Course Project (aka HW #5)

Requirements

- Thursday, November 17: Team members (3), tentative title, and abstract
- Thursday, **December 1**: Progress report
- December 13 and 15: Class presentations (5% of course grade)
- Tuesday, **December 20**: Final project report and web page (20% of course grade)

Project Ideas and Grading

- "Straightforward" approach: Pick a paper, implement it, extend it, and modify it in some ways, and perform experimental evaluation
- Pick a paper that's easy to understand and on a topic you' re interested in
- Grading based on effort, initiative, *creativity*, coolness, difficulty, focus, depth, implementation, quality of experimental results, originality, project report write-up

Project Ideas

 Best to pick a narrower topic and go deeply into it rather than pick a broad topic that is not very in-depth on any part

Sources for Finding Ideas

- Recent projects by researchers doing computational photography – see "Links" page on course web site
- Recent papers in computational photography, computer vision, or computer graphics conferences – see "HW" and "Links" pages
- Previous student projects in CS 534
- Other computational photography course projects and assignments
 - CMU, Illinois, Brown, Columbia, etc.
- Papers listed on "computational photography" page on Wikipedia
- ImageNet Challenges

 http://image-net.org/challenges/LSVRC/2016/

Class Presentation

- December 13 and 15
- 5 minutes
- Conference-style "powerpoint" talk
- State problem, give motivation and example, background, description of method and main ideas of the approach, initial results, discussion of strengths and weaknesses of the method, possible future extensions

Project Report

- Due Tuesday, December 20 at 5 p.m.
- ~15 pages (pdf)
- · Submit report, code and example results
 - Include how much code written; what work each person contributed
- Grade will be based on report and submitted materials
- Create web page with report and sample output
- Fill out Evaluation Report for each of your teammates

Project Policies

- 3-person project groups very strongly preferred
- Feel free to use code or data you find on the web, provided it does not make your project trivial
- Implementation does *not* need to be in Matlab
 OpenCV is an alternative open source library with C++ interface
- All outside sources should be fully cited in the project report
- Feel free to talk to other people about the project, but do your own implementation
- Each person should have a clearly identifiable part that they are responsible for; describe in the project report

Sources of Image Data

- · Lots of image datasets on the web!
- <u>CV datasets on the web</u>
- ImageNet
- Computer vision test images
- Images from Flickr, Twitter, Google, etc.

Some Topic Areas

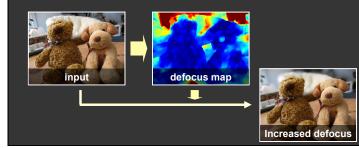
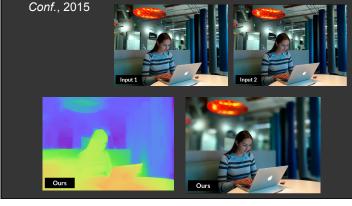

- Image quality improvement
- · Photo composition
 - Panoramas, collages, matting, segmentation, cut-andpaste
- Internet vision
 - Using collections of images from web
 - Social photography
 - Image retrieval see Google Image Swirl, for example
- Places
- People
- Beyond conventional cameras

Image Quality Improvement

- Defocusing
 - S. Bae and F. Durand, Defocus magnification, *Proc. Eurographics*, 2007
 - M. Levoy, SynthCam
 - Shallow depth of field is often desired
- Denoising
 - A. Buades et al., A non-local algorithm for image denoising, *Proc.* CVPR, 2005
 - One of the most effective denoising methods
 - C. Tomasi and R. Manduchi, Bilateral filtering for gray and color images, *Proc. ICCV*, 1998
- Dehazing
 - K. He et al., Single image haze removal using dark channel prior, Proc. CVPR, 2009
 - Uses matting

Defocus (Bae and Durand, 2007)

- 1. User provides a single input photograph
- 2. System automatically produces the defocus map
- 3. Uses Photoshop's lens blur to generate the defocus magnified result


