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Image Formation
Digital Image Formation

• An image is a 2D array of numbers representing• An image is a 2D array of numbers representing 
luminance (brightness), color, depth, or other 
physical quantity

• Luminance / brightness image:
• Color image:
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• 2 key issues:
Where will be image of a scene point appear?
How bright will the image of a scene point be?  
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Modeling Perspective Projection

• Projection equations
C i i i h PP f f ( ) COPCompute intersection with PP of ray from (x,y,z) to COP
Derived using similar triangles

• We get the projection by throwing out the last coordinate:
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Geometric Properties of Projection

• Points go to pointsPoints go to points
• Lines go to lines
• Planes go to whole image
• Polygons go to polygons
• Degenerate cases

 line through COP to point
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g p
 plane through COP to line
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Distant  Objects  are  Smaller

22Magnification = f/z

Tilted Objects are Foreshortened
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Tilted Objects are Foreshortened
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Parallel Lines Perpendicular to 
the Optical Axis

• Will be parallel in the 
image

• Distant lines appear 
closer together –
“foreshortened”
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Picture plane
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In General, Parallel  Lines  Meet

Moving the image plane merely scales the image
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Vanishing Points
picture plane

eye

vanishing point

Line parallel 
to scene line 
and passing 
through 

i l

• Vanishing point

y

ground plane

optical center
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Vanishing point
projection of a point “at infinity”
Point in image beyond which projection of straight line 

cannot extend

Vanishing Points (2D)
picture plane

eye
vanishing point

line on ground plane

30
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Vanishing Points
image plane

Eye

vanishing point V

• Properties
An t o parallel lines ha e the same anishing point v

viewpoint
C

line on ground plane

line on ground plane
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Any two parallel lines have the same vanishing point v
The ray from C through v is parallel to the lines
An image may have more than one vanishing point

Vanishing lines

v1 v2

• M ltiple Vanishing Points
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• Multiple Vanishing Points
Any set of parallel lines on a plane define a vanishing point
The union of all of these vanishing points is the horizon line

• also called vanishing line
Note that different planes define different vanishing lines

Carlo Crivelli (1486) The Annunciation, with St. Emidius

Perspective analysis of Crivelli’s Annunciation
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Vanishing Lines

• Multiple Vanishing Points
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p g
Any set of parallel lines on a plane define a vanishing point
The union of all of these vanishing points is the horizon line

• also called vanishing line
Note that different planes define different vanishing lines

• For right-angled objects whose face normals are perpendicular to 
the x, y, z coordinate axes, number of vanishing points = number 
of principal coordinate axes intersected by projection plane

Vanishing Points
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zOne Point Perspective
(z-axis vanishing point)
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xz
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Two Point Perspective
(z- and x-axis vanishing points)

Three Point Perspective
(z-, x-, and y-axis vanishing 
points)

Vanishing  Points

l each set of parallel lines l Good ways to spot fakedl each set of parallel lines 
(= direction) meets at a 
different point

l The vanishing point for this 
direction

l Sets of parallel lines on 
the same plane lead to 

l Good ways to spot faked 
images

l scale and perspective don’t 
work

l vanishing points behave 
badly

l supermarket tabloids are a 
t
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p
collinear vanishing points   

l The line is called the
horizon for that plane

great source

Masaccio’s  “Trinity” (c. 1425-8)

• The oldest existing 
example of linear 

ti i W t tperspective in Western art

• Use of “snapped” rope 
lines in plaster

• Vanishing point below
orthogonals implies 
looking up at vaulted 
ceiling
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Piero della Francesca, “Flagellation of Christ”
(c. 1455)

• Carefully• Carefully 
planned

• Strong 
sense of 
space

• Low eye• Low eye 
level

Leonardo da Vinci, “Last Supper” (c. 1497)
• Use of perspective to 

direct viewer’s eye
• Strong perspective lines to 

corners of image 

Raphael, “School of Athens” (1510-11)

• Single-point g p
perspective

• Central
• Strong, 

coherent 
space

Perspective Cues from Parallel Lines 
in the Scene

42
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Perspective Cues

43

Perspective Cues
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Comparing Heights
VanishingVanishing

PointPoint
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Painters have used Heuristics to aid 
in Robust Perception of Perspective

“Make your view at least 20 times as far off as the 

To minimize noticeable distortion, use shallow perspective:

Example:  Leonardo’s Moderate Distance 
Rule

y f ff
greatest width or height of the objects represented, 
and this will satisfy any spectator placed anywhere 
opposite to the picture.”

-- Leonardo



8

Example:  Extreme Viewpoints Example:  Extreme Viewpoints 
PerspectivePerspective

Mantegna, Lamentation over the dead Christ, 1480 Ogden’s photo recreation of The dead Christ.

