
©
B

R
A

N
D

 X
 P

IC
T

U
R

E
S

[Technological advances and challenges]

M
ultiview imaging (MVI) has attracted considerable attention recently due to
its increasingly wide range of applications and the decreasing cost of digital
cameras. This opens up many new and interesting research topics and appli-
cations, such as virtual view synthesis for three-dimensional (3-D) television
(3DTV) and entertainment, high-performance imaging, video processing and

analysis for surveillance, distance learning, industry inspection, etc.
One of the most important applications in MVI is the development of advanced immersive

viewing or visualization systems using, for instance, 3DTV. With the introduction of multiview
TVs, it is expected that a new age of 3DTV systems will arrive in the near future. To realize these
goals, however, there are still many new and challenging issues to be addressed. In particular,
multiview systems normally require a large amount of storage and are rather difficult to con-
struct. Of more importance still, the various cameras in the camera array usually have very dif-
ferent characteristics and positions, which makes the synthesis of virtual view (multiview
synthesis) difficult. While data compression issues are generally known in the signal processing
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community, other essential techniques such as camera calibra-
tion, object segmentation, rendering, and relighting are subjects
of intense research in the graphics and vision community.
Therefore, experts from signal processing, computer graphics,
and vision must be called upon to adequately address these mul-
tidisciplinary research issues.

Image-based rendering (IBR) refers to a collection of tech-
niques and representations that allow 3-D scenes and objects
to be visualized in a realistic way without full 3-D model
reconstruction. IBR uses images as the primary substrate.
The potential for photorealistic visualization has tremendous
appeal, and it has been receiving increasing attention over
the years. Applications such as video games, virtual travel,
and E-commerce stand to benefit from this technology. This
article serves as a tutorial introduction and brief review of
this important technology. We first start with the classifica-
tion, principles, and key research issues of IBR. We then
describe an object-based IBR system to illustrate the tech-
niques involved and its potential application in view synthe-
sis and processing. Stereo matching, which is an important
technique for depth estimation and view synthesis, is briefly
explained and some of the top-ranked methods are highlight-
ed. Finally, the challenging problem of interactive IBR is
explained. Possible solutions and some state-of-the-art sys-
tems are also reviewed.

IBR

CLASSIFICATIONS
In IBR [1]–[12], [62], [63], new views of scenes are reconstruct-
ed from a collection of densely sampled images or videos.
Examples include the well-known panoramas [6], lightfields [8],
and variants [9]–[12], concentric mosaics [7], etc. (see Figure 1
for a brief summary of two of these representations). The recon-
struction problem (i.e., rendering) is treated as a multidimen-
sional sampling problem, where new views are generated from
densely sampled images and depth maps instead of building
accurate 3-D models of the scenes. Depending on the function-
ality required, there is a spectrum of IBR, as shown in Figure 2.
The technologies differ from each other in the amount of geom-
etry information of the scenes/objects being used. 

At one end of the spectrum, like traditional texture mapping,
we have very accurate geometric models of the scenes and
objects, for instance, generated by animation techniques, but
only a few images are required to generate the textures. Given
the 3-D models and the lighting conditions, novel views can be
rendered using conventional graphic techniques. Moreover,
interactive rendering with movable objects and light sources
can be supported using advanced graphics hardware. 

At the other extreme, lightfield [8] or lumigraph [9] render-
ing relies on dense sampling (by capturing more image/videos)

[FIG1] Concentric mosaic and lightfield.
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with no or very little geometry information for rendering with-
out recovering the exact 3-D models. An important advantage of
the latter is its superior image quality, compared with 3-D
model building for complicated real-world scenes. Another
important advantage is that it requires considerably less compu-
tational resources for rendering regardless of the scene com-
plexity, because most of the quantities involved are precomputed
or recorded. This has attracted considerable attention in the
computer graphics community recently in developing fast and
efficient rendering algorithms for real-time relighting and soft-
shadow generation [19]–[22].

Broadly speaking, image-based representations can be classi-
fied according to the geometry information used into three
main categories: 1) representations with no geometry, 2) repre-
sentations with implicit geometry, and 3) representations with
explicit geometry. Two-dimensional (2-D) panoramas [6], 3-D
concentric mosaics [7], five-dimensional (5-D) McMillan and
Bishop’s plenoptic modeling [5], four-dimensional (4-D) ray-
space representation [62], [63], and lightfields [8]/lumigraph [9]
belong to the first category, while layered-based or object-based
representations using depth maps [10], [11], [23] fall into the
third. Conventional 3-D computer graphics models and other
more sophisticated representations [25]–[27] belong to the last
category. Another classification is based on the concept of
plenoptic function, which is related to the dimensionality of the
image-based representations. A recent survey of these represen-
tations can be found in [4]. 

