [0.00 2.86] [0.98 0.18]'

Using Equation (5) with these values gives the the
perturbed results (u11(7), u12(¢)) which are given
in Table 1 and plotted in Figure 6.

Also shown in Figure 6 are concentric ellipses
corresponding to increasing values of the influence
measure 7; determined from the covariance matrix
of the parameter estimate. In parameter space el-
lipses of constant T; are

Table 1. The perturbed results arising from the deletion of
each point estimated to a first order approximation using
Equation 5.

Point ¢ u“(i) ulg(i)
1 0.092530 -0.999503
2 0.153986  -0.988378
3 0.183134 -0.983101
4 0.178383 -0.983961
5 0.179975  -0.983673
6 0.144509  -0.990094
7 0.314437 -0.959331

63.43u?, 4 20uj uys + 10u,
—2.91U11 + 16.04U12 = Tz —8.19

where the values (from inwards out) 7; = 1,2, 3,
and 4. Figure 6 shows clearly that Point 7 is ex-
erting undue influence on the fit.

In Table 2 we compare the T; diagnostic with
the naive residual diagnostic and the diagnostic
of Shapiro and Brady which measures the pertur-
bation of the smallest eigenvalue. The generalized
distance 7; correctly identifies Point 7 as outlying,
whereas the algebraic residual r; and the pertur-
bation of the smallest eigenvalue éA;(7) indicate
Point 6 as most outlying.

Table 2 also shows the leverage

2
= [ Yi2Ao
2 Al _ A2 J
Table 2. The T; measure correctly identifies point 7 as
an outlier, but the algebraic residual r; and the smallest

eigenvalue perturbation 6§ (¢) do not. Columns 4 and 5
show values of the leverages h.;; and [;.

Point s 8X1 (%) T; hzii l

1 1.38 -2.34 0.49 0.43 0.26
2 0.58 -0.37 0.039 0.13 0.12
3 -0.23  -0.054  0.0017  0.031 0.032
4 -0.051  -0.0026 0.0 0.0015  0.0016
5 -1.035 -1.071  0.00023  0.13  0.00021
6 -1.84  -3.45 0.076 0.43 0.022
7 1.20 -2.53 1.25 0.84 0.87
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Fig. 7. Variance of the distance measures (measured from projections of the noise free points) as a function of the percentage
of outliers for the case deletion methods. (a) the distance measure is Sampson'’s, (b) it is the distance to predicted epipolar

line. Each is derived from 100 trials each with 200 data.

and that for Point 7 is large. (Note that the rather
simpler expression for leverage h,; = V7, + V%,
which is sometimes used is not as discriminating.)
It might be noted that while not indicating out-
liers directly, leverages do give a good indication
of what points are influential in the regression.

To understand why the diagnostic based on
the change in the eigenvalue fails in this case,
note that the eigenvectors are much more sensi-
tive to perturbations than the eigenvalues, espe-
cially when the eigenvalues might be quite close.
This leads to the speculation that the diagnostic
T; might be good for detecting degeneracy within
small data sets.

Shapiro and Brady (1993) overcame this prob-
lem by explicitly recomputing the regression for
each point deleted when there are only a few
outliers left, to determine which gives a minimal
sum of squared residuals. This approach is pro-
hibitively expensive for large datasets.

5.3. Application to computing the Fundamental

matrix

The method above was derived under the assump-
tion of linear regression. However the fundamental
matrix gives rise to a quadratic in the image coor-
dinates. In order to minimize the correct measure
a modification to the ILS iterative least squares
method described in Section 2.3 is used. At each
iteration, as well as re-weighting all the data to
convert the algebraic residuals into the correct

statistical distance in noise space, the point with
maximum influence is deleted. Furthermore the
fundamental matrix is projected onto the near-
est singular fundamental matrix using the singular
value decomposition, as described in Section 2.3.

All the case deletion algorithms successively
delete points until the sum of squares of residu-
als lies below a y? test. An outline of the new
algorithm is presented in the Appendix.

Figure 7 (a) (b) gives the average sum of
squares of distance of actual points to estimated
epipolar geometries for three influence measures
— those of Torr, Shapiro and the “deleting the
largest residual at each iteration”, and the two
error measures DD E. Overall the performances
are similar, with no significant statistical differ-
ence between the estimators. The data sets tested
here are large with n = 200, on smaller data sets
(n € 40) T; was found to give better results than
just deleting the largest residual, 7; also gave a
better performance for linear data (e.g. when fit-
ting hyperplanes).

Convergence of the case deletion diagnos-
tics was superior to the convergence of the M-
estimators, and the solution was typically more
accurate. This is because whereas in the M-
estimation process all the data are reweighted at
each iteration, in the case deletion schemes only
one datum is considered at each iteration. This
leads to increased accuracy at the expense of more
iterations (generally one per outlier). The disad-
vantage of the case deletion schemes is that they
require a fairly good estimate of .



