
1

Combining Images

Goal: Create new images by combining
many photographs together

Slide sources from A. Efros, S. Seitz, V. Vaish, M. Brown, D. Lowe,
S. Lazebnik, P. Perez, R. Szeliski

Photo Collages

Photomosaics

Invented in 1993 by
Joseph Francis, and
patented by Robert Silvers
in 2000

Joiners

David Hockney

“Pearblossum Highway” (1986)

2

Kelsey Bloomquist,
2010

Text-to-Picture Communication

Slide Shows
Image Super-Resolution

Low-resolution
(LR) images:

High-resolution
(HR) image:

Scene:

Goal: Use one or more low-res
(LR) images to create a higher-
res (HR) image that contains new
high-res details

3

Application: Surveillance Application: Video

Application: Panoramas

4

Reconstruction-based Super-Resolution

Reconstruct HR pixels by a linear combination of
LR pixels so that when HR image is projected to
LR, it is similar to all the LR images

HR HR HR HR HR HR HR HR HR HR HR

LR LR

LR LR

LR
LR

LR
LR

LR LR

LR LR

LR
LR

LR
LR

Unknown Relationship b/w LR images

Photos taken by
cameras with
unknown
translation,
rotation, and scale
(zoom)

Example-based
Super-Resolution From a Single
Image

Daniel Glaser, Shai Bagon and
Michal Irani

Patch Redundancy in a Single Image

Natural images contain
repetitive image content in
small patches (e.g., 5 x 5)

Small patches in I are found
“as is” in different locations
and in other image scales
of I

High-res “parent
patches” (dashed squares)
indicate what the high-res
parents of patches in I
might look like

5

Employing Patch Redundancy

Recurring patches in a single low-res image can be
regarded as if extracted from multiple low-res images of
the same high-res image

Employing Cross-Scale Patch
Redundancy

•  Build a cascade of decreasing resolution
images from the input LR image

•  For each patch in the LR image, search for its
nearest neighbor in the even lower resolution
images

•  Take the found neighbor’s parent in the original
LR image and copy it to the HR image,
providing a (linear) constraint on the output HR
image

Results

Example-based algorithm (x3)	Bicubic interpolation	

6

Input

Results	

Output

Input Output

7

Input Output

Example-based
Super Resolution

William T. Freeman, Thouis R. Jones

and Egon C. Pasztor

Algorithm Overview

•  Construct a DB of matching LR-HR patches
based on a separate set of natural images

•  Find the most similar patch assignment to
generate high-res image

8

Panoramas

Goal: Given a static scene and a set of images
(or video) of it, combine the images into a single
“panoramic image” or “panoramic mosaic”
that is optically correct

Why Panoramas ?

•  Cartography: stitching aerial images to
make maps

Manhattan, 1949

With the Cassini satellite's wide-angle camera aimed at
Saturn, Cassini was able to capture 323 images in just over
four hours in 2013. This final panorama used 141 of those
images taken using red, green and blue spectral filters.

http://www.jpl.nasa.gov/spaceimages/details.php?id=pia17172

Mont Blanc Panorama

•  365 gigapixels, created from 70,000 images

•  http://www.in2white.com/

9

Why Panoramas ?

•  Virtual reality walkthroughs

Quicktime VR [Chen & Williams 95]

Why Panoramas ?

•  Getting the whole picture
– Consumer camera: 50˚ x 35˚ [Brown 2003]

Why Panoramas ?

•  Getting the whole picture
– Consumer camera: 50˚ x 35˚

– Human Vision: 176˚ x 135˚

[Brown 2003]

Why Panoramas ?

•  Getting the whole picture
– Consumer camera: 50˚ x 35˚

– Human Vision: 176˚ x 135˚

– Panoramas: up to 360˚ x 180˚

[Brown 2003]

10

Hans Werner, 2011

Madison Panoramas Madison Panoramas

Jean Forde, 2011

Madison Panoramas

Ali Bramson, 2011

Madison
Panoramas

Rachel Wroblewski, 2010

11

Madison Panoramas

George Wanant, 2010

Wisconsin Coastal Guide Panoramas

Panoramas from Video

One frame from video Mosaic constructed

Video stabilization, compression and summarization

The First Panoramas …

Paris, c. 1845-50, photographer unknown

San Francisco from Rincon Hill, 1851, by Martin Behrmanx

12

 … and Panoramic Cameras

Chevallier, 1858

Al-Vista, 1899 ($20)

Panorama Capture Hardware

Panoscan MK-3 Point Grey Ladybug 0-360

Kogeto Dot 360 Camera for iPhone Panorama Stitching Algorithm

1.  Capture Images: Capture a set of images of a static scene

2.  Alignment: Compute an image-to-image transformation that will
map pixel coordinates in one image into corresponding pixel
coordinates in a second image

3.  Warp: Warp each image using transform onto output compositing
surface (e.g., plane, cylinder, sphere, cube)

4.  Interpolate: Resample warped image

5.  Composite: Blend images together so as to hide seams, exposure
differences, lens distortion, scene motion, etc.

13

When can Images be Aligned?