Since capturing a 3-D model in real time is still a very diffi-
cult problem, lightfield- or lumigraph-based dynamic IBR rep-
resentations with little amount of geometry information have
received considerable attention in immersive TV (also called 3-
D or multiview TV) applications. In particular, excellent ren-
dering quality has been demonstrated using the pop-up
lightfield [10], the object-based approach [23], and the layered-
based rendering approach [11]. Later sections will be devoted
to these representations, which use approximate/incomplete

geometry in the form of depth maps. Segmentation, matting,
and depth estimation techniques that are crucial to these
approaches will also be illustrated.

On the other hand, since 3-D models of the objects and
scenes are unavailable, user interaction is limited to the change
of viewpoints and sometimes limited amount of relighting. In
contrast, more user interaction such as real-time relighting and
soft-shadow computation has been found to be feasible using IBR
concepts and the associated 3-D models using precomputed radi-
ance transfer (PRT) [21] and precomputed shadow fields [22].
This opens up a new opportunity for very fast interactive visuali-
zation/graphic systems with low complexity. If approximate
geometry of objects in a scene can be recovered, then interactive
editing and relighting of real scenes are in principle feasible. This
has important applications in computer games, scientific visuali-
zation, and relighting of IBR objects in future generations of IBR
systems. 3-D reconstruction of video objects such as human body
and fast rendering algorithms are two key problems in support-
ing these innovative multimedia applications. A brief review of
these problems will be given later in the “Interactive IBR” sec-
tion, where a few state-of-the-art systems will be used as illustra-
tion. In the following, we shall briefly outline the principle and
major research issues in this exciting area of research. 

PRINCIPLE AND MAJOR RESEARCH ISSUES
Central to IBR is the concept of the seven-dimensional (7-D)
plenoptic function, P7 = (Vx, Vy, Vz, θ, φ, λ, τ) [1], which
describes all the radiant energy that is perceived at any 3-D
viewing point (Vx, Vy, Vz), from every possible angle (θ, φ) for
every wavelength λ and at any time τ . Based on this function,
theoretically, novel views at different positions and time can be
reconstructed from its samples, provided that the sample rate
is sufficiently high. Because of the multidimensional nature of
image-based representations and scene geometry, much
research has been devoted to the efficient capturing, sampling,
rendering, and compression of IBR. 

[FIG2] Spectrum of IBR representations.
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To appreciate the principle of IBR, let us
consider the image formation process as shown
in Figure 3. As shown in the figure, incident
light with a radiance of Ii impinges on a small
surface of an object with a normal N̂ and an
infinitesimal small area dA. The irradiance of
the incident light, which is the incident flux per
unit surface area, is Ei = Ii (cos θi)dωi, where
θi is the angle between Ii and N̂ and dωi is a
small solid angle in the direction of Ii. Let the
reflected radiance at an angle θr be Ir. The ratio
Ir/Ei is known as the bidirectional reflectivity,
ρ(θi, θr), which is a property of the object. 

For a given lighting and geometry, a camera
will capture rays from the objects and record
them as pixels on its image plane, such as cam-
era planes 1 and 2 in Figure 3. The area dA will
be imaged by different cameras with different
reflected radiance Ii, which is a function of the
spherical coordinate (θr, φr). If Ii is bandlimited, then we can
recover it from a sufficient number of samples in (θr, φr). If we
know the exact geometry and lighting, we can estimate the bidi-
rectional reflectivity. This technique has been used to model tree
leaves [28] and other physical materials using laser scanners and
controlled lighting. Once the geometry and surface property are
known, we can render them using conventional graphics tech-
niques or more advanced techniques such as shadow lightfields to
be discussed in the “Interactive IBR” section. If we can estimate
the geometry of the scene, say in form of depth maps, then we can
use the samples captured by the cameras (for instance, O1 and O2

in Figure 3) to interpolate the value for that in O3. In the simplest
case where we do not have an accurate geometry like a reasonably
accurate depth map, we can approximate the surface of the object
by a plane parallel to a 2-D camera plane as in lightfields. The
combined effect of geometry, lighting, and surface property give
rise to a function Ir of seven dimensions, which is the plenoptic
function. It is apparent that significantly more samples are
required to recover the plenoptic function, if the geometry is
unknown. One approach is to restrict the viewing freedom of the
users so that the dimensionality of the representations can be
reduced. For example, lightfields [8] or lumigraphs [9] are elegant
4-D IBR representations, where images on a 2-D camera plane are
taken (Figure 1). Other IBR representations include the 2-D
panorama [6], McMillan and Bishop’s plenoptic modeling [5], 4-
D ray-space representation [62], [63], the 3-D concentric mosaics
[7], etc. Comprehensive reviews of the problems of capturing,
sampling, and compression of IBR are available in [2] and [3]. A
more recent update can be found in [4]. 