16 Torr and Murray

5.4.  On improving the estimate of T;

Although not used in the experiments reported in
this paper, we have recently adopted three tech-
niques that have been found to increase the ac-
curacy of the estimation process. The first is an
improvement in the estimate of f(;) using itera-
tive methods. The second improvement uses the
calculated f(;) to remove bias in the solution, and
the third improvement uses the calculated f(;) to
re-estimate the covariance matrix.

Improving the estimate of f(;). Although a
closed form solution cannot be obtained for f;)
the first order approximation can be improved
upon. Golub (1973) provides a method for com-
puting the eigenvalues and eigenvectors of a ma-
trix C = D +uu' in O(n?) operations, where D
is diagonal. A more general analysis is presented
but Gu & Eisenstat (1995), and the methods have
been implemented and used for case deletion by
Shapiro and Brady (1994), providing a marked
improvement in the result.

Non-parametric Removal of Bias. Luong et
al. (1993) show that linear methods produce a
biased solution for the fundamental matrix, anal-
ogous to that in conic fitting found by Kanatani
(1991). Kanatani (1996) gives the bias for linear
estimation of the essential matrix. Kanatani fol-
lows a parametric approach for the removal of bias
under the assumption of Gaussian noise.

Here however we suggest a non-parametric ap-
proach that should be more robust to outliers or
the failure of Gaussian assumptions. The jack-
knife is a well-known and extensively studied sta-
tistical non-parametric technique to gain an un-
biased estimate of f together with its covariance.
If £; is the jackknife estimate it can be shown
that its bias decreases as a polynomial function of
the number of observations n (Kendall & Stuart
1983). Using the original sample of n data, all n
subsamples of n — 1 data are formed, by system-
atically deleting each observation in turn. The
jackknife is given by

n—1g<
f=nf—""LS g
g =nf—— ;o

the bias in each parameter being (Sprent 1989)

(1) S o,

i=1

It can be seen that there is only a small amount of
extra computation necessary to get the bias-free
estimates, as the quantities f(;) have already been
calculated. One problem is that the removal of
bias might sometimes increase the error, whereas
the biased solution has a lower error. A full anal-
ysis of bias removal is complicated and beyond
the scope of this paper. Our tests found on aver-
age about 1% reduction in the error of fit to the
true points, dependent on the type of motion (the
nearer the image to orthographic conditions the
less bias there is to remove, due to the fact that
the problem becomes linear in the orthographic
case). This average hides the fact that some cor-
respondences (such as those near high curvature
points of the fundamental matrix consider as a
quadric manifold in the 4-space of the image co-
ordinates) have much greater bias than others.

Non-parametric Estimation of the Covari-
ance. Our further experimentation has revealed
that the estimation of the covariance by the
pseudo-inverse of the moment matrix to be a poor
one. An improved estimate (really beneficial only
for large values of n) may be gained at little ex-
tra computational cost by the jackknife estimate
of the covariance matrix
1 < T
Ly=——> (fi) —H(fo - )T .

=1

6. Category III: Random Sampling Algo-
rithms

An early example of a robust algorithm is the ran-
dom sample consensus paradigm (RANSAC) of
Fischler and Bolles (1981). Given that a large pro-
portion the data may be outlying, the approach
is the opposite to conventional smoothing tech-
niques. Rather than using as much data as is
possible to obtain an initial solution and then at-
tempting to identify outliers, as small a subset of
the data as is feasible to estimate the parameters
is used (e.g. two point subsets for a line, seven



correspondences for a fundamental matrix), and
this process is repeated enough times on differ-
ent subsets to ensure that there is a 95% chance
that one of the subsets will contain only good data
points. The best solution is that which maximizes
the number of points whose residual is below a
threshold. Once outliers are removed the set of
points identified as non-outliers may be combined
to give a final solution.

An initial exploration of the RANSAC method
to estimate the epipolar geometry was reported in
Torr and Murray (1993b). To estimate the fun-
damental matrix seven points are selected to form
the data matrix Z:

/ / N /..
iz iy 2¢ YT
Z =W
! ! i add A
xrr7 Toyr o yrry

vivi vi¢ z1¢ yi¢ ¢

Yryr ¢ wiC yi¢ (2

The null space of the moment matrix M = 7Z'Zis
dimension two, barring degeneracy (Z is 7x 9). It
defines a one parameter family of exact fits to the
7 correspondences: aF; 4+ (1 — a)F3. Introducing
the constraint det |F| = 0 leads to a cubic in «:

det |aF; + (1 — a)F3| =0 9)

which has 1 or 3 real solutions for «. The total
number of consistent features for each solution is
recorded.

In order to determine whether or not a feature
pair is consistent with a given fundamental ma-
trix, the Sampson/Weng distance for each corre-

Table 3. The number m of subsamples required to ensure
T > 0.95 for given p and ¢, where YT is the probability
that all the data points selected in one subsample are non-
outliers.

Features Fraction of Contaminated Data, €
5% 10% 20% 25% 30% 40% 50%

3 4 5 7 11
5 6 8 13 23
6 8 11 22 47
8 12 17 38 95
10 16 24 63 191
13 21 35 106 382
17 29 51 177 766

W=~ Uk WK | T
WwWwwN NN
O TR AW W N
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spondence in the image is compared to a thresh-
old, which will be described later in Section 8.