Translations are not enough to align images in general

left on top right on top

Focal Length: Pinhole Optics

pinhole

f d

p

q

q = (f/d)p

sensor

Scene point

Image point

Where does p appear in the image?

When can Two Images be Aligned?
•  Problems

–  In general, warping function depends on the depth of the
corresponding scene point since perspective projection defined by
x´ = fx/d, y´ = fy/d

–  Different views mean, in general, that parts that are visible in one
image may be occluded in the other

•  Special cases where the above problems can’t occur

1.  Panorama: Camera rotates about its optical center, arbitrary 3D
scene

•  No motion parallax as camera rotates, so depth unimportant

•  2D projective transformation relates any 2 images (⇒ 8 unknowns)

2.  Planar mosaic: Arbitrary camera views of a planar scene

•  2D projective transformation relates any 2 images

Panoramas: A pencil of rays
contains all views

real
camera

synthetic
camera

Can generate any synthetic camera view as long as it
has a single center of projection (pinhole)

14

Image Reprojection

•  The panorama has a natural interpretation in 3D
–  The images are reprojected onto a common plane

–  The panorama is formed on this plane

–  A panorama is a synthetic , wide-angle camera

panorama’s
image plane

Increasing the Field of View

Camera Center

p

q

Example

Camera Center

Projection on to Common Image Plane

Camera Center

p

q

What is required to project an image on to
the desired plane ?

•  Scaling ?

•  Translation ?

•  Rotation ?

•  Affine transform ?

•  Perspective projection ?

15

Image Reprojection

•  Rather than
thinking of this
as a 3D
reprojection,
think of it as a
2D image warp
from one image
to another

Image Warping

Translation

2 unknowns

Affine

6 unknowns

Perspective

8 unknowns

Which transform is the right one
for warping image plane 1 into
image plane 2?

Aligning Images

How can we find the homographies required
for stitching ?

•  From calibration parameters
– Works, but these aren’t always known

What’s the relationship between
corresponding points in two images?

Alignment: Homography

•  Projection of a plane
–  called homography, colineation, or

planar projective transformation
PP2

PP1

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

1
y
x

w
wy'
wx'

H p p´

To apply a homography H
•  Compute p´ = Hp (regular matrix multiply)
•  Convert p´ from homogeneous to image

coordinates

16

Camera Transformations using
Homogeneous Coordinates
•  Computer vision and computer graphics usually represent

points in Homogeneous coordinates instead of Cartesian
coordinates

•  Homogeneous coordinates are useful for representing
perspective projection, camera projection, points at infinity,
etc.

•  Cartesian coordinates (x, y) represented as Homogeneous
coordinates (wx, wy, w) for any scale factor w ≠ 0

•  Given 3D homogeneous coordinates (x, y, w), the 2D
Cartesian coordinates are (x/w, y/w)

Homogeneous Coordinates

Converting to homogeneous coordinates:

homogeneous image
coordinates

homogeneous scene
coordinates

Converting from homogeneous coordinates:

Slide by Steve Seitz

The Projective Plane

•  Each point (x, y) in the image is represented by a ray (sx, sy, s)

–  all points on the ray are equivalent: (x, y, 1) ≅ (sx, sy, s)
–  (x, y, 0) is the point “at infinity”

(0,0,0)

(sx, sy, s)

image plane

(x, y, 1)

y

x z

•  Geometric intuition
– A point in the image (a plane in Euclidean

space) is a ray in projective space from origin

2D Mappings

•  2D translation - 2 DOFs

•  2D rotation (counterclockwise about the origin) - 1 DOF

•  2D rigid (Euclidean) transformation: translation and rotation – 3 DOFs

[]
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

1100
10
01

1,, v
u

b
a

yx T

⎩
⎨
⎧

+−=
+=

θθ
θθ

cossin
sincos
vuy
vux

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−=

1100
0cossin
0sincos

]1,,[v
u

yx T θθ
θθ

⎩
⎨
⎧

+=
+=
bvy
aux

Using Cartesian coords Using Homogeneous coords

17

2D Mappings (cont.)

•  2D scale - 2 DOFs

•  Composite translation, rotation, and scale (called a

similarity transformation) - 5 DOFs

⎩
⎨
⎧

=
=
vy
ux
β
α

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

1100
00
00

]1,,[v
u

yx T β
α

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
+−
−

=
1100

)cossin(cossin
)sincos(coscos

]1,,[v
u

ba
ba

yx T θθβθβθα
θθαθβθα

2D Mappings (cont.)