Although most of these representations do not employ much
geometric information, the renderings are of very high quality.
Motivated by the potential of IBR, researchers start to look for
more general dynamic representations [11]–[18] as well as
methods to reduce the number of samples or cameras required.
Early attempts, called panoramic videos [18], are mostly based
on 2-D panoramas. More recently, there were attempts to con-

struct lightfield video systems for different applications and
characteristics. These include the Stanford multicamera array
[13], the 3-D rendering system of Naemura et al. [14], the
(8 × 8) lightfield camera of Yang et al. [15], and (8 × 6) self-
reconfigurable camera array of Zhang and Chen [17]. The
Stanford array consists of more than 100 cameras and is intend-
ed for large-environment applications. It uses low-cost CMOS
sensors and dedicated hardware for real-time compression. The
systems in [14] and [15] consist of, respectively, 16 and 64 cam-
eras and are intended for real-time rendering applications. In
[17], a large self-reconfigurable camera array of 48 (8 × 6) cam-
eras was built. Given the virtual view point, the cameras move
on a set of rails to perform active rearranged capturing to
improve the rendering quality. In [12], a simplified lightfield for
dynamic environments (SDLF) was proposed where videos at
regularly placed locations along a series of line segments were
captured. The main motivation is to reduce the large dimen-
sionality and excessive hardware cost in capturing dynamic rep-
resentations. Because of the close relationship between the
SDLF and traditional videos, it is also referred to as “plenoptic
videos.” Despite the simplification employed, plenoptic videos
can still provide a continuum of viewpoints, significant parallax,
and lighting changes. 

A difficult problem in rendering lightfields and plenoptic
videos is the excessive artifacts due to depth discontinuity. If
the scene is free of occlusions, then the concept of plenoptic
sampling [29] can be applied to determine the sampling rate in
the camera plane. Unfortunately, because of depth discontinu-
ities around object boundaries, the sampling rate is usually
insufficient (due to the limited number of cameras and their
physical separations). Significant rendering artifacts due to
occlusion will result. Recently, representations with depth
maps and object segmentation information [10], [11], [16], [23]
have received great attention because they help to reduce ren-
dering artifacts at depth discontinuities in large environmental
modeling. Reliable methods to compute the depth/segmentation

[FIG3] Image formation process.
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information and how they are incorporated into the rendering
systems are subjects of intense focus. 

A pioneer in this area is the work of Goldlücke et al. [16],
who used a subset of the Stanford multicamera array for acquir-
ing and rendering dynamic scenes. The cameras were calibrated
so that depth maps can be used to warp sample views to new
views. The disparities of a given view were computed by averag-
ing the disparities computed between this image and those from
all other cameras. Due to image noise and blocking artifacts
from the MPEG-encoded input images, it is difficult to produce
depth maps that are correct to within a pixel at the boundaries. 

In [11], an eight-camera video capturing system was con-
structed. High-resolution FireWire PtGrey color cameras are
used to capture 1,024 × 768 video at 15 frames/s. Two “concen-
trator” units built by PtGrey are used to synchronize all the
cameras and stream the uncompressed videos to a bank of hard
disks through fiber optic cables. Inspired by layered depth
images and sprites with depth [25], a two-layer representation—
foreground and background—with depth, color, and matting
information was employed. Stereo algorithm is used to compute
the dense depth map for each image and detect depth continu-
ities. Boundary strips are created around depth discontinuities.
Bayesian matting [30] is used to estimate the depths, colors, and
opacities (alpha values) of the foreground and background with-
in these strips. Since the cameras are arranged along a one-
dimensional (1-D) arc, during rendering, the two reference
views nearest to the novel view are chosen, warped, and com-
bined for view synthesis. In the stereo algorithm for finding the
depth maps, images at the same time instant are smoothed
using a variant of anisotropic diffusion and then segmented
using a variant of the mean shift-based color segmentation algo-
rithm. The mean depth of each segment is first computed using
the centrally located camera as the global coordinate frame. The
segment matching error function is computed in a similar man-
ner as the disparity space image (DSI). Finally, locally computed
disparities are averaged or smoothed, subject to projection con-
sistency across images. 

In [23] and [24], an object-based approach to plenoptic
videos was proposed, where the plenoptic video sequences are
segmented into IBR objects, each with its image sequence,
depth map, and other relevant information such as shape infor-
mation. By incorporating the depth and segmentation informa-
tion, renderings with very good quality are obtained.
Furthermore, desirable functionalities such as scalability of con-
tents, error resilience, and interactivity with individual IBR
objects (including random access at the object level) can also be
supported. As a result, IBR objects can be processed, rendered,

compressed, and transmitted separately. To give the reader an
idea of these operations, more details of the object-based system
in [23] and [24] will be briefly described below as an illustration. 