Ideally every possible subsample of the data
would be considered, but this is usually compu-
tationally infeasible, so an important question is
how many subsample of the dataset is required for
statistical significance. Fischler and Bolles (1981)
and Rousseeuw (1987) proposed slightly different
means of calculation, but both give broadly simi-
lar numbers. Here we follow the latter’s approach.
The number m of samples is chosen sufficiently
high to give a probability T in excess of 95% that
a good subsample is selected. The expression for
this probability T is

YT=1-(1—(1-eP)m, (10)

where € is the fraction of contaminated data, and
p the number of features in each sample. Table 3
gives some sample values of the number m of sub-
samples required to ensure T > 0.95 for given p
and e. Generally it is better to take more samples
than are needed as some samples might be degen-
erate. It can be seen from this that, far from being
computationally prohibitive, the robust algorithm
may require fewer repetitions than there are out-
liers, as it is not directly linked to the number but
only the proportion of outliers. It can also be seen
that the smaller the data set needed to instanti-
ate a model, the fewer samples are required for a
given level of confidence. If the fraction of data
that is contaminated is unknown, as is usual, an
educated worst case estimate of the level of con-
tamination must be made in order to determine
the number of samples to be taken, this can be
updated as larger consistent sets are found e.g. if
the worst guess is 50% and a set with 80% inliers
is discovered, then ¢ could be reduced from 50%
to 20%.

In general if the seven correspondence sample
has an insufficient spread of disparities then the
estimate of F obtained from that sample might
not be unique. This is an example of degener-
acy. Consider the seven correspondences shown
in Figure 8(a). Two epipolar geometries that fit
this data are shown, for one view, in (b) and (c).
The veridical epipolar geometry is (b) and (c) is
erroneous solution nonetheless consistent with the
cubic in Equation (9).
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Fig. 8. (a) A typical set of seven points selected during RANSAC. alongside two epipolar geometries that exactly fit the

data. (b) is the true epipolar geometry, and (c) is spurious.
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Fig. 9. Variance of the distance measures (measured from projections of the noise free points) as a function of the percent-
age of outliers for the RANSAC and LMS random sampling method. (a) the distance measure is Sampson'’s, (b) it is the
distance to predicted epipolar line. Each is derived from 100 trials each with 200 data. The results show that generally

LMS gives a slightly better result.

Clearly the result estimated from this sample
will not have many other consistent correspon-
dences that conform to the underlying motion.
It is desirable to devise a scheme to determine
whether any subsample is degenerate. The detec-
tion of degeneracy within RANSAC is the subject
of (Torr et al. 1995a).

RANSAC originated in work on computer vi-
sion, and it was some years until a similar highly
robust estimator was developed independently in
the field of statistics, namely Rousseeuw’s least
median of squares (LMS) estimator (Rousseeuw
1987). The algorithms differ slightly in that the
solution giving least median is selected as the esti-
mate in (Rousseeuw 1987). Both algorithms have
been implemented with the Sampson/Weng and
epipolar distances, not on the algebraic distance,
and are presented in the Appendix.

The variances of the estimators, for D and F,
run over the correspondences stored in the data

base are presented in Figure 9. Both estimators
perform similarly very well, with LMS giving a
slightly better performance for under 50% con-
tamination.

A more recent random sampling algorithm is
MINPRAN (minimize probability of randomness),
described by Stewart (1995). Like LMS, this does
not require a prior: knowledge of the variances.
However, we do not use it here as it appears to
make assumptions about the error distribution
that are inappropriate for estimation of the fun-
damental matrix. This is discussed in (Torr et al.
1996).

7. A note on Hough Transforms

In our study, techniques that fall into the three
categories described already have proved the most
successful. It is worth however mentioning the
Hough transform (eg Ballard & Brown 1982) as it



has long history of valuable service to computer
vision. The parameter space is divided into cells,
and each datum adds a vote to every cell of the
parameter space whose parameters are consistent
with that datum. After voting, cells in the pa-
rameter space that have a number of votes greater
than a given threshold are marked as representing
possible solutions.

The Hough transform runs into problems when
the dimension of the parameter space is high, be-
cause its space requirement is exponential in the
dimensionality and the computational expense of
even the Fast Hough Transform (Li et al. 1986)
rises exponentially with the dimension of the pa-
rameter space (McLauchlan 1990). The dimen-
sionality of the Fundamental Matrix is 7, and even
the coarsest quantization of the parameter space,
say into 10 cells per dimension, would demand 107
cells!

8. Robust determination of the standard

deviation

Robust techniques to eliminate outliers are all
founded upon some knowledge of the standard de-
viation o of the error, as outliers are typically dis-
criminated from inliers using

{ set of inliers if d; < 1.960 (11)
set of outliers otherwise,

where we recall that d; = wg;r; i1s the Samp-
son/Weng distance. This section describes a ro-
bust method for estimating o.