•  Affine (linear) - 6 DOFs

•  Projective (allows skewing) - 8 DOFs (a33 is a scale

factor)

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

1100
]1,,[232221

131211

v
u

aaa
aaa

yx T

⎩
⎨
⎧

++=
++=

232221

131211

avauay
avauax

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

1
]1,,[

333231

232221

131211

v
u

aaa
aaa
aaa

yx T

⎪
⎪
⎩

⎪⎪
⎨

⎧

++
++=

++
++=

333231

232221

333231

131211

avaua
avauay

avaua
avauax

Examples of 2D Transformations

Original Rigid

Affine Projective

Properties of Transformations

•  Projective
•  Preserves collinearity, concurrency, order of contact

•  Affine (linear transformations)
•  Preserves above plus parallelism, ratio of areas, …

•  Similarity (rotation, translation, scale)
•  Preserves above plus ratio of lengths, angle

•  Rigid (rotation and translation)
•  Preserves above plus length, area

18

Perspective Projection: Pinhole Optics

pinhole

f z

p

-q

q = (f/z)p

sensor

Scene point

q

•  Perspective projection with a pinhole camera is a matrix
multiply using homogeneous coords!

Perspective Projection

•  This 3 x 4 matrix is called the camera perspective
projection matrix

⎟
⎠
⎞⎜

⎝
⎛⇒

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

Z
fY

Z
fX

fZ
Y
X

Z
Y
X

f
,

/
1

0/100
0010
0001

Perspective Projection

•  Or, equivalently, after multiplying the projection
matrix by f, we get the same transformation:

⎟
⎠
⎞⎜

⎝
⎛⇒

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

Z
fY

Z
fX

Z
fY
fX

Z
Y
X

f
f

,

1
0100
000
000

Projection equation

•  The projection matrix models the cumulative effect of all parameters
•  Useful to decompose into a series of operations

ΠXx =

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

1

Z
Y
X

s
sy
sx

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−

−
=

110100
0010
0001

100
'0
'0

31

1333

31

1333

x

xx

x

xx
cy

cx

yfs
xfs

00
0 TIRΠ

projection intrinsics rotation translation

identity matrix

Modeling a Real Camera
A real camera is modeled by several parameters

•  Translation T of the optical center from the origin of world coords
•  Rotation R of the image plane
•  focal length f, principle point (x’c, y’c) , pixel size (sx, sy)
•  blue parameters are called “extrinsics,” red are “intrinsics”

Note: Can also add other parameters to model lens distortion
K

19

Projective Camera

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

s
sy
sx

Z
Y
X

aaaa
aaaa
aaaa

134333231

24232221

14131211

•  More general than Perspective Camera matrix, Π
•  Transformation matrix has only 11 DOFs since only

the ratios of elements are important

Affine Camera

•  Most general linear transformation

•  8 DOFs

•  Reasonable assumption when scene objects are far away
from camera (relative to focal length)

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

s
sy
sx

Z
Y
X

aaaa
aaaa

1
1000
24232221

14131211

Homography: Viewing a Plane

•  Perspective projection of a plane
–  Called homography, colineation, or planar projective

transformation, H

–  Modeled as a 2D warp using homogeneous coords PP2

PP1

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

1
y
x

w
wy'
wx'

H p p´

To apply a homography H
•  Compute p´ = Hp (regular matrix multiply)
•  Convert p´ from homogeneous to image

coordinates by dividing by 3rd coord

Image Warping with Homographies

image plane in front image plane below
black area
where no pixel
maps to

20

Example

Given homography

that maps points in image 2 into points in
image 1,

where does the pixel at coordinates (10, 5) in
image 2 project to in image 1?

H =
1 2 3
4 1 0
1 1 3

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

Example
1.  Convert point in image 2 to homogeneous

coordinates: p = (10, 5, 1)T

2.  Compute q = Hp:

3.  Convert q to Cartesian coordinates:
 q = (sx, sy, s)T = (23, 45, 18)T or, in Cartesian coords,
 (23/18, 45/18) = (1.28, 2.5) in image 1

1*10 + 2*5 + 3*1= 23
4 *10 +1*5 + 0*1= 45
1*10 +1*5 + 3*1= 18

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
=

1 2 3
4 1 0
1 1 3

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

10
5
1

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

Camera Center (0,0,0)

Perspective Warps (Homographies)

p´

p´ ≈ K p
p (X, Y, Z)

(x, y)

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−

−
≈

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

+
−

=

+−=

Z
Y
X

ofs
ofs

y
x

o
Z
Yfs

y

o
Z
Xfsx

yy

xx

y
y

x
x

100
0

0

1
K

Camera Center (0,0,0)

p

Perspective Warps (Homographies)

p1

p2

p1 ≈ K p p2 ≈ K R p
(X, Y, Z)

(x´, y´)

