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Combining Images 

Goal:  Create new images by combining 
many photographs together 

Slide sources from A. Efros, S. Seitz, V. Vaish, M. Brown, D. Lowe, 
S. Lazebnik, P. Perez, R. Szeliski 

Photo Collages 

Photomosaics 

Invented in 1993 by 
Joseph Francis, and 
patented by Robert Silvers 
in 2000 

Joiners 

David Hockney 

“Pearblossum Highway” (1986) 
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Kelsey Bloomquist, 
2010 

Text-to-Picture Communication 

Slide Shows 
Image Super-Resolution 

Low-resolution 
(LR) images: 

High-resolution 
(HR) image: 

Scene: 

Goal:  Use one or more low-res 
(LR) images to create a higher-
res (HR) image that contains new 
high-res details 
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Application:  Surveillance  Application:  Video 

Application:  Panoramas 
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Reconstruction-based Super-Resolution 

Reconstruct HR pixels by a linear combination of 
LR pixels so that when HR image is projected to 
LR, it is similar to all the LR images 

HR HR HR HR HR HR HR HR HR HR HR 

LR LR 

LR LR 

LR 
LR 

LR 
LR 

LR LR 

LR LR 

LR 
LR 

LR 
LR 

Unknown Relationship b/w LR images 

Photos taken by 
cameras with 
unknown 
translation, 
rotation, and scale 
(zoom) 

Example-based 
Super-Resolution From a Single 
Image 

 

Daniel Glaser, Shai Bagon and 
Michal Irani 

 

Patch Redundancy in a Single Image 

Natural images contain 
repetitive image content in 
small patches (e.g., 5 x 5) 
 
Small patches in I are found 
“as is” in different locations 
and in other image scales 
of I 
 
High-res “parent 
patches” (dashed squares) 
indicate what the high-res 
parents of  patches in I 
might look like 
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Employing Patch Redundancy 

Recurring patches in a single low-res image can be 
regarded as if extracted from multiple low-res images of 
the same high-res image 

Employing Cross-Scale Patch 
Redundancy 

•  Build a cascade of decreasing resolution 
images from the input LR image 

•  For each patch in the LR image, search for its 
nearest neighbor in the even lower resolution 
images 

•  Take the found neighbor’s parent in the original 
LR image and copy it to the HR image, 
providing a (linear) constraint on the output HR 
image 

Results 

Example-based algorithm (x3)	Bicubic interpolation	
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Input 

Results	

Output 

Input Output 
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Input Output 

Example-based  
Super Resolution 

 
William T. Freeman, Thouis R. Jones 

and Egon C. Pasztor 

Algorithm Overview 

•  Construct a DB of matching LR-HR patches 
based on a separate set of natural images 

•  Find the most similar patch assignment to 
generate high-res image 
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Panoramas 

Goal:  Given a static scene and a set of images 
(or video) of it, combine the images into a single 
“panoramic image” or “panoramic mosaic” 
that is optically correct 

Why Panoramas ?   

•  Cartography: stitching aerial images to 
make maps 

Manhattan, 1949 

With the Cassini satellite's wide-angle camera aimed at 
Saturn, Cassini was able to capture 323 images in just over 
four hours in 2013. This final panorama used 141 of those 
images taken using red, green and blue spectral filters.   

http://www.jpl.nasa.gov/spaceimages/details.php?id=pia17172 

Mont Blanc Panorama 

•  365 gigapixels, created from 70,000 images 

•  http://www.in2white.com/ 
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Why Panoramas ?   

•  Virtual reality walkthroughs 
 
 
 
 
 
 
Quicktime VR  [Chen & Williams 95] 

Why Panoramas ?   

•  Getting the whole picture 
– Consumer camera: 50˚ x 35˚ [Brown 2003] 

Why Panoramas ?   

•  Getting the whole picture 
– Consumer camera: 50˚ x 35˚ 

– Human Vision: 176˚ x 135˚ 

[Brown 2003] 

Why Panoramas ?   

•  Getting the whole picture 
– Consumer camera: 50˚ x 35˚ 

– Human Vision: 176˚ x 135˚ 

– Panoramas: up to 360˚ x 180˚ 

[Brown 2003] 
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Hans Werner, 2011 

Madison  Panoramas Madison  Panoramas 

Jean Forde, 2011 

Madison  Panoramas 

Ali Bramson, 2011 

Madison  
Panoramas 

Rachel Wroblewski, 2010 
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Madison  Panoramas 

George Wanant, 2010 

Wisconsin Coastal Guide Panoramas 

Panoramas from Video 

One frame from video Mosaic constructed 

Video stabilization, compression and summarization 

The First Panoramas … 

Paris, c. 1845-50, photographer unknown 

San Francisco from Rincon Hill, 1851, by Martin Behrmanx 
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 … and Panoramic Cameras 

Chevallier, 1858 

Al-Vista, 1899 ($20) 

Panorama Capture Hardware 

Panoscan MK-3 Point Grey Ladybug 0-360 

Kogeto Dot 360 Camera for iPhone Panorama  Stitching  Algorithm 

1.  Capture Images:  Capture a set of images of a static scene 

2.  Alignment:  Compute an image-to-image transformation that will 
map pixel coordinates in one image into corresponding pixel 
coordinates in a second image 

3.  Warp:  Warp each image using transform onto output compositing 
surface (e.g., plane, cylinder, sphere, cube) 

4.  Interpolate:  Resample warped image 

5.  Composite:  Blend images together so as to hide seams, exposure 
differences, lens distortion, scene motion, etc.  
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When can Images be Aligned? 