The standard deviation is related to the char-
acteristics of the image, the feature detector and
the matcher. Often the value of ¢ is unknown, in
which case it must be estimated from the data. If
there are no outliers in the data the o can be es-
timated directly as the standard deviation of the
residuals of a non-linear least squares minimiza-
tion. If there are outliers and they are in the
minority, a first estimate of the variance can be
derived from the median squared error of the cho-
sen parameter fit (Rousseeuw 1987). It is known
that med;|d;|/®~1(0.75) is an asymptotically con-
sistent estimator of o when the d; are distributed
like N(0,0?), where @ is the cumulative distribu-
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tion function for the Gaussian probability density
function.

It was shown empirically by Rousseeuw (1987)
that when n &~ 2p (recall that n is the number
of data, and p the number of parameters) the cor-

rection factor of (1 + Tpr) improves the estimate

of the standard deviation. Noting 1/®~1(0.75) =
1.4826 the estimate of ¢ is then

5
o= 1.4826 <1 + —) v/med;|d;]| .
n—p

The LMS algorithm is used to obtain the estimate
of the median and a first estimate of the standard
deviation. Once the final result is obtained (af-
ter non-linear minimization) the estimate of the
standard deviation can be improved by the EM
algorithm (Dempster 1977). If the inlier and out-
lier distribution are Gaussian but with different
parameters, the EM algorithm is guaranteed to
increase the likelihood of the estimated standard
deviation given the data.

The standard deviation can be estimated be-
tween each pair of images and the results filtered
over time. Under Gaussian assumptions it can be
shown (Bar-Shalom & Fortmann 1988) that about
800 correspondences are required to ensure that
there is a 95% chance that the variance is within
10% of its actual value. Image pairs that give rise
to unusually high standard deviations might pos-
sess independently moving objects, the detection
of which is discussed in (Torr et al. 1994,1995b).

Given random perturbations of the image cor-
respondences with unit standard deviation then
the estimate of the standard deviation of F was
found to be 1.07, this being a conflation of the
image error and the error in the estimator.

9. Comparison of Robust Categories I-II1

Figure 10 is a graph comparing the best method
from the Least Squares category and the robust
categories I-11I described in this paper.

As expected, the least squares method is non-
robust, giving a standard deviation of 4.7 when
only 5% of the data are outliers. The M-estimator
using the Huber error provides rather inaccurate
results up to figures of 35% outliers and then
breaks down. The case deletion diagnostics work
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Fig. 10. (a) (b) Variance of the noise free points to the estimated F for the best of each category of estimator, using
Sampson’s distance D and the epipolar distance E respectively. The values were derived from over 100 tests on 200 points.
It can be seen that Random Sampling (here using LMS) give the best result, the case deletion method performs well but
requires an exact estimate of o to achieve such a good result, limiting its use in practise. The near optimal estimator that
we suggest is shown, using the LMS method to initialize and M-estimator is significantly better than the use of the Random

Sampling method alone.
600
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Fig. 11. A comparison of epipolar geometry estimated by LMS alone (a) with LMS followed by Huber (b). The data are
corrupted from Figure 4, where the true epipolar geometry can be seen.

very well when provided with an accurate estimate
for the standard deviation, which we assumed was
known for these experiments. But if the standard
deviation is unknown they perform very badly.
The LMS algorithm gives the best performance for
both error measures. RANSAC gave an equivalent
or slightly worse performance when the standard
deviation of the error term was known, but it has
been shown that RANSAC can perform well even
when there are 90% outliers (Roth 1993). This
tallies with our experience in using RANSAC for
motion segmentation (Torr & Murray 1994).
Earlier it was noted that iterative estimation of
the M-estimators is only successful if the starting
estimate was good. By using the output of the
random sampling rather than linear regression as
the starting estimate for M-estimation, here using
an iterative Huber algorithm, a further improve-

ment can be made, as shown for a range of con-
taminations in Figure 10. Although the improve-
ment appears small, it has a significant effect on
the computed epipolar geometry, as shown in Fig-
ure 11. Part (a) of the figure shows the epipolar
geometry estimated by the LMS method, and (b)
shows that estimated after iterative improvement
of the result using Huber’s M-estimator. The lat-
ter is closer to the veridical geometry derived from
the uncorrupted data shown earlier in Figure 4.
The previous experiment highlights the sensi-
tivity of the recovered epipolar geometry to fit-
ting differences between robust methods. It is
worth showing the difference between the best
non-robust and best robust methods. Figure 12(a)
shows the 80 correct correspondences and the 20
mismatches used as data. Figure 12(b) shows the
veridical epipolar geometry, (¢) shows that recov-
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Fig. 12. Synthetically generated correspondences (a) with 80 inliers and 20 outliers. The veridical epipolar geometry is
shown in (b). Part (c) Shows the epipolar geometry recovered by the non-robust algorithm S2 and (d) shows that from the

robust LMS plus Huber combination.

ered by iterative least square method S2 and (d)
gives that recovered by the robust symbiotic com-
bination of LMS with Huber. The difference is

obviously substantial.