21

Camera Center (0,0,0)

p

Perspective Warps (Homographies)

p1

p2

p1 ≈ K p p2 ≈ K R p

K-1 p1 ≈ p

p2 ≈ K R K-1 p1

3 x 3 homography

Combining Images into Panoramas

•  Theorem: Any 2 images of an arbitrary scene
taken from 2 cameras with same camera center
are related by p2 ≈ K R K-1 p1 where p1 and p2
are homogeneous coords of 2 corresponding
points, K is 3 x 3 camera calibration matrix, and
R is 3 x 3 rotation matrix

•  K R K-1 is 3 x 3 matrix called the “homography
induced by the plane at infinity”

Panorama Stitching Algorithm

1.  Capture Images: Take a sequence of images , I1, …, In, from the
same position by rotating the camera around its optical center

2.  Alignment: Compute an image-to-image transformation that will
map pixel coordinates in one image into corresponding pixel
coordinates in second image

3.  Warp: Warp each image using transform onto output compositing
surface (e.g., plane, cylinder, sphere, cube)

4.  Interpolate: Resample warped image

5.  Composite: Blend images together so as to hide seams, exposure
differences, lens distortion, scene motion, etc.

Finding the Homographies

How can we compute the homographies
required for aligning a set of images?

22

Alignment

•  Direct methods
– Search over space of possible image warps and

compare images by pixel intensity/color matching
to find warp with minimum matching error

•  Feature-based methods
– Extract distinctive (point) features from each image

and match these features to establish global
correspondence, and then estimate geometric
transformation

Alignment

•  Direct method: Use image-based (intensity) correlation to
determine best matching transformation
–  No correspondences needed

–  Statistically optimal (gives maximum likelihood estimate)

–  Useful for local image registration

•  Feature-based method: Find feature point
correspondences, and then solve for unknowns in “motion
model”
–  Requires reliable detection of a sufficient number of corresponding

features, at sub-pixel location accuracy

Direct Method for Computing
Panoramic Mosaics

•  Motion model is 2D projective transformation, so
8 parameters (DOFs)

•  Assuming small displacement, minimize SSD
error

•  Use nonlinear minimization algorithm to solve

Panorama Stitching Algorithm

1.  Capture Images: Take a sequence of images , I1, …, In, from the
same position by rotating the camera around its optical center

2.  Alignment: Compute an image-to-image transformation that will
map pixel coordinates in one image into corresponding pixel
coordinates in second image

3.  Warp: Warp each image using transform onto output compositing
surface (e.g., plane, cylinder, sphere, cube)

4.  Interpolate: Resample warped image

5.  Composite: Blend images together so as to hide seams, exposure
differences, lens distortion, scene motion, etc.

23

Alignment: Homography

•  Projection of a plane
–  called homography, colineation, or

planar projective transformation
PP2

PP1

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

1
y
x

w
wy'
wx'

H p p´

To apply a homography H
•  Compute p´ = Hp (regular matrix multiply)
•  Convert p´ from homogeneous to image

coordinates

Finding the Homography

How can we find the homographies required
for stitching ?

•  From calibration parameters
– Works, but these aren’t always known

•  By matching features across images
– What features should we match?

– How many features?

Finding the Homography

What features do we match across images ?
– Pixel values ?

– Edges ?

– Corners ?

– Lines ?

– Other features ?

Finding the Homography

What features do we match across images ?
– Pixel values

– Edges

– Corners

– Lines

– Feature points

24

Homography by Feature Matching

p2 = H p1

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
≈

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

11
'
'

321

321

321

y
x

ccc
bbb
aaa

y
x

z′

Homography by Feature Matching

p2 = H p1

321

321

321

321

'

'

cycxc
bybxby

cycxc
ayaxax

++
++=

++
++=

Two linear equations per pair of matching feature points

Solving for Homography

•  Set up a system of linear equations:

Ah = b
 where vector of unknowns h = [a,b,c,d,e,f,g,h,i]T

•  Need at least 8 equations, but the more the better

•  Solve for h. If overconstrained, solve using least-squares:

•  Can be done in Matlab using “\” command (see “help lmdivide”)

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

1
y
x

ihg
fed
cba

w
wy'
wx'

p´ = Hp

2min bAh−

Solving for Homography:
1 Pair of Corresponding Points

25

Solving for Homography:
n Pairs of Corresponding Points

Linear least squares
•  Since h is only defined up to scale, solve for unit vector ĥ
•  Minimize

A h 0
2n × 9 9 2n

•  Solution: ĥ = eigenvector of ATA with smallest eigenvalue
•  Works with 4 or more points

Alternatively, solve Ah = b where A is a 3n x 9
matrix, b is a 3n x 1 matrix, h is the same 9 x 1
matrix to be solved for, and, for 1 pair of
correspondences, p1 = (x’1, x’2) and p2 = (x1, y1):

A =
x1 y1 1 0 0 0 0 0 0
0 0 0 x1 y1 1 0 0 0

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

b = ′x1 ′y1 1⎡
⎣

⎤
⎦
T

•  Define transformation as either
– Forward: x = X(u, v), y = Y(u, v)