Google Camera's Lens Blur App

http://googleresearch.blogspot.com/2014/04/lens-blur-in-new-google-camera-app.html

Defocus

J. Barron et al., Fast Bilateral-Space *Stereo* for Synthetic Defocus, *Computer Vision and Pattern Recognition*

Changing the Depth of Field: Synthetic Aperture Photographs

- Phone cameras have small apertures (big fnumber), giving a large depth of field, which may *not* be desirable
- Task: Synthesize a new image corresponding to a large aperture from a *video* taken by a cell phone
- Levoy's SynthCam app for iPhone – http://sites.google.com/site/marclevoy/

Tilt-Shift Photography

- **Miniature faking** is a process in which a photograph of a life-size location or object is made to look like a photograph of a miniature scale model
- Blurring parts of the photo to simulate a shallow depth of field normally encountered in close-up photography
- https://en.wikipedia.org/wiki/Miniature_faking

Image Quality Improvement

Tone Adjustment and Relighting

- D. Lischinski, et al., Interactive local adjustment of tonal values, Proc. SIGGRAPH, 2006
 - Easy to read and implement
- S. Bae et al., Two-scale tone management for photographic look, Proc. SIGGRAPH, 2006
 - Easy to read; uses bilateral filtering

Shadow Editing

- T-P. Wu et al., Natural shadow matting, ACM Trans. Graphics, 2007
 - · Uses matting; many useful application scenarios
- Possible Application: Sky Editing and Enhancement

Interactive Tone Adjustment

SIGGRAPH 2006

Interactive Local Adjustment of Tonal Values

Dani Lischinski Zeev Farbman Matt Uyttendaele Richard Szeliski

Artifact Removal: Image De-Fencing

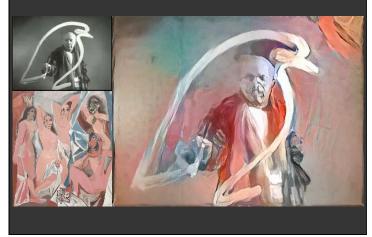
Y. Liu, T. Belkina, J. Hays, and R. Lublinerman, Image De-Fencing, *Proc. CVPR*, 2008

Super-Resolution

- From a single **photo** or a **video**
- D. Glasner et al., Super-resolution from a single image, Proc. Int. Conf. on Computer Vision, 2009

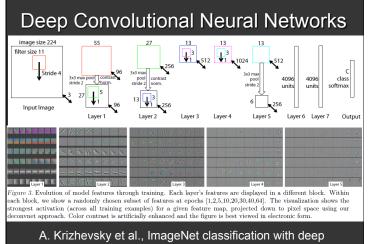
(b) Magnified Bottom row shows the subject's pulse signal amplified

Image Colorization



- R. Zhang et al., Colorful image colorization, *ECCV*, 2016
- <u>http://richzhang.github.io/colorization/</u>
- <u>http://demos.algorithmia.com/colorize-photos/</u>
- Uses deep learning

Image Style Transfer


- L. Gatys et al., Image style transfer using convolutional neural networks, *CVPR*, 2016
- G. Kogan
 <u>http://www.genekogan.com/works/style-</u>
 <u>transfer.html</u>
- C. Ham, Sketch-based image synthesis

Gene Kogan's Style Transfer

Deep Learning

- Unsupervised learning of a feature hierarchy
- Multiple layers work to build an improved feature space
 - 1st layer learns 1st-order features (e.g., edges)
 - 2nd layer learns higher-order features (combinations of first layer features)
 - Etc. for subsequent layers of features
- Each layer combines patches from previous layer using a set of convolution filters, followed by "pooling," which compresses and smooths the data

convolutional neural networks, NIPS, 2012

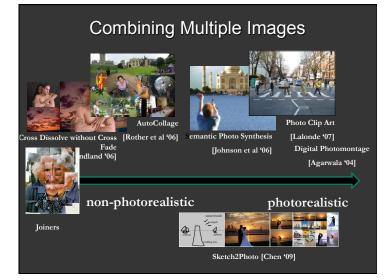
Feature Extraction

- Deep convolutional neural network – 7 feature layers, 650K neurons, 60M parameters, 630M connections
- Supervised learning used to train model on ImageNet (1.2 million images with 1,000 classes)
- Use the output of the 6th layer in the deep network as a feature vector (4,096-dimensional feature vector)