10. Towards an empirically optimal algo-
rithm

Our key conclusions thus far are that

1. Of the major categories of robust estimator,
random sampling gives the best results.

2. It is possible further to improve performance
by mixing robust methods. We have found that
the use of random sampling to initialize itera-
tive M-estimators yields an empirically optimal
combination.

These observations have allowed us to create an
empirically optimal combination of algorithms, as
summarized below.

The algorithm first determine the set of puta-
tive correspondences using “unguided matching”
— that is, image-based matching without using
the epipolar geometry — storing for each point an
ordered list of the more likely correspondences.

The correspondences are supplied to RANSAC,
which is initialized with an approximate guess at
the standard deviation. For instance on the cal-
ibration example shown later the initial estimate

of the standard deviation ¢ is made at 0.7. After
LMS is run, the algorithm provides an updated es-
timate of o = 0.213 from the median, running EM
reduces this estimate to 0.204. After the iterated
M-estimator the EM algorithm gives ¢ = 0.1682,
and after the non-linear gradient descent part of
the algorithm o = 0.1146.

The best estimates of F and ¢ are handed on to
the M-estimation algorithm for refinement. Here
we use iterative re-weighted least squares with
Huber’s robust weighting function. In practice,
around five iterations are adequate.

Finally, a non-linear gradient descent algorithm
replaces the least-squares algorithm in the M-
estimation scheme. The non-linear minimization
is conducted using the method described in Gill
and Murray (1978). This minimization uses a pa-
rameterization that enforces the det F = 0 condi-
tion.

Note first that all the correspondences are in-
cluded at every stage. By stages 2 and 3, gross
outliers are effectively removed as the Huber func-
tion places a ceiling on the value of their errors,
but if the parameters move during the iterated
search, marginal outliers can be re-classified as an
inliers. This avoids RANSAC unduly biasing the
M-estimation stages.
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Note too that at each stage, and at each iter-
ated step, the algorithm re-assesses the putative
correspondences, using the epipolar geometry im-
plicit in the running estimate of F. If it found
that the point correspondence is an outlier, but
that another reasonable match on the point’s list
of potential matches is an inlier, the algorithm al-

ters the match so as to locally minimize d;.

Empirically Optimal Algorithm

1. Generate matches: using unguided matching
generate for each point feature in image 1 an
ordered list of the best matching points in im-
age 2, and similarly for image 2.

2. Random sampling: apply the estimator to the
best set of matches from image 1 to 2 and vice
versa. Use RANSAC if ¢ is known otherwise
LMS.

3. Re-assess the matches, and re-estimate o using
the EM algorithm.

4. M-estimation (1):

least squares incorporating the Sampson/Weng

refine using iterative
weights modified by the Huber robust weight-
ing. iteratively re-weighted least squares.

5. Re-assess the matches, and re-estimate o using
the EM algorithm.

6. M-estimation (2):

squares by a non-linear method, using a pa-

replace the iterative least

rameterization that ensures the det F = 0 (see
Luong 1992).

7. Re-assess the matches, and re-estimate o using
the EM algorithm.

Table 4. The performances of the best of each class of esti-
mator, as well as our suggested combined method, on the
real images, given in terms of the number of inliers found
and the standard deviation of the error on the inlying set.
The initial estimate of the standard for inliers was 0.5.

M Case
Fig |Estimators Deletion

RANSAC Combined
Method

o inliers| o inliers| o inliers| o inliers
13/14 0.36 143 [0.32 143 |0.30 145 |0.30 137
Fig 15(0.29 450 [0.34 435 [0.34 451 |0.34 459
Fig 16 (0.43 168 [0.40 149 (0.45 148 |0.43 164

10.1. Real Images

We now demonstrate the performance of the com-
bination of random sampling and M-estimators
on real imagery, using the results to aid corner
matching. Whereas at step 4 we used the LMS
algorithm for the synthetic data, here instead we
use the RANSAC method with an initial estimate
of o = 0.5, unless it is certain that there are under
50% outliers.

Guided feature matching. Figure 13 shows
two images of a calibration grid. The similar-
ity of the features makes matching difficult, and
Figure 13 (c) shows 187 correspondences postu-
lated by a feature matcher based purely on inten-
sities. There are a considerable numbers of mis-
matches. Part (d) of the figure shows the results of
using RANSAC with Huber to eliminate outliers
from computation of the fundamental matrix, and
thence to use the associated epipolar geometry to
guide matching. Part (e) of the the figure shows
the estimated epipolar geometry for the calibra-
tion grid, along with initial set of matches.

The standard deviations and number of inliers
for each method are summarized in Table 4, for
this example and those in Figures 15 and 16.
It can be seen that random sampling performs
best, followed by Case Deletion, both of which are
provide much better estimates than M-estimation
when poorly initialized (here by OR).