– Backward: u = U(x, y), v = V(x, y)

Warping

Destination
Image B

x

y

Source
Image A

u

v

Warping Methods

•  Forward, point-based
–  Apply forward mapping X, Y at point (u,v) to obtain real-valued

point (x,y)

–  Assign (u,v)’s gray level to pixel closest to (x,y)

–  Problem: “measles,” i.e., “holes” (pixel in destination image that
is not assigned a gray level) and “folds” (pixel in destination
image is assigned multiple gray levels)

–  Example: Rotation, since preserving length cannot preserve
number of pixels

A B

26

•  Forward, square-pixel based
–  Consider pixel at (u,v) as a unit square in source image. Map

square to a quadrilateral in destination image

–  Assign (u,v)’s gray level to pixels that the quadrilateral overlaps

–  Integrate source pixels’ contributions to each output pixel.
Destination pixel’s gray level is weighted sum of intersecting
source pixels’ gray levels, where weight proportional to coverage
of destination pixel

–  Avoids holes, but not folds, and requires intersection test

Warping Methods

A B

Warping Methods

•  Backward, point-based
–  For each destination pixel at coordinates (x,y), apply backward

mapping, U, V, to determine real-valued source coordinates (u,v)

–  Interpolate gray level at (u,v) from neighboring pixels, and copy
gray level to (x,y)

–  Interpolation may cause artifacts such as aliasing, blockiness, and
false contours

–  Avoids holes and folds problems

–  Method of choice

A B

Backward Warping
•  for x = xmin : xmax
 for y = ymin : ymax
 u = U(x, y);
 v = V(x, y);
 B(x, y) = A(u, v);
 end
 end

•  But (u, v) may not be at a pixel in A

•  (u, v) may be out of A’s domain

•  If U and/or V are discontinuous, A may not be
connected!

Pixel Interpolation
•  Nearest-neighbor (0-order) interpolation

–  A(u, v) = gray level at nearest pixel (i.e., round (u, v) to nearest integers)

–  May introduce artifacts if image contains fine detail

•  Bilinear (1st-order) interpolation

–  Given the 4 nearest neighbors, A(0, 0), A(0, 1), A(1, 0), A(1, 1), of a desired point
A(u, v), where 0 ≤ u ≤ 1 and 0 ≤ v ≤ 1, compute gray level at A(u, v):

•  Interpolate linearly between A(0,0) and A(1,0) to obtain A(u,0)

•  Interpolate linearly between A(0,1) and A(1,1) to obtain A(u,1)

•  Interpolate linearly between A(u,0) and A(u,1) to obtain A(u,v)

–  Combining all three interpolation steps into one we get:

•  A(u,v) = (1-u)(1-v) A(0,0) + (1-u)v A(0,1) + u(1-v) A(1,0) + uv A(1,1)

•  Bicubic spline interpolation

27

Bilinear Interpolation

•  A simple method for resampling images

Example of Backward Warping

•  Goal: Define a transformation that performs a
scale change, which expands size of image by
2, i.e., U(x) = x/2

•  A = 0 … 0 2 2 2 0 … 0

•  0-order interpolation, i.e., u = ⎣x/2⎦
 B = 0 … 0 2 2 2 2 2 2 0 … 0

•  Bilinear interpolation, i.e., u = x/2 and average
2 nearest pixels if u is not at a pixel
 B = 0 … 0 1 2 2 2 2 2 1 0 … 0

Panoramic Stitching Algorithm

Input: N images from camera rotating about center
1.  Detect point features and their descriptors in all images

2.  For adjacent images:

1.  Match features to get pairs of corresponding points

2.  [Optional: Eliminate bad matches]

3.  Solve for homography

3.  Project images on common “image plane”

4.  Blend overlapping images to obtain panorama

Panorama “Shape” Depends on
Output Image Plane

28

Do we have to Project on to a Plane ?

Camera Center

Panorama Images

•  Large field of view ⇒ should not map all images
onto a plane

•  Instead, map onto cylinder, sphere, or cube

•  With a cylinder, first warp all images from
rectilinear to cylindrical coordinates, then
combine them

•  “Undistort” (perspective correct) image from this
representation prior to viewing

Cylindrical Panoramas

•  Steps
– Reproject each image onto a cylinder
– Blend
– Output the resulting panorama

Applet

Cylindrical Projection

Camera Center

360˚ Panorama
[Szeliski & Shum 97]

unwrapped cylinder

x
y

29

Beyond Panoramas:
General Camera Motion

Can we still stitch using homographies ?
•  When the scene is flat (planar)

•  When Z >> B

P

B

Z
fBdisparity =

Disparity is the
difference in
coordinates of P in
the two images

Z

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

1100
]1,,[232221

131211

v
u

aaa
aaa

yx T

⎩
⎨
⎧

++=
++=

232221

131211

avauay
avauax

Affine model okay in practice when scene
objects are far away from camera viewpoints
relative to focal length, f, and baseline, B

Blending: Getting Rid of Seams

•  Differences in exposure

•  Vignetting

•  Small misalignments
[Brown 2003]

Some Causes of Seams:

Method 1: Averaging

•  For each output pixel, compute average of
overlapping warped pixels, x:

where are the warped images and
is 1 at valid pixels and 0 elsewhere

•  Weakness: Doesn’t work well with exposure
differences, mis-registration, etc.