Translations are not enough to align images in general 

left on top right on top 

Focal Length:  Pinhole Optics 

pinhole 

f d 

p 

q 

q = (f/d)p 

sensor 

Scene point 

Image point 

Where does p appear in the image? 

When  can  Two  Images  be  Aligned? 
•  Problems 

–  In general, warping function depends on the depth of the 
corresponding scene point since perspective projection defined by           
x´ = fx/d,     y´ = fy/d 

–  Different views mean, in general, that parts that are visible in one 
image may be occluded in the other 

•  Special cases where the above problems can’t occur 

1.  Panorama:  Camera rotates about its optical center, arbitrary 3D 
scene  

•  No motion parallax as camera rotates, so depth unimportant 

•  2D projective transformation relates any 2 images  (⇒ 8 unknowns) 

2.  Planar  mosaic:  Arbitrary camera views of a planar scene  

•  2D projective transformation relates any 2 images 

Panoramas:  A pencil of rays 
contains all views 

real 
camera 

synthetic 
camera 

Can generate any synthetic camera view as long as it 
has a single center of projection (pinhole) 
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Image Reprojection 

•  The panorama has a natural interpretation in 3D 
–  The images are reprojected onto a common plane 

–  The panorama is formed on this plane 

–  A panorama is a synthetic , wide-angle camera 

panorama’s 
image plane 

Increasing the Field of View 

Camera Center 

p 

q 

Example 

Camera Center 

Projection on to Common Image Plane 

Camera Center 

p 

q 

What is required to project an image on to 
the desired plane ? 

•  Scaling ? 

•  Translation ? 

•  Rotation ? 

•  Affine transform ? 

•  Perspective projection ? 
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Image Reprojection 

•  Rather than 
thinking of this 
as a 3D 
reprojection, 
think of it as a 
2D image warp 
from one image 
to another 

Image Warping 

Translation 

2 unknowns 

Affine 

6 unknowns 

Perspective 

8 unknowns 

Which transform is the right one 
for warping image plane 1 into 
image plane 2? 

Aligning Images 

How can we find the homographies required 
for stitching ? 

•  From calibration parameters 
– Works, but these aren’t always known 

What’s the relationship between 
corresponding points in two images? 

Alignment:  Homography 

•  Projection of a plane  
–  called homography, colineation, or 

planar projective transformation 
PP2 

PP1 
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To apply a homography H 
•  Compute     p´ = Hp   (regular matrix multiply) 
•  Convert p´  from homogeneous  to  image 

coordinates 
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Camera Transformations using 
Homogeneous Coordinates 
•  Computer vision and computer graphics usually represent 

points in Homogeneous coordinates instead of Cartesian 
coordinates 

•  Homogeneous coordinates are useful for representing 
perspective projection, camera projection, points at infinity, 
etc. 

•  Cartesian coordinates (x, y) represented as Homogeneous 
coordinates (wx, wy, w) for any scale factor w ≠ 0 

•  Given 3D homogeneous coordinates (x, y, w), the 2D 
Cartesian coordinates are (x/w, y/w) 

Homogeneous Coordinates 

Converting  to  homogeneous coordinates: 

homogeneous image  
coordinates 

homogeneous scene  
coordinates 

Converting  from  homogeneous coordinates: 

Slide by Steve Seitz 

The Projective Plane 

•  Each point (x, y) in the image is represented by a ray (sx, sy, s) 

–  all points on the ray are equivalent:  (x, y, 1)  ≅  (sx, sy, s) 
–  (x, y, 0) is the point “at infinity” 

(0,0,0) 

(sx, sy, s) 

image plane 

(x, y, 1) 

y 

x z 

•  Geometric intuition 
– A point in the image (a plane in Euclidean 

space) is a ray in projective space from origin 

2D  Mappings 

•  2D translation - 2 DOFs 

 

 

•  2D rotation (counterclockwise about the origin) - 1 DOF 

•  2D rigid (Euclidean) transformation:  translation and rotation – 3 DOFs 
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2D  Mappings  (cont.) 

•  2D scale - 2 DOFs 

 
•  Composite translation, rotation, and scale (called a 

similarity transformation) - 5 DOFs 
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2D  Mappings  (cont.) 