CNN Image Features

- <u>https://github.com/rbgirshick/rcnn</u>
- Downloadable, pre-computed R-CNN detectors ("regions with CNN features")
- Detectors trained on PASCAL VOC 2007 train+val, 2012 train, and ILSVRC13 train+val

Image/Video Retargeting

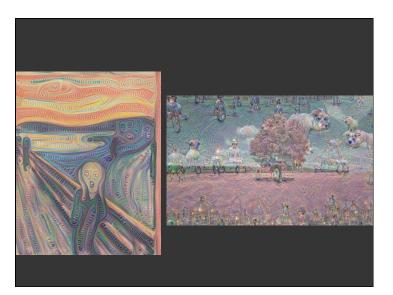

- F. Liu and M. Gleicher. Automatic Image Retargeting with Fisheye-View Warping, *Proc. ACM UIST, 2005*
- F. Liu and M. Gleicher. Video Retargeting: Automating Pan-and-Scan, *ACM Multimedia*, 2006
- L. Wolf, M. Guttmann, D. Cohen-Or, Non-Homogeneous, Content-driven Video Retargeting, *ICCV*, 2007

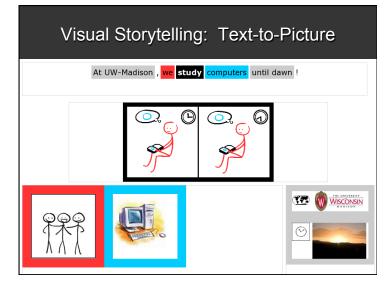
Content-based Image Synthesis

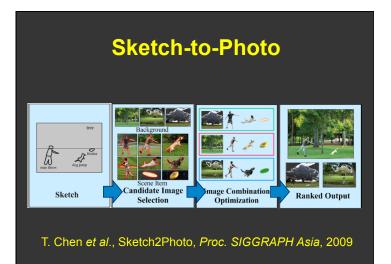
N. Diakopoulos *et al.*, *Conference on Image and Video Retrieval*, 2004

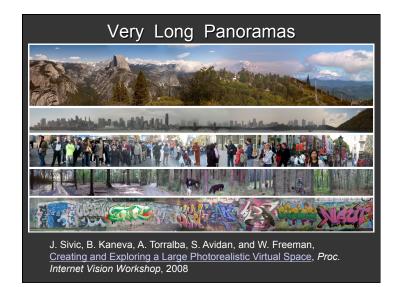
L. Zelnik-Manor and P. Perona, <u>Automating Joiners</u>, *Proc. 5th Int. Symp. Non-Photorealistic Animation and Rendering*, 2007

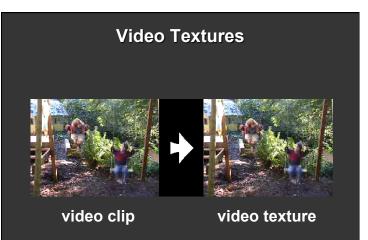
Deep Dreams / Inceptionism


Google project by A. Mordvintsev, C. Olah, and M. Tyka




Produce results like these but without using a neural network approach


Thanks Aaron Wurtinger-Knaack



Video Textures

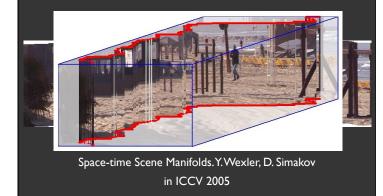
- A. Schodl, R. Szeliski, D. Salesin and I. Essa, Video textures, SIGGRAPH 2000
- A. Agarwala et al., Panoramic video textures, SIGGRAPH 2005
- Z. Liao, N. Joshi, N. Joshi, and H. Hoppe, Automated video looping with progressive dynamism, SIGGRAPH 2013