THE OBJECT-BASED APPROACH

SYSTEM OVERVIEW
In [23] and [24], a plenoptic video system used to capture
dynamic scenes was constructed. This system consists of two
linear arrays of calibrated cameras, each hosting six JVC DR-
DVP9ah video cameras. More arrays can be connected together
to form longer segments. Because the videos are recorded on
tapes, the system is also suitable for outdoor dynamic scenes.
The use of multiple linear arrays allows the user to have more
viewing freedom in sport events and other live performances.
After capturing, the video data stored on the tapes can be trans-
mitted to computers through a FireWire interface. Figure 4
shows snapshots of plenoptic videos, titled Dance, captured by
this system. This real-scene plenoptic video has a resolution of
720 × 576 pixels in 24-b RGB format.

It is assumed that each image pixel in a lightfield has a
color as well as a depth value. This representation, compared
with using a global depth map, is less sensitive to errors in
camera position and depth maps encountered in practical mul-
ticamera systems. Though plenoptic sampling suggests that
dense sampling of image-based representation can tolerate
depth variation within the segments by interpolating the
plenoptic function, a very-high-resolution depth map is usual-
ly unavailable. Efficient methods are required to reduce the
rendering artifacts at depth discontinuities. It was found in
[10] that by properly segmenting the videos into image-based
or layered objects at different depths and rendering them sepa-
rately, the rendering quality in a large environment can be
considerably improved. From the segmented objects, approxi-
mate depth information for each IBR object can be estimated
to render new views at different viewpoints. Due to possible
segmentation errors around boundaries and finite sampling at
depth discontinuities, natural matting should be adopted to
improve the rendering quality at object boundaries when mix-
ing IBR objects. By using the estimated alpha map and texture,
it is also convenient to composite the image-based objects
onto the background of the original or other plenoptic videos.
The important issues of segmentation and matting are further
elaborated upon in the next section. This object-based
approach not only improves the rendering quality, but also
provides object-based functionalities in coding and other pro-
cessing applications. In particular, the IBR objects were encod-

ed individually by an MPEG-4-like
object-based coding scheme [31]
that includes additional informa-
tion such as depth maps and alpha
maps to facilitate rendering. The
processing issue is treated later in
the “Object-Based Plenoptic Video
Processing” section.[FIG4] Snapshots of the plenoptic video Dance.
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OBJECT SEGMENTATION, TRACKING, AND MATTING

OBJECT SEGMENTATION AND TRACKING
As mentioned earlier, objects at large depth differences are
segmented into layers and are compressed and rendered sepa-
rately. In [23] and [24], an initial segmentation of the objects
is first obtained using a semi-automatic approach [32].
Tracking techniques are then employed to segment the
objects at other video streams and subsequent time instants,
using the level-set method [33], [34]. The basic idea is to
deform a given curve, surface, or image according to a partial
differentiation equation (PDE) and arrive at the desired result
as the steady-state solution of this PDE. The problem can also
be viewed as minimizing a certain energy function

UI(C ) =
∫

I
F (C, x)dx (1)

as a function of a curve or surface C. The subscript indicates
that the energy is computed from the given images I .
Usually, F(C, x) is designed to
measure the deviation of the
desired curve from C at point x.
To minimize the functional in
(1), the variational approach can
be employed to convert it to a
PDE. A necessary condition for
C to be a local minimum of the
functional is  U ′

I (C ) = 0 . To
solve it numerically, we usually
start with an initial curve C0 and
let it evolve over a fictitious time variable t according to a
PDE, which depends on the derivative U ′

I (C ) as follows:

∂C (t)
∂ t

= U ′
I (C (t)). (2)

Since the PDE may be singular at certain points, it is usually
solved using the level-set method [33], where a curve or surface
is represented in “implicit form” such as the zero level sets of a
higher-dimensional function. More formally, the time evolution
of curves C (x, t) is represented as the level-set of an embedding
function φ(x, t) : Lc (x, t) := {(x, t) ∈ R3 : φ(x, t) = c}, where
c is a given real constant. Equation (2) can be rewritten as a PDE
of φ(x, t), and its time evolution is computed numerically by
solving an appropriate discontinued PDE for φ(x, t) at a suffi-
ciently small time interval. The desired solution is obtained when
the PDE converges at sufficiently large value of n. In [23] and
[24], the following energy function is used:

UI(C ) = α

∫
I

Cinsidedxdy

− β

∫
I

Coutsidedxdy + λLength(C ), (3)

where Cinside (x, y) and Coutside (x, y) are two functions
designed, respectively, to control the expansion and contrac-

tion of the curve C at location (x, y) and Length (C ) meas-
ures the length of the curve. If the pixel values inside and out-
side the curve are assumed to be independent and Gaussian
distributed with means cin and cout , respectively, then the
PDE can be written as

∂φ

∂ t

∣∣∣∣
(x,y)

= α
(
u(x,y) − cin

)2

− β
(
u(x,y) − cout

)2 + λ · div
( ∇φ

|∇φ|
)

, (4)

where α, β and λ are positive parameters, u(x,y) is the value of
pixel (x, y), and c in and cout denote, respectively, the driving
forces inside and outside the curve C. The third term, which is
derived from Length(C ) , makes the curve smooth and
continuous. 