•  Affine (linear) - 6 DOFs 

 
•  Projective (allows skewing) - 8 DOFs (a33  is a scale 

factor) 
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Examples  of  2D Transformations 

Original Rigid 

Affine Projective 

Properties of Transformations 

•  Projective 
•  Preserves collinearity, concurrency, order of contact 

•  Affine (linear transformations) 
•  Preserves above plus parallelism, ratio of areas, … 

•  Similarity (rotation, translation, scale) 
•  Preserves above plus ratio of lengths, angle 

•  Rigid (rotation and translation) 
•  Preserves above plus length, area 
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Perspective Projection:  Pinhole Optics 

pinhole 

f z 

p 

-q 

q = (f/z)p 

sensor 

Scene point 

q 

•  Perspective projection with a pinhole camera is a matrix 
multiply using homogeneous coords! 

Perspective Projection 

•  This 3 x 4 matrix is called the camera perspective 
projection matrix 
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Perspective Projection 

•  Or, equivalently, after multiplying the projection 
matrix by f, we get the same transformation: 
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Projection equation 
 
 
 

•  The projection matrix models the cumulative effect of all parameters 
•  Useful to decompose into a series of operations 
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Modeling a Real Camera 
A real camera is modeled by several parameters 

•  Translation T of the optical center from the origin of world coords 
•  Rotation R of the image plane 
•  focal length f, principle point (x’c, y’c) , pixel size (sx, sy) 
•  blue parameters are called “extrinsics,”  red are “intrinsics” 

Note:  Can also add other parameters to model lens distortion 
K 
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Projective Camera 
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•  More general than Perspective Camera matrix, Π 
•  Transformation matrix has only 11 DOFs since only 

the ratios of elements are important 

Affine Camera 

•  Most general linear transformation 

•  8 DOFs 

•  Reasonable assumption when scene objects are far away 
from camera (relative to focal length) 
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Homography:  Viewing a Plane 

•  Perspective projection of a plane  
–  Called homography, colineation, or planar projective 

transformation, H  

–  Modeled as a 2D warp using homogeneous coords PP2 

PP1 
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H p p´   

To apply a homography H 
•  Compute     p´ = Hp   (regular matrix multiply) 
•  Convert p´  from homogeneous to  image 

coordinates by dividing by 3rd coord 

Image Warping with Homographies 

image plane in front image plane below 
black area 
where no pixel 
maps to 
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Example 

Given homography 

that maps points in image 2 into points in 
image 1, 

where does the pixel at coordinates (10, 5) in 
image 2 project to in image 1? 

  

H =
1 2 3
4 1 0
1 1 3
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1.  Convert point in image 2 to homogeneous 

coordinates:      p = (10, 5, 1)T 

2.  Compute q = Hp:   

3.  Convert q to Cartesian coordinates: 
 q = (sx, sy, s)T = (23, 45, 18)T  or, in Cartesian coords, 
 (23/18, 45/18) = (1.28, 2.5) in image 1 

1*10 + 2*5 + 3*1= 23
4 *10 +1*5 + 0*1= 45
1*10 +1*5 + 3*1= 18
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Perspective Warps (Homographies) 

p1 

p2 

p1 ≈ K p p2 ≈ K R p 
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Camera Center (0,0,0) 

p 

Perspective Warps (Homographies) 

p1 

p2 

p1 ≈ K p p2 ≈ K R p 

K-1 p1 ≈  p 

p2 ≈ K R K-1 p1  

3 x 3 homography 

Combining Images into Panoramas 

•  Theorem:  Any 2 images of an arbitrary scene 
taken from 2 cameras with same camera center 
are related by  p2 ≈ K R K-1 p1   where p1 and p2 
are homogeneous coords of 2 corresponding 
points, K is 3 x 3 camera calibration matrix, and 
R is 3 x 3 rotation matrix 

•  K R K-1  is 3 x 3 matrix called the “homography 
induced by the plane at infinity” 

Panorama  Stitching  Algorithm 

1.  Capture Images:  Take a sequence of images , I1, …, In, from the 
same position by rotating the camera around its optical center 

2.  Alignment:  Compute an image-to-image transformation that will 
map pixel coordinates in one image into corresponding pixel 
coordinates in second image 

3.  Warp:  Warp each image using transform onto output compositing 
surface (e.g., plane, cylinder, sphere, cube) 

4.  Interpolate:  Resample warped image 

5.  Composite:  Blend images together so as to hide seams, exposure 
differences, lens distortion, scene motion, etc.  

Finding the Homographies 

How can we compute the homographies 
required for aligning a set of images? 
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Alignment 

•  Direct methods 
– Search over space of possible image warps and 

compare images by pixel intensity/color matching 
to find warp with minimum matching error 

•  Feature-based methods 
– Extract distinctive (point) features from each image 

and match these features to establish global 
correspondence, and then estimate geometric 
transformation 