Example 2:  Marginal View Example 2:  Marginal View 
DistortionDistortion

Objects that are 
close to the 
viewer and at 
edge of  field of  
view, are 
elongated by 
perspective 
projection

Pinhole camera photo of a marginal sphere

projection

Plato
(Leonardo)

Aristotle

Raphael, School of Athens, 1511

Heraclitus
(Michaelangelo)

Euclid
(Bramante)
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Z t

Ptolomy

Zoroaster

Spheres should 
be elongated to 
be perspectively

Detail of Raphael’s School of Athens

be perspectively 
correct, but 
they are not

Leonardo’s Solution to the ProblemLeonardo’s Solution to the Problem

“Make your view at least 20 
times as far off as the greatest 
width or height of the objectswidth or height of the objects 
represented, and this will 
satisfy any spectator placed 
anywhere opposite to the 
picture.”

-- Leonardo

Pirenne’s pinhole camera photo of marginal columns

Camera Transformations using 
Homogeneous Coordinates
• Computer vision and computer graphics usually represent 

points in Homogeneous coordinates instead of Cartesian 
coordinates

• Homogeneous coordinates are useful for representing 
perspective projection, camera projection, points at 
infinity, etc.

• Cartesian coordinates (x, y) represented as Homogeneous 

61

coordinates (wx, wy, w) for any scale factor w0
• Given 3D homogeneous coordinates (x, y, w), the 2D 

Cartesian coords are (x/w, y/w).  I.e., a point projects to 
w=1 plane

Homogeneous Coordinates
Converting  to homogeneous coordinates:

homogeneous image 
coordinates

homogeneous scene 
coordinates

Converting  from homogeneous coordinates:g f g

Slide by Steve Seitz
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The Projective Plane
• Geometric intuition

A point in the image is a ray in projective space from origin

(0,0,0)

(sx,sy,s)
(x,y,1)

y

• Each point (x,y) on the plane is represented by a ray (sx,sy,s)
– all points on the ray are equivalent: (x, y, 1)  (sx, sy, s)

image plane
xz

Projective Lines
• What does a line in the image correspond to in 

projective space?

• A line in the image is a plane of rays through origin
– all rays p = (x,y,z) satisfying:  ax + by + cz = 0
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• A line is also represented as a homogeneous 3-vector l

l p

2D  Mappings
• 2D translation - 2 DOFs
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• 2D rotation (counterclockwise about the origin) - 1 DOF
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• 2D rigid (Euclidean) transformation:  translation and 
rotation – 3 DOFs
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2D  Mappings  (cont.)
• 2D scale - 2 DOFs

• Composite translation, rotation, scale (similarity
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2D  Mappings  (cont.)
• Affine (linear) - 6 DOFs

• Projective (allows skewing) - 8 DOFs (a33  is a scale 
factor)
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Examples  of  2D  Transformations

Original Rigid

Affine Projective

Properties of Transformations

• Projective• Projective
• Preserves collinearity, concurrency, order of contact

• Affine (linear transformations)
• Preserves above plus parallelism, ratio of areas, …

• Similarity (rotation, translation, scale)
P b l ti f l th l• Preserves above plus ratio of lengths, angle

• Euclidean (rotation and translation)
• Preserves above plus length, area

70

Using Homogeneous Coordinates

71
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3D  Mappings
• Cartesian coordinates (x, y, z)  (x, y, z, w) in 

homogeneous coordinatesg
• 4 x 4 matrix for affine transformations:











232221

131211

y

x

trrr
trrr
trrr

where rij  specify aggregate rotation and scale 
change, and ti specify translation








 1000
333231 ztrrr

• Projection is a matrix multiply using homogeneous 
coordinates:

Perspective Projection

divide by third coordinate

This is known as perspective projection
• The matrix is the camera perspective projection matrix
• Can also formulate as a 4x4

divide by fourth coordinate
Slide by Steve Seitz
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Perspective Projection
• How does multiplying the projection matrix by a 

constant change the transformation?

Homographies
• Perspective projection of a plane

Lots of names for general plane-to-plane transformations:
• homography texture map colineation planar projective map• homography, texture-map, colineation, planar projective map

Modeled as a 2D warp using homogeneous coordinates

sx' * * * x
sy' * * * y
s * * * 1

     
          
          

H H pp
To apply a homography H

• Compute     p = Hp (regular matrix multiply)
• Convert p from homogeneous to image coordinates

– divide by s (third) coordinate

Camera Parameters
A camera is described by several parameters

• Translation T of the optical center from the origin of world coords
• Rotation R of the image plane
• focal length f, principle point (x’c, y’c) , pixel size (sx, sy)

Projection equation

• The projection matrix models the cumulative effect of all parameters
U f l t d i t i f ti
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• blue parameters are called “extrinsics,”  red are “intrinsics”

• Useful to decompose into a series of operations
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projectionintrinsics rotation translation

identity matrix

Note:  Can also add other parameters to model lens distortion
K