There are two different methods for determining c in and
cout , namely global-based and local-based methods. The
global-based method in [34] utilizes all the pixels to drive

the curve C, where c in and cout

denote, respectively, the means
of all pixels inside and outside
the curve C. The global-based
method has fast evolution speed
and it is less sensitive to noise.
However,  some f ine features
along the object’s boundary to
be tracked may be lost. In con-
trast, local-based methods use
local features of the image to

cope with objects having a nonuniform energy distribution.
In [23], the global and local methods are combined by fur-
ther smoothing the local features. In [24], depth informa-
tion computed using stereo matching is also incorporated
in this level, which greatly improves the reliability of this
method. A brief introduction to stereo matching will be
given later in the “Stereo-Matching Algorithms and Multiview
Synthesis” section.

OBJECT MATTING 
Due to possible segmentation errors around object boundaries
and finite sampling at depth discontinuities, it is preferred to
calculate soft, instead of a hard, membership functions between
image-based objects and the background. In other words, the
boundary pixels are assumed to be a linear combination of the
corresponding pixels from the foreground and background,
I = αF + (1 − α)B, where I, F, and B are the pixel’s composite,
foreground, and background colors, and 0 ≤ α ≤ 1 is the pixel’s
opacity component or the alpha map. Using this model, it is pos-
sible to matte a given object with the original at different views
and other background.

In [23] and [24], the matte was computed using the
Bayesian approach [30]. By assuming that F, B, and α to be
independent, one gets a set of equations in the estimates of
α, F, and B which can be solved iteratively. The initial
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values of F and B for each pixel in the conventional method
are usually provided by the user through certain user inter-
faces. In the object-based approach [24], they are obtained
from the segmentation and tracking results. Figure 5(a)
shows the tracking result obtained in [23] and [24]. For
each frame, the initial curve C0 is the tracking result of the
previous frame. The level-set contour evolution is imple-
mented using the narrow-band method. An example depth
map and alpha map of the image-based object are illustrated
in Figure 5(b).

OBJECT-BASED PLENOPTIC VIDEO PROCESSING
Since images and videos are special cases of the plenoptic func-
tion, many conventional image processing algorithms such as
coding, segmentation, etc. have similar analogy in IBR. These
generalizations are referred to here as plenoptic video process-
ing. In particular, the associated processing operations in the
object-based approach are referred to as objected-based plenop-
tic processing. 

The main difference between plenoptic video processing and
a single image is the need to ensure the image consistency con-
straints in multiple views of the same object. Ideally, when a
group of pixels of an object in a given image is modified, then
the “corresponding” pixels in other images should also be modi-
fied consistently. If scene geometry is also available, then the
lighting and other physical constraints should also be observed.
Due to the difficulty of accurately acquiring scene geometry and
other physical parameters, it is unavoidable that the capability of
automatic IBR processing be limited in representations with
approximate geometry only. In other words, additional prior
information must be provided by the users through appropriate-
ly designed user interfaces and tools. 

In what follows, we briefly describe the generalizations of
some commonly used image processing algorithms to the IBR
case under the object-based framework. In principle, one
should determine the correspondence between image pixels
and process them as a whole. Under the object-based frame-
work, similar objects are segmented and grouped together.

Therefore, the image consis-
tency may be approximately
satisfied by processing the
image pixels from the IBR
object as a whole or we can
make use of the correspon-
dence computed from the
depth maps. 

BACKGROUND
DEFOCUSING
Background defocusing is a

special effect where the background is blurred, so
that certain objects can be popped up. Figure 6(a)
shows the defocusing results, where the back-
ground is smoothed using a low-pass filter of size
(5 × 5). It can be seen from Figure 6(a) that the
object boundaries are well preserved because the
smoothing operation is applied only to the back-
ground object, in contrast to conventional
smoothing operations which will result in blur-
ring of the entire image. 

BACKGROUND TRANSFORMATION
With the help of the alpha map of an object, it is
possible to matte a given object to a transformed
background to create a special rotation effect.
Figure 6(b) shows the original rendered image
and another one with the object “dancer” being
pasted to a rotated background. 

These operations will greatly increase the view-
ing freedom and support zooming, panning, look-
ing upwards and downwards, etc. Moreover, by
synthesizing different views appropriately, we can
also generate views of stereo and multiview dis-
play for 3-D and multiview TVs. Details of other

[FIG6] The rendered images before and after processing: (a) background
defocusing processing and (b) background transformation processing.

(a)

(b)

[FIG5] (a) Tracking results of our method. (b) Example alpha and depth maps.