Alignment 

•  Direct method:  Use image-based (intensity) correlation to 
determine best matching transformation 
–  No correspondences needed 

–  Statistically optimal (gives maximum likelihood estimate) 

–  Useful for local image registration 

•  Feature-based method:  Find feature point 
correspondences, and then solve for unknowns in “motion 
model” 
–  Requires reliable detection of a sufficient number of corresponding 

features, at sub-pixel location accuracy 

Direct Method for Computing 
Panoramic  Mosaics 

•  Motion model is 2D projective transformation, so 
8 parameters (DOFs) 

•  Assuming small displacement, minimize SSD 
error 

•  Use nonlinear minimization algorithm to solve  

Panorama  Stitching  Algorithm 

1.  Capture Images:  Take a sequence of images , I1, …, In, from the 
same position by rotating the camera around its optical center 

2.  Alignment:  Compute an image-to-image transformation that will 
map pixel coordinates in one image into corresponding pixel 
coordinates in second image 

3.  Warp:  Warp each image using transform onto output compositing 
surface (e.g., plane, cylinder, sphere, cube) 

4.  Interpolate:  Resample warped image 

5.  Composite:  Blend images together so as to hide seams, exposure 
differences, lens distortion, scene motion, etc.  
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Alignment:  Homography 

•  Projection of a plane  
–  called homography, colineation, or 

planar projective transformation 
PP2 

PP1 
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To apply a homography H 
•  Compute     p´ = Hp   (regular matrix multiply) 
•  Convert p´  from homogeneous  to  image 

coordinates 

Finding the Homography 

How can we find the homographies required 
for stitching ? 

•  From calibration parameters 
– Works, but these aren’t always known 

•  By matching features across images 
– What features should we match? 

– How many features? 

Finding the Homography 

What features do we match across images ? 
– Pixel values ? 

– Edges ? 

– Corners ? 

– Lines ? 

– Other features ? 

Finding the Homography 

What features do we match across images ? 
– Pixel values  

– Edges  

– Corners  

– Lines  

– Feature points  
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Homography by Feature Matching 

p2 = H p1  
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Homography by Feature Matching 

p2 = H p1  
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Two linear equations per pair of matching feature points 

Solving for Homography 

 

•  Set up a system of linear equations: 

Ah = b 
 where vector of unknowns h = [a,b,c,d,e,f,g,h,i]T 

•  Need at least 8 equations, but the more the better  

•  Solve for h. If overconstrained, solve using least-squares:  

•  Can be done in Matlab using “\” command   (see “help lmdivide”) 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

1
y
x

ihg
fed
cba

w
wy'
wx'

p´ = Hp 

2min bAh−

Solving for Homography:  
1 Pair of Corresponding Points 
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Solving for Homography:   
n Pairs of Corresponding Points 

Linear least squares 
•  Since h is only defined up to scale, solve for unit vector ĥ 
•  Minimize  

A h 0 
2n × 9 9 2n 

•  Solution: ĥ = eigenvector of ATA with smallest eigenvalue 
•  Works with 4 or more points 

Alternatively, solve Ah = b where A is a 3n x 9 
matrix, b is a 3n x 1 matrix, h is the same 9 x 1 
matrix to be solved for, and, for 1 pair of 
correspondences, p1 = (x’1, x’2) and p2 = (x1, y1):  

A =
x1 y1 1 0 0 0 0 0 0
0 0 0 x1 y1 1 0 0 0

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

b = ′x1 ′y1 1⎡
⎣

⎤
⎦
T

•  Define transformation as either 
– Forward:     x = X(u, v),   y = Y(u, v) 

– Backward:  u = U(x, y),   v = V(x, y) 

Warping 

Destination 
Image B 

x 

y 

Source 
Image A 

u 

v 

Warping  Methods 

•  Forward, point-based 
–  Apply forward mapping X, Y at point (u,v) to obtain real-valued 

point (x,y) 

–  Assign (u,v)’s  gray level to pixel closest to (x,y) 

 

–  Problem:  “measles,” i.e., “holes” (pixel in destination image that 
is not assigned a gray level) and “folds” (pixel in destination 
image is assigned multiple gray levels) 

–  Example:  Rotation, since preserving length cannot preserve 
number of pixels 

A B 
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•  Forward, square-pixel based 
–  Consider pixel at (u,v) as a unit square in source image.  Map 

square to a quadrilateral in destination image 

–  Assign (u,v)’s gray level to pixels that the quadrilateral overlaps 

 

–  Integrate source pixels’ contributions to each output pixel.  
Destination pixel’s gray level is weighted sum of intersecting 
source pixels’ gray levels, where weight proportional to coverage 
of destination pixel 

–  Avoids holes, but not folds, and requires intersection test 

Warping  Methods 

A B 

Warping  Methods 

•  Backward, point-based 
–  For each destination pixel at coordinates (x,y), apply backward 

mapping, U, V, to determine real-valued source coordinates (u,v) 