The results of poorly-initialized M-estimation
and Case Deletion Diagnostics are compared in
Figure 14, where, using Table 4, it can be seen that
although the standard deviations of the inliers are
similar for the two estimators, the M-estimator
has clearly failed to eliminate many outliers. This
result demonstrates that use of the goodness of fit
to the observed data is not always a good crite-
rion with which to judge the estimator, bearing
out our earlier decision to reject this as the mea-
sure of relative efficiency.

Football sequence. Figures 15(a) and (b) show
two images of a sequence taken at a football
match, with the motion computed by matching
image corner features shown in the (b). The dom-
inant image motion is the result of camera pan-
ning. Figure 15(c) shows the inliers, and (d) shows
the outliers, lying predominantly on the indepen-



dently moving footballers; (e) shows the results of
the M-estimator, note that the results are fairly
good except for two major outliers. The reason
that the M-estimators do not perform too badly
in this case is because the outliers are only a small
proportion of the data. (f) shows the inliers for
the case deletion diagnostic. The data here is al-
most degenerate, most of the football supporters
lie approximately on a plane and are thus con-
sistent with many solutions. Hence different so-
lutions have almost the same goodness of fit but
with different correspondences indicated as inliers
off the plane. As observed by Kumar and Han-
son (1994), RANSAC performs less well when the
data are near degenerate, but the subsequent use
of an M-estimator after RANSAC helps stabilise
the situation.

Walking sequence. Figures 16 (a) and (b) are
two images from a sequence showing a person to-
wards the camera as the camera moves to keep him
in view. Figure 16 (¢) shows the inliers and (d) the
outliers. By inspection it can be seen that most
of the grossly incorrect correspondences have been
classified as outlying, (e) and (f) show the corre-
sponding results. Again because the data are near
degenerate, containing several large planes, the fit
is not stable, and some outliers are included. Thus
robust estimation is not the whole story, unless
stability is also considered. This will be discussed
below.

11. Discussion and conclusions
11.1.  Actual versus expected performance

Although the robust estimation techniques are
far superior to non-robust methods such as least
squares, they are still of course imperfect. The use
of synthesized data allows an objective measure of
performance to be obtained, and this is shown for
the combination of random sampling and Huber
M-estimation in Figure 17. There are two types
of error possible: Type I — an outlier is wrongly
classified as an inlier; and Type II — an inlier is
wrongly classified as an outlier. It can be seen
that over 90% of outliers are correctly classified
for contaminations as great as 50% — ie there are
less than 10% Type I errors.
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Is this better or worse than expected? The esti-
mation of the standard deviation o obviously plays
a key role here, as it determines the threshold
at which an error might be considered outlying.
In estimating o it is necessary to steer between
Charybdis and Scylla: a higher estimate of o will
increase the number of Type I errors whilst de-
creasing the number of Type II errors, and vice
versa. The expected bounds on the proportion of
each type of error is estimated as follows.

Under Gaussian assumptions, 95% of the pop-
ulation lie within 1.960 of the mean. If this is
the confidence interval established on the error, it
follows that at most 95% of the inliers would be
identified correctly and that that there would be
> 5% Type I errors.

A higher percentage of Type Il errors is ex-
pected. This is because the epipolar constraint
only allows disambiguation in one dimension, and
so a mismatch that happens to lie along the epipo-
lar line cannot be identified. Here we present an
argument for distance e, a similar argument can
be constructed for d. If the search window size is
| x [ pixels then the maximum area that is swept
out within a distance e of an epipolar line is below
2v/2el. The chance of a mismatch being within
this area at random is thus 2v/2e/l. THere, this
value is approximately 8%, and so we expect at
most 92% of the inliers would be correctly identi-
fied.

It can be seen in Figure 17 that the algorithm
comes close to attaining these values over a wide
range of contaminations.

For real data, it was found, after the EM al-
gorithm was applied, that the difference between
the inlier and outlier standard deviations was sub-
stantial, allowing a clear discrimination between
inliers and outliers in most cases. For the images
in Figure 13 the initial estimate of the standard
deviation was 0.5, after application of the EM al-
gorithm the standard deviation of inliers was 0.146
and that of outliers was 19.306. Generally the
RANSAC algorithm was robust to the initial esti-
mate of o because the inlier and outlier distribu-
tions are so distinct.
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Fig. 13. (a) and (b) are two view of an object which creates matching difficulties for an impoverished matcher, as shown by
the number of mismatches in (c). (d) shows the matches consistent with the epipolar geometry after eliminating outliers.
Part (e) shows the estimated epipolar geometry, together with the matches that have been rejected and re-matched.
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Fig. 14. (a) and (b) shows the matches consistent with the epipolar geometry after eliminating outliers. (a) is for the Huber
M-estimator, initialized using OR, which has converged to an incorrect solution. (b) is for the case deletion diagnostic
which, despite gross outliers has converged to a reasonable solution.
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Fig. 15. In (a) (b) two consecutive images of a football match where the camera is panning. The inliers, mainly on the
crowd “texture” are shown in (c), and the outliers, many of which are attached to the independently moving players, are
given in (d). (e) inliers from M-estimator. (f) inliers from case deletion diagnostic.
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Fig. 16. Two images from a sequence showing the movement of a person towards the camera as the camera moves to keep
him in view, with the resulting correspondences from corner matching in (b). The combined RANSAC/Huber M-estimator
segments the set of correspondences into (c) inliers and (d) outliers. (e€) inliers from M-estimator. (f) inliers from case

deletion diagnostic.
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11.2. Conclusion