(a) (b)
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operations such as object completion, inpainting enhancement,
etc. can be found in [24]. If shadows and other lighting effects are
desirable, further postprocessing may be necessary. This is diffi-
cult to carry out without the knowledge of the geometry of the
scene. Therefore, for interactive rendering and relighting, cap-
turing a rough geometry of the scene is of great importance, and
it will be briefly reviewed in the “Interactive IBR” section.

STEREO-MATCHING ALGORITHMS
AND MULTIVIEW SYNTHESIS
Stereo matching, which infers 3-D scene geometry from
two images, is an important tool in intermediate view syn-
thesis and IBR. 

ASSUMPTIONS AND REPRESENTATIONS
Due to the difficulties in handling scenes with specularities,
reflective surfaces, or transparency, most stereo-matching
algorithms assume that the scene is Lambertian or intensity-
invariant from different viewpoints. Moreover, the camera is
usually assumed to be calibrated so that more reliable match-
ing can be obtained using the epipolar geometry constraint.
For example, in Figure 7(a), a point P is imaged as pixels (x, y)
and (x ′, y ′) by two cameras with centers O1 and O2, respec-
tively. It can be seen that the corresponding pixel in image m
of (x, y) in image r lies on the line l2, which also lies on the
plane containing (x, y), O1, and O2. If the position, orienta-
tion, and other relevant parameters of the two cameras O1,
and O2 are known through camera calibration, then one can
match the intensity of (x, y), I(x, y), against those along line
l2 by assuming that the surface S is Lambertian. Furthermore,
the image planes are transformed, a process called rectifica-
tion, such that pairs of conjugate epipolar lines (l1, l2) become
collinear and parallel to one of the image axes [Figure 7(b)]. In
the rectified images, the problem of computing stereo corre-
spondences is reduced to a 1-D search problem along the hori-
zontal raster lines of the rectified images. Consider a rectified
reference image r and another image to be matched m as
shown in Figure 7(a). The correspondence between the pixel at
(x, y) in r and the pixel (x ′, y ′) in m is given by

x ′ = x + d(x, y), y ′ = y, (5)

where d(x, y) is the disparity. The univalued map
{d(x, y) : ∀(x, y) in r} is called the disparity map of r. Once the
disparity map is determined, the image of P at other camera posi-
tions such as O3 in Figure 7(b) can be determined, if it is not
occluded and S is Lambertian, i.e., I1(x, y) = I2(x ′, y ′) =
I3(x ′′, y ′′). If the camera is calibrated, the depth value of P and
hence the pixel (x, y) can be determined. The collection of depth
values for each pixel in an image forms its depth map. The goal
of a stereo correspondence or matching algorithm is to estimate
a univalued function in the disparity space D(r) = (x, y, d ) that
best describes the shape of the surfaces in the scene. 

STEREO-MATCHING ALGORITHMS
Scharstein and Szeliski [35] gave an extensive survey on stereo
algorithms and provided an online evaluation based on the
Middlebury Stereo Evaluation (MSE) data set. Since then, many
new and novel approaches to stereo-matching algorithms have
been developed and evaluated online with the MSE data set.
According to Scharstein and Szeliski’s taxonomy [35], many
existing stereo-matching algorithms perform all or some of the
following four steps: 1) matching cost computation, 2) cost
(support) aggregation, 3) disparity computation/optimization,
and 4) disparity refinement. 

From the Lambertian assumption, the desired disparity d(x, y)

of pixel (x, y) should minimize the intensity difference
I(x, y) − I(x ′, y ′). Therefore, it is necessary to compute some
matching cost between I(x, y) and I(x̃, ỹ), where (x̃, ỹ) is a possi-
ble candidate in the disparity space D(r), such as nearby pixels
along l2 in Figure 7. Various matching costs have been proposed
for reliable matching cost computation. To reduce noise, matching
costs of similar adjacent pixels are usually aggregated locally (cost
aggregation). After that, the disparity map is computed by minimiz-
ing some energy or cost function to measure the matching of the
two images while preserving certain smoothness constraints of the
surfaces (disparity computation/optimization). Finally, the comput-
ed disparity map is further refined to detect occluded pixels and
infer its depth values from adjacent pixels (disparity refinement).

[FIG7] Stereo matching: (a) epipolar geometry and (b) rectification.
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Global optimization techniques like graph cut (GC) [11], [42]
and belief propagation (BP) [36]–[38] are widely used for the
disparity optimization step in top-rank methods. On the other
hand, segment-based methods [36]–[41] have also attracted con-
siderable attention due to their good performance on nontex-
ture area. There are also attempts for high-quality real-time
stereo with the help of variants of dynamic programming [40] or
semiglobal matching techniques [39]. Once the depth maps are
obtained, new views can be synthesized by interpolating the
pixel values from nearby images. If there are holes in the ren-
dered images, they have to be filled by neighboring pixels using
inpainting algorithms [64], [65]. In the object-based approach,
pixels from foreground and background objects will be matted
together to reduce artifacts. Table 1 gives a summary of some
top-ranked stereo-matching algorithms and their corresponding
taxonomy according to Scharstein and Szeliski’s survey.