–  Interpolate gray level at (u,v) from neighboring pixels, and copy 
gray level to (x,y)  

 

–  Interpolation may cause artifacts such as aliasing, blockiness, and 
false contours 

–  Avoids holes and folds problems 

–  Method of choice 

A B 

Backward  Warping 
•  for x = xmin : xmax 
         for y = ymin : ymax 
             u = U(x, y); 
             v = V(x, y); 
             B(x, y) = A(u, v); 
          end 
      end 

•  But (u, v) may not be at a pixel in A 

•  (u, v) may be out of A’s domain 

•  If U and/or V are discontinuous, A may not be 
connected!   

Pixel  Interpolation 
•  Nearest-neighbor (0-order) interpolation 

–  A(u, v) = gray level at nearest pixel (i.e., round (u, v) to nearest integers) 

–  May introduce artifacts if image contains fine detail 

•  Bilinear (1st-order) interpolation 

–  Given the 4 nearest neighbors,  A(0, 0), A(0, 1), A(1, 0), A(1, 1), of a desired point 
A(u, v), where 0 ≤ u ≤ 1 and 0 ≤ v ≤ 1, compute gray level at A(u, v):   

•  Interpolate linearly between A(0,0) and A(1,0) to obtain A(u,0) 

•  Interpolate linearly between A(0,1) and A(1,1) to obtain A(u,1) 

•  Interpolate linearly between A(u,0) and A(u,1) to obtain A(u,v) 

–  Combining all three interpolation steps into one we get: 

•  A(u,v) = (1-u)(1-v) A(0,0) + (1-u)v A(0,1) + u(1-v) A(1,0) + uv A(1,1) 

•  Bicubic spline interpolation 
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Bilinear Interpolation 

•  A simple method for resampling images 

Example  of  Backward  Warping 

•  Goal:  Define a transformation that performs a 
scale change, which expands size of image by 
2,  i.e., U(x) = x/2 

•  A = 0 … 0 2 2 2 0 … 0 

•  0-order interpolation, i.e.,  u = ⎣x/2⎦ 
     B = 0 … 0 2 2 2 2 2 2 0 … 0 

•  Bilinear interpolation, i.e., u = x/2 and average 
2 nearest pixels if u is not at a pixel 
     B = 0 … 0 1 2 2 2 2 2 1 0 … 0 

Panoramic Stitching Algorithm 

Input: N images from camera rotating about center 
1.  Detect point features and their descriptors in all images 

2.  For adjacent images: 

1.  Match features to get pairs of corresponding points 

2.  [Optional:  Eliminate bad matches] 

3.  Solve for homography 

3.  Project images on common “image plane” 

4.  Blend overlapping images to obtain panorama 

Panorama “Shape” Depends on 
Output Image Plane 
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Do we have to Project on to a Plane ? 

Camera Center 

Panorama  Images 

•  Large field of view ⇒ should not map all images 
onto a plane 

•  Instead, map onto cylinder, sphere, or cube 

•  With a cylinder, first warp all images from 
rectilinear to cylindrical coordinates, then 
combine them 

•  “Undistort” (perspective correct) image from this 
representation prior to viewing 

Cylindrical Panoramas 

•  Steps 
– Reproject each image onto a cylinder 
– Blend  
– Output the resulting panorama 

Applet 

Cylindrical Projection 

Camera Center 

360˚ Panorama 
[Szeliski & Shum 97] 

unwrapped cylinder 

x 
y 
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Beyond Panoramas:  
General Camera Motion 

Can we still stitch using homographies ? 
•  When the scene is flat (planar) 

•  When Z >> B 

P 

B 

Z
fBdisparity =

Disparity is the 
difference in 
coordinates of P in 
the two images 

Z 
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Affine model okay in practice when scene 
objects are far away from camera viewpoints 
relative to focal length, f, and baseline, B 

Blending:  Getting Rid of Seams 

•  Differences in exposure 

•  Vignetting 

•  Small misalignments 
[Brown 2003] 

Some Causes of Seams: 

Method 1:  Averaging 

•  For each output pixel, compute average of 
overlapping warped pixels, x: 

where          are the warped images and           
is 1 at valid pixels and 0 elsewhere 

•  Weakness:  Doesn’t work well with exposure 
differences, mis-registration, etc. 