∑ ∑=
k k

kkk xwxIxwxC)(/)()()(
~

)(
~
xIk)(xwk

30

Method 2: Weighted Averaging

•  Aka Feathering or Alpha Blending
•  Weight pixels near center of each warped image

more heavily than pixels near image border

•  If image has holes, also down-weight values near
border of hole

•  Implement by computing a distance map =
distance to nearest border pixel

•  Weakness: blurs details such as edges

Encoding blend weights: I(x,y) = (αR, αG, αB, α)

color at p =

Implement in two steps:

1. Accumulate: add up the (α premultiplied) RGBα values at each pixel

2. Normalize: divide each pixel’s accumulated RGB by its total α value

Feathering

I2

I1

I3

p

Image Blending

No blending

Feathering

0
1

0
1

+

=
Encoding transparency

I(x,y) = (αR, αG, αB, α)

Iblend = Ileft + Iright

α

31

Effect of Window Size

0

1 left

right
0

1

Effect of Window Size

0

1

0

1

Good Window Size

0

1

“Best” Window: smooth but not ghosted

Method 3: Laplacian Pyramid Blending

•  [Burt and Adelson 1983]

•  Content-based blending using edge features

•  Multi-resolution technique using image pyramid

•  Hides seams but preserves sharp detail

32

1D Edge Detection

•  An ideal edge is a step function:

x

x

I(x)

I´(x) First derivative The first derivative of
I(x) has a peak (local
max or local min) at the
edge

1D Edge Detection

The second derivative of I(x) has a zero crossing
at the edge

x

I´´(x)
Second derivative

Edge Detection in 2D

•  Let I(x,y) be the image intensity function. It has
derivatives in all directions

–  ∂I(x, y)/∂x = lim I(x+Δx, y) - I(x, y) / Δx ≈ I(u+1, v) - I(u,v)

–  Gradient of I(x, y) is a vector ∇I(x, y) = [∂I/∂x, ∂I/∂y]T
specifying the direction of greatest rate of change in intensity
(i.e., perpendicular to the edge’s direction)

–  From gradient, we can determine the direction in which the
first derivative is highest, and the magnitude of the first
derivative in that direction

–  Magnitude = [(∂ I/∂x)2 + (∂I/∂y)2]1/2

–  Direction = tan-1 (∂I/∂y)/(∂I/∂x)

Image Gradient

Vector field of image
gradients are shown
in blue; the red
vectors are
perpendicular to the
gradient and along
edge direction

Source: F. Blanco-Silva

33

Image Gradient

Blue arrows show the direction of the gradient

Source: Wikipedia

Magnitude of the Gradient

Edge Detection in 2D

•  With a digital image, the partial derivatives are replaced
by finite differences:
–  ΔxI = I(u+1, v) - I(u, v)

–  ΔyI = I(u, v) - I(u, v+1)

•  Sobel operator

– Δsobel_XI = I(u+1, v+1) + 2I(u+1, v) + I(u+1, v-1) - I(u-1, v+1) - 2I(u-1, v) - I(u-1, v-1)

– Δsobel_YI = I(u-1, v-1) + 2I(u, v-1) + I(u+1, v-1) - I(u-1, v+1) - 2I(u, v+1) - I(u+1, v+1)

•  Roberts “Cross” operator
–  Δ+I = I(u, v) - I(u+1, v-1)

–  Δ-I = I(u, v-1) - I(u+1, v)

1 0
0 -1

 0 -1
 1 0

u

v

Gradient Operator Example

•  I = 0 0 0 1 2 3 4 4 4 8 8 8 3 3 3

•  Δx = -1 1

•  ΔxI = 0 0 1 1 1 1 0 0 4 0 0 -5 0 0 *

34

Finite Differences and Noise

•  Finite difference filters respond
strongly to noise

–  obvious reason: image noise
results in pixels that look very
different from their neighbors

•  Generally, the more noise, the
stronger the response

•  What can be done?