INTERACTIVE IBR
As mentioned earlier, representations with explicit geometry can
provide increased functionalities such as relighting and interac-
tive placement of objects. Fast rendering algorithms and meth-
ods for capturing static and dynamic 3-D models are two

important practical problems. A
brief review of these subjects will be
given below. 

In principle, if the geometry and
surface property (BRDF) of an
object are available, precomputed
shadow fields can be employed to
speed up the relighting and soft
shadow generation processes. For
nonreflective objects that do not
change their shapes, the geometry
of the object can be acquired by a 3-
D laser scanner. The capturing of
its surface property is also possible,
though involved [43]. While there

has recently been considerable progress in relighting human
faces using structured lighting [44], the extraction of 3-D
dynamic models—such as human beings—using a multiple
camera array and computer vision techniques such as object
profiles [45] or level-set methods [46] are of great interest in
dynamic scenes. Moreover, the panoramic video-based environ-
ment maps can be combined with these dynamic 3-D models to
achieve fast interactive rendering. These are useful in incorpo-
rating relighting and soft shadow capabilities in interactive aug-
mented reality systems. 

FAST RENDERING AND COMPRESSION ALGORITHMS
We shall briefly explain how shadow fields of individual entity
and the radiance fields of local light sources of the scene can be
used for interactive relighting and soft shadow generation. A
shadow field is a kind of plenoptic function that describes the
shadowing or occluding effects of an individual scene entity at
sampled points surrounding it. Figure 8(a) shows the shadow
field or object occlusion field (OOF) of an object. At each point q
that surrounds the object with spherical coordinates
(Rq, θq, φq), we can describe the occlusion or shadowing effect
of the object as a 2-D function in the polar coordinates

[FIG8] (a) Sampling of shadow field with the occlusion effect being represented as cube map. (b) Combining shadow fields to obtain
the incident radiance distribution. Point p on an object has self-visibility Op. There are three objects in the scene with OOFs O1, O2, O3,
and there are three local sources S1, S2, S3 and a distant lighting Sd.
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METHOD MATCHING COST AGGREGATION OPTIMIZATION
KLAUS ET AL. [36] SAD+GRAD SQUARE WINDOW BP ON PLANE

(SW)
YANG ET AL. [37] AD SW WEIGHTED BY BP

COLOR AND SPATIAL
SUN ET AL. [38] SD SW BP
HIRSCHMULLER [39] MUTUAL INFORMATION SW SEMI-GLOBAL 

MATCHING
LEI ET AL. [40] AD NONE DP ON REGION

TREE
YOON AND KWEON AD SW WEIGHTED BY WTA

[41] COLOR AND SPATIAL
KOLMOGOROV AND SD NONE GC

ZABIH [42]

[TABLE 1]  SUMMARY OF SOME TOP-RANKED STEREO-MATCHING ALGORITHMS
(AD: ABSOLUTE INTENSITY DIFFERENCE, SAD: SUM OF ABSOLUTE
DIFFERENCE, WTA: WINNER TAKE ALL, GRAD: GRADIENT-BASED MEASURE).

IEEE SIGNAL PROCESSING MAGAZINE [30] NOVEMBER 2007

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 4, 2008 at 11:27 from IEEE Xplore.  Restrictions apply.



(θin, φin). Alternatively, we can use a cube map to represent this
2-D function, as shown in Figure 8(a). If the shape of the object
is time-varying, then the OOF is a six-dimensional (6-D) plenop-
tic function P(Rq, θq, φq, θin, φin, t). The same concept can be
used to describe the effect of a local light source, which is
referred to as a source radiance field (SRF). 

The SRF of each light source and OOF of each local object
are individually precomputed at sampled locations in its sur-
rounding space, as shown in Figure 8(b). Unlike traditional
approaches for soft shadow generation methods [19] and pre-
computed radiance transfer (PRT)-based methods [20], [21], the
precomputed shadow fields approach [22] represents the shad-
owing effects of a single scene element in an empty space, and
thus can be precomputed independent of scene configuration.
Another important property of shadow fields is that they can be
quickly combined in run time for soft-shadow generation.
Therefore, this method is able to handle motion of objects and
dynamic local light sources. 

More precisely, the incident radiance distribution of a point,
say p in Figure 8(b), is computed from the contributions of all the
light sources using their SRFs and the objects’ OOFs that lie
between the light source under consideration and the given point.
For example, the contribution from source S1 is just
S1(p)∗Op(p), where S1(p) is the SRF of S1 for point p, Op(p) is
the OOF for point p due to self-occlusion, and ∗ denote element-
wise product of their cube maps. Since the SRF and OOF are pre-
computed for a given orientation of the light sources or objects,
certain coordinate transformations and interpolation are required
to compute the corresponding value at the desired direction, say p
in this example. Similarly, the contribution from the local light
source S3 is S3(p)∗O 2(p)∗O1(p)∗Op(p), because objects O2 and
O1 between them may occlude the rays from S3 to p. By adding
the contributions of each light source in the scene, the final
incoming radiance distribution that determines the soft shadow
at the point p can be determined. For time-varying light
sources—for instance, some kind of video textures—and dynamic
3-D objects, a different set of cube maps will be required at differ-
ent times and this poses a significant storage problem.