∑ ∑=
k k

kkk xwxIxwxC )(/)()()(
~

)(
~
xIk )(xwk



30 

Method 2:  Weighted Averaging 

•  Aka  Feathering or Alpha Blending 
•  Weight pixels near center of each warped image 

more heavily than pixels near image border 

•  If image has holes, also down-weight values near 
border of hole 

•  Implement by computing a distance map = 
distance to nearest border pixel 

•  Weakness:  blurs details such as edges 

Encoding blend weights:   I(x,y) = (αR, αG, αB, α)  

color at p = 

 

Implement in two steps: 

1.  Accumulate:  add up the (α premultiplied) RGBα values at each pixel 

2.  Normalize:  divide each pixel’s accumulated RGB by its total α value 

Feathering 

I2 

I1 

I3 

p 

Image Blending 

No blending 

Feathering 

0 
1 

0 
1 

+ 

= 
Encoding transparency 

I(x,y) = (αR, αG, αB, α)  

Iblend = Ileft + Iright 

 

α
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Effect of Window Size 

0 

1 left 

right 
0 

1 

Effect of Window Size 

0 

1 

0 

1 

Good Window Size 

0 

1 

“Best” Window:  smooth but not ghosted 

Method 3: Laplacian Pyramid Blending 

•  [Burt and Adelson 1983] 

•  Content-based blending using edge features 

•  Multi-resolution technique using image pyramid 

•  Hides seams but preserves sharp detail 
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1D  Edge  Detection 

•  An ideal edge is a step function:   

x 

x 

I(x) 

I´(x) First derivative The first derivative of 
I(x) has a peak (local 
max or local min) at the 
edge 

1D  Edge  Detection 

The second derivative of I(x) has a zero crossing 
at the edge 

x 

I´´(x) 
Second derivative 

Edge  Detection  in  2D 

•  Let I(x,y) be the image intensity function.  It has 
derivatives in all directions 

–  ∂I(x, y)/∂x  =  lim I(x+Δx, y) - I(x, y) / Δx  ≈  I(u+1, v) - I(u,v) 

–  Gradient of I(x, y) is a vector ∇I(x, y) = [∂I/∂x, ∂I/∂y]T  
specifying the direction of greatest rate of change in intensity 
(i.e., perpendicular to the edge’s direction) 

–  From gradient, we can determine the direction in which the 
first derivative is highest, and the magnitude of the first 
derivative in that direction 

–  Magnitude = [(∂ I/∂x)2  + (∂I/∂y)2]1/2 

–  Direction = tan-1 (∂I/∂y)/(∂I/∂x) 

Image Gradient 

Vector field of image 
gradients are shown 
in blue; the red 
vectors are 
perpendicular to the 
gradient and along 
edge direction 

Source: F. Blanco-Silva 
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Image Gradient 

Blue arrows show the direction of the gradient 

Source: Wikipedia 

Magnitude of the Gradient 

Edge  Detection  in  2D 

•  With a digital image, the partial derivatives are replaced 
by finite differences: 
–  ΔxI = I(u+1, v) - I(u, v) 

–  ΔyI = I(u, v) - I(u, v+1) 

•  Sobel operator 

– Δsobel_XI = I(u+1, v+1) + 2I(u+1, v) + I(u+1, v-1) - I(u-1, v+1) - 2I(u-1, v) - I(u-1, v-1) 

– Δsobel_YI = I(u-1, v-1) + 2I(u, v-1) + I(u+1, v-1) - I(u-1, v+1) - 2I(u, v+1) - I(u+1, v+1) 

•  Roberts “Cross” operator 
–  Δ+I = I(u, v) - I(u+1, v-1) 

–  Δ-I = I(u, v-1) - I(u+1, v) 

1   0 
0  -1 

 0 -1 
 1  0 

u

v 

Gradient Operator Example 

•  I =       0 0 0 1 2 3 4 4 4 8 8 8 3 3 3 

•  Δx =    -1 1 

•  ΔxI  =   0 0 1 1 1 1 0 0 4 0 0 -5 0 0 * 
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Finite Differences and Noise 

•  Finite difference filters respond 
strongly to noise 

–  obvious reason: image noise 
results in pixels that look very 
different from their neighbors 

•  Generally, the more noise, the 
stronger the response 

•  What can be done? 

–  intuitively, most pixels in 
images look quite a lot like their 
neighbors 

–  this is true even at an edge; 
along the edge they’re similar, 
across the edge they’re not 

–  suggests that smoothing  the 
image should help, by forcing 
pixels different from their 
neighbors (=noise pixels?) to 
look more like their neighbors 

Finite Differences Responding to 
Noise 

Increasing noise →

(this is zero mean, additive, Gaussian noise)

Summary  of  Basic  Edge  
Detection  Steps 
1.  Smooth the image to reduce the effects of local 

intensity variations (i.e., noise) 

2.  Differentiate the smoothed image using a digital 
gradient operator that assigns a magnitude and 
direction of the gradient at each pixel 
–  Mathematically, we can apply the digital gradient operator to 

the digital smoothing filter, and then just convolve the 
differentiated smoothing filter to the image 

Summary  of  Basic  Edge  
Detection  Steps 

3.  Threshold the gradient magnitude to eliminate low 
contrast edges 

4.  Apply a non-maximum suppression step to thin the 
edges to single pixel wide edges 
–  Smoothing will produce an image in which the contrast at an edge 

is spread out in the neighborhood of the edge 

–  Thresholding operation will produce thick edges 
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The  Scale  Space  Problem 