In this paper we have surveyed the range of cate-
gories of robust estimators, and have applied them
to the computation of the fundamental matrix.
We have extended several results obtained in the
statistical literature for ordinary regression to or-
thogonal regression, where the computation of the
fundamental Matrix is a linear problem and a hy-
perplane is being fitted, and thence to use of the
geometric distance, where computing the funda-
mental matrix is a non-linear (actually bilinear)
problem, and a hyper-surface is fitted.

Intra-category comparisons were made using
large synthetic data sets and the best in each cat-
egory compared in an inter-category competition.
Methods were evaluated on relative efficiency and
breakdown point. Random sampling techniques
were shown to provide the best solution, in tests
LMS generally gave a better fit than RANSAC
and we advocate its use, but RANSAC is superior
in the following circumstances: Firstly when there
are more than 50% outliers LMS cannot provide
a good solution, this might occur in cases of in-
dependent motion. Secondly if half the data are
well fitted by multiple solutions for F (i.e. half the
data are on a plane), the LMS fit will be very un-
stable. Thus RANSAC is a more generally robust
algorithm than LMS, and should be applied when
the input might fall into the above categories.

M-estimators, which are more satisfying from
a statistical standpoint, were shown to suffer if
the initial estimate was poor, as when initializa-
tion is performed using non-robust least squares.
However, if the M-estimator method was initial-
ized using robust random sampling, the combina-
tion provided better results than random sampling
alone. Even small improvements have a marked
effect on the resulting epipolar geometry.

For the M-estimation itself an iterative least
squares scheme was developed. Of itself it can not
enforce the constraint that the determinant of the
fundamental matrix must be zero, and so in a final
step, a non-linear minimization replaces the iter-
ative least squares, using a parameterization that
enforces |F| = 0. This ensures unbiased recovery
of the epipole, as described by Luong et al. (1993).
We have found that this tripartite approach gives
very satisfactory results. The experiments on real

imagery showed that overall estimation could be
further improved by using the robust estimation
to provide epipolar constraint to the matcher.

The above method functions even with a high
degree of outlier contamination, but at the ex-
pense of computation time. If there are few out-
liers and cost is an issue then case deletion di-
agnostics provide an efficient way of judging the
relative merit of correspondences. Case deletion
methods work well on smaller data sets.

We have not considered here structural con-
straints here, in particular the visibility con-
straint. Some outliers, although consistent with
the epipolar geometry, might appear behind the
camera, allowing them to be identified as outly-
ing. Nor have we considered the natural extension
of the estimation process to motion segmentation:
this is explored in (Torr & Murray 1993,1994) and
(Torr et al. 1995).

There have been some other notable compar-
isons of robust estimators in computer vision,
we shall now compare our findings with those of
the other studies. Meer et al. (1991) compared
M-estimators and LMS for data smoothing and
found that LMS more than halved the error, giv-
ing clearly superior results. Kumar and Hanson
(1994) compared M-estimation and random sam-
pling using both the LMS and RANSAC error cri-
teria for the problem of pose determination. The
conclusion they reach is equivocal, and they quote
from Li (1985):: “No one robust regression tech-
nique has proven superior to all others in all situ-
ations, partly because of handling many forms of
influential observations”.

Our results force us to disagree with this pes-
simistic view, and we now explore the reasons for
this difference in opinion. They reject random
sampling in certain cases due to the following ra-
tionale. “Given the observations for the inliers
are noisy, it is conceivable that the pose returned
by the consensus algorithm explains a significant
set of observation with “low leverage” quite well
and makes an inlier with “high leverage” an out-
lier. This indeed might occur if 50 percent of
the data are consistent with multiple solution for
LMS, in which case the median will be near zero
for wildly different solutions to the data. But our
suggested approach of RANSAC combined with
an M-estimator will typically overcome this prob-
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Fig. 17. The percentage of outliers and inliers correctly discovered for given percentages of contamination using the best

robust estimator combining random sampling and Huber.

(@

Fig. 18. In (a) (b) two consecutive images of a buggy rotating on a turntable. (b) has 167 matches superimposed on the
second image. (c) (d) show two epipolar geometries generated by two distinct fundamental matrices, 139 correspondences
are consistent with the fundamental matrix in (a), 131 are consistent with the fundamental matrix in (b) yet the two epipolar
geometries obviously differ.

lem. We suggest using RANSAC together with
some first reasonable guess at the standard devia-
tion o (possibly even obtained from LMS), and as
noted the final result is reasonably insensitive to
the first guess at 0. The problem of degeneracy
(multiple solutions fitting the data) is discussed

further in the next section.