Multi-Perspective Images

M. C. Escher, 1956

Rademacher and Bishop, 1998

Images that depict *more* than can be seen from any *single* viewpoint, yet remain interpretable


Multi-Perspective Panoramas

Input Video

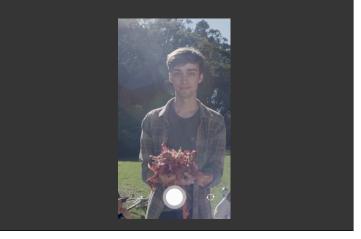
Space-time scene manifolds, Y. Wexler and D. Simakov, Proc. ICCV, 2005

Multi-Perspective Panoramas

The Moment Camera

M. Cohen and R. Szeliski, The Moment Camera, *IEEE Computer Society magazine*, August 2006

"Future cameras will let us "capture the moment," not just the instant when the shutter opens. The moment camera will gather significantly more data than is needed for a single image. This data, coupled with automated and user-assisted algorithms, will provide powerful new paradigms for image making."



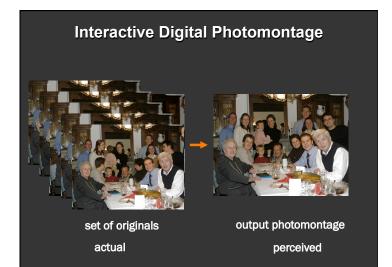
"Moment Camera" Video Clips

- Camera is *always* recording images using a finite round-robin buffer of 10s or 100s of frames, providing a short space-time video clip
- Instagram's Boomerang
 - 1 sec burst of 5 photos, played in a loop
- Apple's Live Photos
 - 1.5 sec buffer of frames before and after shutter pressed
- Google's Photos Assistant
 - Finds repeated photos and creates collages, animations, or panoramas
- Better animated GIFs

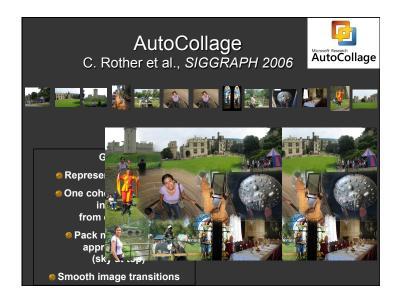
Instagram Boomerang

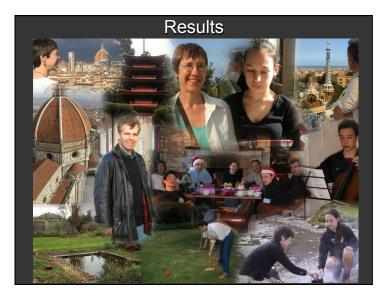
Better Selfies

- Applied to still or video clips
- Snapchat's animated Lenses



- FaceTune
- Perfect365




"Moment Camera" is *almays* recording images using a finite round-robin buffer of perhaps 500 frames, or 5 seconds, resulting in a "space-time volume"

- Generalize to video
 - Combine short video clips of separate moving objects into a single composite video containing all moving objects in a single scene

<section-header>

Video Summarization

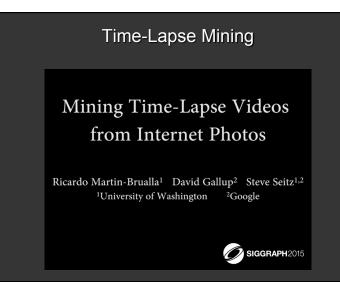
- Z. Lu and K. Grauman, Story-driven summarization for egocentric video, CVPR, 2013
- S. Uchihashi et al., Video manga: Generating semantically meaningful video summaries, ACM Multimedia, 1999
- B. Truong and S. Venkatesh, Video abstraction: A systematic review and classification, *ACM Trans. Multimedia Computing, Communications and Applications*, 2007