•  Usually, any single choice of smoothing operator does not 
produce a good edge map 
–  large amount of smoothing will produce edges from only the 

largest objects, and they will not accurately delineate the object 
because the smoothing reduces shape detail 

–  small amount of smoothing will produce many edges and very 
jagged boundaries of many objects 

•  Scale-space approaches 
–  detect edges at a range of scales [s1, s2] 

–  combine the resulting edge maps 

fine scale
high 
threshold

coarse 
scale,
high 
threshold
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Laplacian  Edge  Detectors 

•  Directional second derivative in direction of gradient has a zero 
crossing at gradient maximum 

•  Can approximate directional second derivative with Laplacian: 

∇2I(u,v)  =  ∂2I / ∂u2 + ∂2I / ∂v2 

•  Laplacian is lowest order linear isotropic operator 

•  Digital approximation (2nd forward difference) is 

–  ∇2I(u,v) = [I(u+1,v) + I(u-1,v) + I(u,v+1) + I(u,v-1)] - 4I(u,v) 

                  =   [I(u+1,v) - I(u,v)] - [I(u,v) - I(u-1,v)] + [I(u,v+1) - I(u,v)] - 

                          [I(u,v) - I(u,v-1)] 0   1   0 
1   -4  1 
0   1   0 

Laplacian  Examples 

•  I  =  ... 2 2 2 8 8 8 ... 

•  ∇2  =  1 -2 1 

        ⇒  ∇2 I  =  ... 0 0 0 6 -6 0 0 0 ... 

•  I  =  ... 2 2 2 5 8 8 8 ... 

       ⇒  ∇2 I  =  ... 0 0 0 3 0 -3 0 0 0 ... 

Laplacian  Edge  Detectors 

•  Laplacians are also combined with smoothing for better 
edge detection 
–  Take the Laplacian of a Gaussian-smoothed image - called the 

Laplacian-of-Gaussian (LoG), Mexican Hat operator, Difference-
of-Gaussians (DoG), Marr-Hildreth, ∇2G operator 

–  Locate the zero-crossings of the operator 

•  these are pixels whose LoG is positive and which have at least one 
neighbor whose LoG is negative or zero 

–  Often, include a final step that measures the gradient at these 
points to eliminate low contrast edges 

Laplacian of Gaussian  (LoG) 

    ∇2Gσ(x, y)  =  -[1/2πσ4] (2 - (x2 + y2)/σ2) e -(x2 + y2)/2σ2 
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LoG  Properties 

•  Linear, shift invariant  ⇒  convolution 

•  Circularly symmetric  ⇒  isotropic 

•  Size of LoG operator approximately 6σ x 6σ 

•  LoG is separable 

•  LoG  ≈  Gσ1
  −  Gσ2

 , where σ1 = 1.6σ2   

•  Analogous to spatial organization of receptive fields of 
retinal ganglion cells, with a central excitatory region and 
an inhibitory surround 

Gaussian Pyramids 

Gaussian  Pyramid 

•  Multiresolution, low-pass filter 

•  Hierarchical convolution 

–  G0 = input image 

–  G´k(u, v)  =  ∑∑ w(m, n) Gk-1(u-m, v-n)        ;  smooth 

–  Gk(u, v)  =  G´k(2u, 2v),   0 < u, v < 2N-k                ;  sub-sample 

•  w is a small (e.g., 5 x 5) separable generating kernel, e.g., 1/16 
[1  4  6  4  1] 

•   Cascading w is equivalent to applying one large kernel 

–  Effective size of kernel at level k = 2M(2k - 1) + 1, where w has 
width 2M+1 

–  Example:  Let M=1.  If k=1 then equivalent size = 5; k=2 then 
equivalent size = 13; k=3 then equivalent size = 27 

Laplacian Pyramids 

•  Similar to results of edge detection 

•  Most pixels are 0 

•  Can be used for image compression 

][ 322 gEXPANDgL −=

][ 433 gEXPANDgL −=

][ 211 gEXPANDgL −=
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Laplacian  Pyramid 

•  Computes a set of “bandpass filtered” versions of image 

•  Lk  =  Gk – (w ∗ Gk) 

          ≈  Gk − Expand(Gk+1) 

•  LN  =  GN  (apex of Laplacian pyr = apex of Gaussian pyr) 

•  Separates features by their scale (size) 

•  Enhances features 

•  Compact representation 

•  ∑ L k  =  (G0 - G1 ) + (G1 - G2 ) + ... + (GN-1 - GN ) + GN 

               =  G0 

Gaussian and Laplacian Pyramids 

Gaussian 

Laplacian 

How Much should we Blend? 
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Feathering 