–  intuitively, most pixels in
images look quite a lot like their
neighbors

–  this is true even at an edge;
along the edge they’re similar,
across the edge they’re not

–  suggests that smoothing the
image should help, by forcing
pixels different from their
neighbors (=noise pixels?) to
look more like their neighbors

Finite Differences Responding to
Noise

Increasing noise →

(this is zero mean, additive, Gaussian noise)

Summary of Basic Edge
Detection Steps
1.  Smooth the image to reduce the effects of local

intensity variations (i.e., noise)

2.  Differentiate the smoothed image using a digital
gradient operator that assigns a magnitude and
direction of the gradient at each pixel
–  Mathematically, we can apply the digital gradient operator to

the digital smoothing filter, and then just convolve the
differentiated smoothing filter to the image

Summary of Basic Edge
Detection Steps

3.  Threshold the gradient magnitude to eliminate low
contrast edges

4.  Apply a non-maximum suppression step to thin the
edges to single pixel wide edges
–  Smoothing will produce an image in which the contrast at an edge

is spread out in the neighborhood of the edge

–  Thresholding operation will produce thick edges

35

The Scale Space Problem

•  Usually, any single choice of smoothing operator does not
produce a good edge map
–  large amount of smoothing will produce edges from only the

largest objects, and they will not accurately delineate the object
because the smoothing reduces shape detail

–  small amount of smoothing will produce many edges and very
jagged boundaries of many objects

•  Scale-space approaches
–  detect edges at a range of scales [s1, s2]

–  combine the resulting edge maps

fine scale
high
threshold

coarse
scale,
high
threshold

36

Laplacian Edge Detectors

•  Directional second derivative in direction of gradient has a zero
crossing at gradient maximum

•  Can approximate directional second derivative with Laplacian:

∇2I(u,v) = ∂2I / ∂u2 + ∂2I / ∂v2

•  Laplacian is lowest order linear isotropic operator

•  Digital approximation (2nd forward difference) is

–  ∇2I(u,v) = [I(u+1,v) + I(u-1,v) + I(u,v+1) + I(u,v-1)] - 4I(u,v)

 = [I(u+1,v) - I(u,v)] - [I(u,v) - I(u-1,v)] + [I(u,v+1) - I(u,v)] -

 [I(u,v) - I(u,v-1)] 0 1 0
1 -4 1
0 1 0

Laplacian Examples

•  I = ... 2 2 2 8 8 8 ...

•  ∇2 = 1 -2 1

 ⇒ ∇2 I = ... 0 0 0 6 -6 0 0 0 ...

•  I = ... 2 2 2 5 8 8 8 ...

 ⇒ ∇2 I = ... 0 0 0 3 0 -3 0 0 0 ...

Laplacian Edge Detectors

•  Laplacians are also combined with smoothing for better
edge detection
–  Take the Laplacian of a Gaussian-smoothed image - called the

Laplacian-of-Gaussian (LoG), Mexican Hat operator, Difference-
of-Gaussians (DoG), Marr-Hildreth, ∇2G operator

–  Locate the zero-crossings of the operator

•  these are pixels whose LoG is positive and which have at least one
neighbor whose LoG is negative or zero

–  Often, include a final step that measures the gradient at these
points to eliminate low contrast edges

Laplacian of Gaussian (LoG)

 ∇2Gσ(x, y) = -[1/2πσ4] (2 - (x2 + y2)/σ2) e -(x2 + y2)/2σ2

37

LoG Properties

•  Linear, shift invariant ⇒ convolution

•  Circularly symmetric ⇒ isotropic

•  Size of LoG operator approximately 6σ x 6σ

•  LoG is separable

•  LoG ≈ Gσ1
 − Gσ2

 , where σ1 = 1.6σ2

•  Analogous to spatial organization of receptive fields of
retinal ganglion cells, with a central excitatory region and
an inhibitory surround

Gaussian Pyramids

Gaussian Pyramid

•  Multiresolution, low-pass filter

•  Hierarchical convolution

–  G0 = input image

–  G´k(u, v) = ∑∑ w(m, n) Gk-1(u-m, v-n) ; smooth

–  Gk(u, v) = G´k(2u, 2v), 0 < u, v < 2N-k ; sub-sample

•  w is a small (e.g., 5 x 5) separable generating kernel, e.g., 1/16
[1 4 6 4 1]

•  Cascading w is equivalent to applying one large kernel

–  Effective size of kernel at level k = 2M(2k - 1) + 1, where w has
width 2M+1

–  Example: Let M=1. If k=1 then equivalent size = 5; k=2 then
equivalent size = 13; k=3 then equivalent size = 27

Laplacian Pyramids

•  Similar to results of edge detection

•  Most pixels are 0

•  Can be used for image compression

][322 gEXPANDgL −=

][433 gEXPANDgL −=

][211 gEXPANDgL −=

38

Laplacian Pyramid

•  Computes a set of “bandpass filtered” versions of image

•  Lk = Gk – (w ∗ Gk)

 ≈ Gk − Expand(Gk+1)

•  LN = GN (apex of Laplacian pyr = apex of Gaussian pyr)

•  Separates features by their scale (size)

•  Enhances features

•  Compact representation

•  ∑ L k = (G0 - G1) + (G1 - G2) + ... + (GN-1 - GN) + GN

 = G0

Gaussian and Laplacian Pyramids

Gaussian

Laplacian

How Much should we Blend?