Time-Lapse and Hyper-Lapse Photography

Video stabilization and frame selection

- N. Joshi et al., Real-time hyperlapse creation via optimal frame selection, *SIGGRAPH 2015*
- J. Kopf, M. Cohen and R. Szeliski, First-person hyperlapse videos, *SIGGRAPH 2014*
- R. Martin-Brualla, D. Gallup and S. Seitz, Time-lapse mining from Internet photos, *SIGGRAPH 2015*
- E. Bennett and L. McMillan, Computational time-lapse video, *SIGGRAPH 2007*
- Instagram Hyperlapse
- Microsoft Hyperlapse

Stereoscopic and 3D Photography


Use of stereo and 3D cameras, and stereo displays (e.g., Oculus Rift, Microsoft HoloLens, and Google Cardboard)

- F. Zhang and F. Liu, Casual stereoscopic panorama stitching, *CVPR*, 2015
- F. Zhang and F. Liu, Parallax-tolerant image stitching, *CVPR*, 2014
- F. Liu, Y. Niu, and H. Jin, Joint subspace stabilization for stereoscopic video, *ICCV*, 2013
- Microsoft Kinect 2 available to use

Using Large Photo Collections

- Photo Tourism / Photosynth

 Snavely et al., Proc. SIGGRAPH, 2006
- Internet stereo
 - Goesele et al., Proc. ICCV, 2007
- Image completion
 Hays et al., Proc. SIGGRAPH, 2007
- Photo clipart
 - Lalonde et al., Proc. SIGGRAPH, 2007
- Object recognition
 - Torralba et al., IEEE Trans PAMI, 2008
 - Dataset available containing 1.5 million images of size 32 x 32
- Scene summarization
 Simon et al., Proc. ICCV, 2007
- Duplicate image discovery
 - Wang et al., CVPR workshop, 2013

Social Photography

- Mobile social media provides near-real-time data about intentional or unintentional communities of users, which can be used for tasks such as surveillance and monitoring
- CNN/Photosynth "The Moment" containing images of Obama's presidential inauguration
 - <u>http://www.cnn.com/SPECIALS/2009/44.president/inauguration/</u> themoment/
- "A Moment in Time" photos taken around the world on the same day at the same time (May 2, 2010, 15:00 UTC)
 - <u>http://www.nytimes.com/interactive/2010/05/03/blogs/a-moment-in-time.html</u>
- How can images (+ text) be used for enhanced communication?

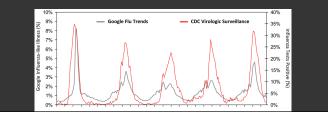
Social Media Users as Sensors Social media collects spatio-temporal data of our environment at a vast scale - 500 million tweets per day on Twitter - 100 million messages per day on Sina Weibo (China) - 4.75 billion pieces of content shared daily on Facebook Visual content is growing rapidly - 350 million photo uploads per day on Facebook

- 60 million photos shared per day on Instagram

- 58 million photos shared on Twitter in Dec 2011

Primary Type of Content Posted by Facebook Pages Worldwide, March 2014 % of total Photo 75% Link 10% Status Album 4% Video 4% Other 1% Note: among 1,253,840 posts from 30,000+ Facebook pages Source: Socialbakers.com as cited in company blog, April 8, 2014 172115 www.eMarketer.com

Challenges using Social Media Data


- · Text often ambiguous due to language and brevity
- Unstructured, diverse images/videos that contain complex content and poor quality
- · Social media users can't be controlled
- Distribution of posts depends on many factors, including population density and time of day
- Location and time stamps associated with social media posts may be erroneous or missing
- · Beyond "in the wild" and into the "Wild, Wild West" of image (and text) data

Advantages of using Social Media Data

- · Lots of data, including multiple modalities (text, images, video, audio)
- Often groups of images taken at a time by users
- Data available over many locations and times
- Many tasks involve measuring spatiotemporal signals, e.g., when, where, how much
- While user's primary intention for a post may be one (unknown) thing, there is often unintended, serendipitous information available