The work of Zhang et al (1994) was developed
independently of ours. They too explored the use
of robust estimators to estimate the fundamen-
tal matrix. Although there is little comparative
work between estimators in their paper, they sug-
gest using LMS to estimate F. Generally we pre-
fer RANSAC followed by an M-estimator, unless
the input is controlled to exclude independent mo-



30 Torr and Murray

tion etc, as noted previously. Our method requires
somewhat less sampling in the random sampling
phase, using only 7 points rather than 8 as they re-
quire. This leads to a speedier convergence. Fur-
thermore, any F obtained from 7 points automat-
ically has det F = 0 whereas that obtained from
8 points will not. This is useful if the final result
of RANSAC is fed directly into a non-linear mini-
mizer. Another difference is that Zhang et al. use
the epipolar distance e, which we have rejected in
favour of the Sampson/Weng measure, which is
theoretically more satisfying as it is a closer ap-
proximation to the maximum likelithood estima-
tor. Their paper points out that linear methods
carry bias. In this paper, we have discussed a
robust non-parametric method for removing this
bias. Our work has carried the analysis further
by assessing the fit to the true data set when the
ground truth is known. We also note that our
test databases are larger than in previous studies,
giving a greater indication of the reliability of the
result.

11.3. A postscript on degeneracy

It has already been noted that when using ran-
dom sampling there might be degeneracy in any
seven point samples. In fact there is a broader
problem here, one that has been long neglected in
the statistics literature. It is how are the possible
solutions to be determined if the true inlying data
as a whole are degenerate, but degeneracy is bro-
ken by a handful of rogue outliers? Figure 18 gives
an example. Parts (a) and (b) show two frames
and the resulting point correspondences from a se-
quence where a toy truck is rotated on a turntable.
The majority of 167 data are degenerate, and Fig-
ures 18 (¢) and (d) shows two epipolar geometries
consistent with the veridical inlying data. Run-
ning random sampling can generate approxima-
tions to either the first has 139 inliers, the second
131. When random sampling is performed on this
set, either solution can be found.

The question arises as to how to determine
which solution is valid, or whether the data are de-
generate. This question becoming more problem-
atic the more outliers there are in the data. An ac-
count of when degeneracy might arise, how to de-
tect 1t and how to conduct estimation in the pres-

ence of degeneracy is given in (Torr et al. 1995a)
and will be the subject of a sister paper.
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Appendix

M-estimator algorithm

1. Initialize the weights w; = 1, 7; = 1 for each
correspondence.
2. For a number of iterations (we used 5):

2.1 Weight the ith constraint by multiplying
it by w;~;.
2.2 Calculate F by orthogonal regression.

2.3 Project the estimated F onto the nearest
rank 2 matrix using the singular value de-
composition.

2.4 Calculate the algebraic residuals r;.

2.5 For each correspondence (dropping the
subscript ¢) calculate weighting

1/2
1
Weg =
° R T o

2.6 Calculate the distance d; = wg;r;.

2.7 Calculate =;, e.g. for Huber:

1 d; <o
vi =1 o/ldi| o<d; <30
0 d; > 30.

Case deletion algorithm

1. Set weights w; = 1, for each correspondence.
2. Until 3, d? < x* where i € {inliers}, do:
2.1 Weight the ith constraint by multiplying
it by w;.
2.2 Calculate F by orthogonal regression using
all correspondences that are still inlying.



2.3 Project the estimated F onto the nearest
rank 2 matrix using the singular value de-
composition.

2.4 Calculate the algebraic residuals r;.

2.5 Calculate the influence of each correspon-
dence T;.

2.6 Cast out correspondence with largest 7;.

2.7 For each correspondence (dropping the
subscript ) calculate the weighting

1/2
1

2 2 2 2
Te Tyt T,

wg =

2.8 Calculate the distance d; = wg;r;.

The Random Sampling Algorithm

1. Repeat for m samplings as determined in Ta-

ble 3:

1.1 Select a random sample of the minimum
number of data points to make a parame-
ter estimate F'.

1.2 Calculate the distance measure d; for each
feature given F.

1.3 If using RANSAC, calculate the number of
inliers consistent with F', using the method
prescribed in Section 8

Else if using the LMS estimator calculate
the median error.

2. Select the best solution — i.e. the biggest con-
sistent data set. In the case of ties select the
solution which has the lowest standard devia-
tion of inlying residuals.

3. Re-estimate the parameters using all the data
that has been identified as consistent. A more
effective, and possible computationally expen-
sive estimator such as Powell’s method (Teukol-
sky et al. 1988; NAG 1988) may be used at this
point.

Notes

1. If the points have unequal variance each element may
be weighted by its standard deviation.
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2. Kanatani (1994) page 322 provides an interesting dis-
cussion about this assertion.

3. The robber Prokroustes was fabled to fit victims to his
bed by stretching or lopping. Hartley (1995) has sug-
gested a preconditioning that should be used before the
fundamental matrix is replaced by its nearest rank 2
equivalent.

4. In the case when different axes have different variances
we transform the data by scaling all the coordinates
(e.g. each column of Z) by their standard deviation, in
order to obtain uniform variance.
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