39

Feathering

0
1

0
1

+

=
Blending done
equally at all pixels
along boundary

Pyramid Blending

0

1

0

1

0

1

Left pyramid Right pyramid blend

Idea: At low frequencies, blend a lot; at high frequencies, blend a little

Image Compositing by Pyramid
Blending
•  Given: Two 2n x 2n images

•  Goal: Create an image that contains left half of
image A and right half of image B

•  Algorithm
–  Compute Laplacian pyramids, LA and LB, from images A

and B

–  Compute Laplacian pyramid LS by copying left half of LA
and right half of LB. Pyramid nodes down the center line =
average of corresponding LA and LB nodes ⇒ blend
along center line

–  Expand and sum levels of LS to obtain output image S

Example

 Input images A and B

40

Combining Apple & Orange

 Left half of A + right half of B

laplacian
level

4

laplacian
level

2

laplacian
level

0

left pyramid right pyramid blended pyramid

Combining Apple & Orange
using Laplacian Pyramids

Image Compositing from
Arbitrary Regions

•  Given: Two 2n x 2n images and one 2n x 2n binary mask

•  Goal: Output image containing image A where mask=1, and
image B where mask=0

•  Algorithm:
–  Construct Laplacian pyramids LA and LB from images A and B

–  Construct Gaussian pyramid GR from mask R

–  Construct Laplacian pyramid LS:

 LSk(u, v) = GRk(u, v) LAk(u, v) + (1 - GRk(u, v)) LBk(u, v)
–  Expand and sum levels of LS to obtain output image S

41

Blending Regions Horror Photo

© prof. dmartin

Method 4: Gradient Domain Blending

•  Perez, Gangnet and Blake, Poisson Image Editing, Proc.
Siggraph, 2003

•  Aka Poisson Blending or Poisson Cloning

•  Similar to Photoshop’s “Healing Brush”

Example: Input Images

Source / foreground image Target / background image

42

Simple Cut-and-Paste Result Poisson Blending Result

Poisson Blending

•  Key Idea: Allow the colors in foreground region to
change, but preserve all the details (i.e., edges,
corners)

•  Blend should preserve the gradients of foreground
region AND match background colors at seam,
without changing the background

•  Treat pixel colors as variables to be solved for
– Minimize squared difference between gradients of

foreground region and gradients of output region

– Keep background pixels constant

•  Rather than copying pixels, copy the
gradients instead; then compute the pixel
color values by solving a Poisson equation
that matches the gradients while also
satisfying fixed boundary conditions (i.e.,
pixel color values) at seam

43

Example

Source: Evan Wallace

Gradient values

Source: Evan Wallace

+
Specify object region Mask for

destination
image

Background / destination / target image A that is being pasted onto

Foreground / source
image B being pasted
into image A

More Results

source images target image

44

More Results

source images simple cloning

More Results

source images Poisson blending

Poisson Blending:
“Guiding” the Completion

•  Use gradients from the source image (i.e., the foreground
region) to guide the completion

•  Find new pixels’ values in output image’s target region, f, so
that their gradients are close to the gradients (vector field v)
of the foreground image, g, while holding f = f* at the
boundary, δΩ

Poisson Blending

•  Treat pixels as variables to be solved (with colors)
– Minimize squared difference between gradients of

foreground region and gradients of output pixels

– Match background’s boundary pixels

Perez et al. 2003

Ω∂Ω∂Ω
=−∇∫∫ *2 ..minarg fftsvf

f

Equivalent to solving a Poisson equation, which can be formulated as
a discrete quadratic optimization problem and solved using Gauss-
Seidel or Jacobi methods

45

Example Result

source images, g target image, f*

Example Result

source images Poisson blending result

Example Result

Note: Target and source images must be (manually) aligned

Poisson Blending: Mixing Gradients

–  There are situations
where it is desirable to
combine properties of f*
with those of foreground
g, for example to add
objects with holes, or
partially transparent
ones, on top of a textured
or cluttered background

–  Use gradients of source
and/or destination

46

Mixing Gradients

•  At each point of Ω, retain the stronger of the variations in
f* or in g, using the following “guidance field:”

•  The discrete counterpart of this guidance field is

⎩
⎨
⎧

∇
∇>∇∇=Ω∈

otherwise)(
)()(if)(v(x), xallfor

**

xg
xgxfxf

otherwise

if ****

⎪⎩

⎪
⎨
⎧

−
−>−−

=
qp

qpqpqp
pq gg

ggffffv

In other words, look at the Laplacian at a pixel in both the source
image and the target image and take whichever one is stronger

Mixing Gradients: Inserting
Transparent Objects

Non-linear mixing of gradient fields picks out most salient
structure at each pixel

Mixing Gradients: Inserting Objects
with Holes