Public Health Surveillance

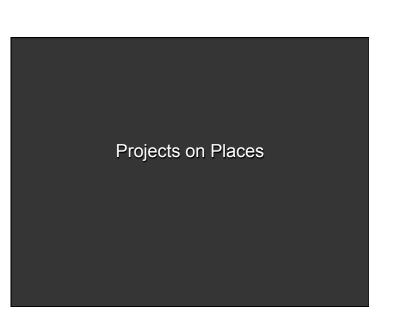
- Google Flu Trends: Uses aggregated Google search data to estimate flu activity
- CDC "Predict the Influenza Season Challenge" (2014)
- Most methods use a fixed set of manually-specified text keywords

Inferring Air Pollution from Social Media

Can we use social media (text and images) as a data source for estimating the Air Quality Index (AQI)?

S. Mei, H. Li, J. Fan, X. Zhu and C. Dyer, *IEEE/ ACM Int. Conf. Advances in Social Networks Analysis and Mining*, 2014

Examples of Cities Without a Monitoring Station


Photo Analytics

Analyze images on social media such as Twitter, Tumblr and Instagram to find logos and other brand information

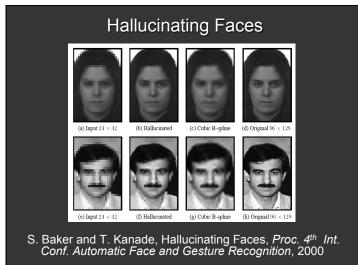
Sill.

Using Images of Places

- Where am I?
- Im2GPS
- Reconstructing building interiors
- Landmark recognition
- Auto-annotation of photo collections
 - "Annotating personal albums via web mining"
- Organizing geo-tagged photo collections
- Make3D

Google Maps' Photo Tours

- Photo tours are available for more than 15,000 sites around the world
- <u>http://google-latlong.blogspot.com/2012/04/</u> visit-global-landmarks-with-photo-tours.html



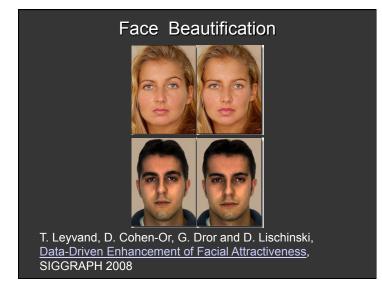
Original photographs

After automatic face replacement

D. Bitouk, N. Kumar, S. Dhillon, P. Belhumeur, S. K. Nayar, Face Swapping: Automatically Replacing Faces in Photographs, *Proc. SIGGRAPH*, 2008

Hallucinating Faces

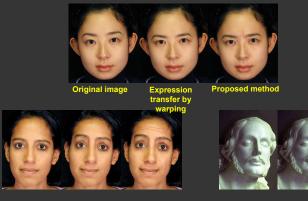
(a) Low-res input



(b) Hallucinated by our system (c) Original high-res

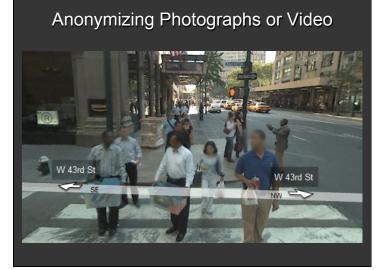
C. Liu, H. Shum, and W. Freeman, Face Hallucination: Theory and Practice, *IJCV*, 2007

M. Nguyen et al., Image-based Shaving, *Proc. Eurographics*, 2008



Example-Based Cosmetic Transfer




W.-S. Tong, C.-K. Tang, M. Brown, Y.-Q. Xu *Proc. Pacific Graphics*, 2007_____

Facial Expression Transfer

Z. Liu, Y. Shan, Z. Zhang, Expressive Expression Mapping with Ratio Images, SIGGRAPH 2001

Image Search: SkyFinder

Attribute-based search based on learned sky attributes such as category, layout, richness, horizon. Example query: "Whole blue sky with white clouds"