0 
1 

0 
1 

+ 

= 
Blending done 
equally at all pixels 
along boundary 

Pyramid Blending 

0 

1 

0 

1 

0 

1 

Left pyramid Right pyramid blend 

Idea:  At low frequencies, blend a lot; at high frequencies, blend a little 

Image  Compositing  by  Pyramid  
Blending 
•  Given:  Two 2n x 2n images 

•  Goal:  Create an image that contains left half of 
image A and right half of image B 

•  Algorithm 
–  Compute Laplacian pyramids, LA and LB, from images A 

and B 

–  Compute Laplacian pyramid LS by copying left half of LA 
and right half of LB.  Pyramid nodes down the center line = 
average of corresponding LA and LB nodes  ⇒  blend 
along center line 

–  Expand and sum levels of LS to obtain output image S 

Example 

 Input images A and B 
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Combining Apple & Orange 

 Left half of A + right half of B 

laplacian 
level 

4 

laplacian 
level 

2 

laplacian 
level 

0 

left pyramid right pyramid blended pyramid 

Combining Apple & Orange 
using Laplacian Pyramids 

Image  Compositing  from  
Arbitrary  Regions 

•  Given:  Two 2n x 2n images and one 2n x 2n binary mask 

•  Goal:  Output image containing image A where mask=1, and 
image B where mask=0 

•  Algorithm: 
–  Construct Laplacian pyramids LA and LB from images A and B 

–  Construct Gaussian pyramid GR from mask R 

–  Construct Laplacian pyramid LS: 

  LSk(u, v)  =  GRk(u, v) LAk(u, v)  +  (1 - GRk(u, v)) LBk(u, v) 
–  Expand and sum levels of LS to obtain output image S 
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Blending Regions Horror Photo 

© prof. dmartin 

Method 4: Gradient Domain Blending 

•  Perez, Gangnet and Blake, Poisson Image Editing, Proc. 
Siggraph, 2003 

•  Aka Poisson Blending or Poisson Cloning 

•  Similar to Photoshop’s “Healing Brush” 

Example:  Input Images 

Source / foreground image Target / background image 
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Simple Cut-and-Paste Result Poisson Blending Result 

Poisson Blending 

•  Key Idea:  Allow the colors in foreground region to 
change, but preserve all the details (i.e., edges, 
corners) 

•  Blend should preserve the gradients of foreground 
region AND match background colors at seam, 
without changing the background 

•  Treat pixel colors as variables to be solved for 
– Minimize squared difference between gradients of 

foreground region and gradients of output region 

– Keep background pixels constant 

•  Rather than copying pixels, copy the 
gradients instead; then compute the pixel 
color values by solving a Poisson equation 
that matches the gradients while also 
satisfying fixed boundary conditions (i.e., 
pixel color values) at seam 
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Example 

Source: Evan Wallace 

Gradient values 

Source: Evan Wallace 

+ 
Specify object region Mask for 

destination 
image 

Background / destination / target image A that is being pasted onto 

Foreground / source 
image B being pasted 
into image A 

More Results 

source images target image 
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More Results 

source images simple cloning 

More Results 

source images Poisson blending 

Poisson Blending: 
“Guiding” the Completion 

•  Use gradients from the source image (i.e., the foreground 
region) to guide the completion 

•  Find new pixels’ values in output image’s target region, f, so 
that their gradients are close to the gradients (vector field v) 
of the foreground image, g, while holding f = f* at the 
boundary, δΩ 

Poisson Blending 

•  Treat pixels as variables to be solved (with colors) 
– Minimize squared difference between gradients of 

foreground region and gradients of output pixels 

– Match background’s boundary pixels 

Perez et al. 2003 

Ω∂Ω∂Ω
=−∇∫∫ *2 ..minarg fftsvf

f

Equivalent to solving a Poisson equation, which can be formulated as 
a discrete quadratic optimization problem and solved using Gauss-
Seidel or Jacobi methods 
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Example Result 

source images, g target image, f* 

Example Result 

source images Poisson blending result 

Example Result 

Note:  Target and source images must be (manually) aligned 

Poisson Blending:  Mixing Gradients 

–  There are situations 
where it is desirable to 
combine properties of f* 
with those of foreground 
g, for example to add 
objects with holes, or 
partially transparent 
ones, on top of a textured 
or cluttered background 

–  Use gradients of source 
and/or destination 
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Mixing Gradients 

•  At each point of  Ω,  retain the stronger of the variations in 
f* or in g, using the following “guidance field:” 

•  The discrete counterpart of this guidance field is 

⎩
⎨
⎧
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xgxfxf

 
otherwise                         
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⎨
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In other words, look at the Laplacian at a pixel in both the source 
image and the target image and take whichever one is stronger 

Mixing Gradients:  Inserting 
Transparent Objects 

Non-linear mixing of gradient fields picks out most salient 
structure at each pixel 

Mixing Gradients:  Inserting Objects 
with Holes 