Such cube maps are also frequently used to model environ-
mental maps of distant objects, and they are also referred to as
panoramas. For light sources or objects that vary with time, the
resulting time-varying cube maps become a panoramic video.
Therefore, the compression of SRF and OOFs is closely related
to the compression of panoramic videos, except that there is
additional correlation between cube maps at adjacent spatial
locations. The compression of panoramic videos using a modi-
fied MPEG-2 algorithm has been studied previously in [18] and
it can be modified to compress these time-varying cube maps.
It is expected that vector quantization (VQ) with possible
temporal/spatial prediction will provide a fast rendering speed
at the expense of lower compression ratio. For the object occlu-
sion field (OOF), the image mainly consists of the alpha values
describing the occlusion effect of the object. For some applica-
tions, it just assumes binary values, and the shape coding algo-
rithm in MPEG-4 video object coding can be utilized. 

As mentioned earlier, time-varying or dynamic 3-D models
require a considerable amount of storage and limit the complexity
of a scene that can be handled. While 3-D mesh compression has
been extensively studied in the literature, the compression of
dynamic 3-D meshes is relatively new [47], [48]. A very good sur-
vey and a sophisticated compression algorithm that addressed the
dynamic connectivity of 3-D mesh were given in [48]. Although
this algorithm is very flexible, its performance will be affected
considerably when input mesh structure changes substantially
between frames. Improved dynamic mesh compression is thus an
important area of research. 

CAPTURING OF 3-D DYNAMIC MODELS 

APPROACHES
Volumetric representations are a simple and robust method for
reconstruction from silhouettes and they have been extensively
used [49], [50]. However, to achieve better reconstruction preci-
sion, the size of spatial partition must be decreased, which
results in a tremendous increase in complexity of the recon-
structed 3-D models. Another approximate geometric represen-
tation is based on the visual hull [51], which is constructed by
casting the visible silhouette information from a collection of
input images to 3-D space and intersecting the cast volume.
Recently, Matusik et al. [52] proposed a representation called
image-based visual hulls (IBVHs) for fast dynamic scene render-
ing based on the visual hull without explicit geometric or volu-
metric construction. These approaches, which approximate
visual hull with polyhedrons, outperform the volumetric
approaches in terms of accuracy and computation complexity,
and they maintain comparable robustness for objects with com-
plex topologies. A disadvantage of visual hulls is that concavities
that cannot be observed as silhouettes cannot be handled. For
objects with smooth surfaces, more precise estimation of surface
points can be achieved by a differential analysis on the deforma-
tion of the object contours [53], [54]. With sufficient and well-
distributed viewpoints, these approaches can give high-quality
estimation of the surface points, especially for objects with
smooth surfaces. However, few of them offer similar robustness
as the volumetric approaches for objects having complicated
topologies. Recently, Liang and Wong [55] employed epipolar
parameterization in identifying a well-defined local tangent
basis to handle fairly complicated shapes. 

Apart from using computer vision techniques, the geometry
of the nonreflective object that does not change with time can
also be captured using 3-D laser scanners. Computer vision
techniques, on the other hand, are applicable to dynamic objects
and potentially will require a lower hardware cost. 

CAPTURING SYSTEMS
The Virtualized Reality project by Kanade et al. [56] was proba-
bly the first attempt to capture dynamic 3-D scenes and render
them at arbitrary viewpoints. Their first system consists of 51
cameras arranged around a 5-m geodesic dome. The shape of
the scene being modeled was extracted by computing stereo
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depth maps, at each vantage point, using immediate neighbor-
ing cameras and their multibaseline algorithm. In one version,
the closest reference view is used for view synthesis with two
other nearest views used to fill possible holes. To simplify pro-
gramming and hardware rendering in a later version, all the
depth maps were merged into a single 3-D model using volu-
metric integration. Temporal information was also incorporated
later in [57] to achieve spatial-temporal view interpolation. 

Despite the advances in 3-D reconstruction algorithms,
reliable computation of 3-D scene models remains difficult. In
many situations, only a certain object in the scene—such as
the human body—is of interest. Here prior knowledge of the
object model can be used to simplify the rendering process or
improve the reconstruction quality. Therefore, several model-
based systems for human motion capture were proposed. In
[58], an actor’s movement is captured using multiple video
cameras at 15 frames/s and a resolution of 320 × 240. The
cameras are synchronized, calibrated, and arranged in a con-
vergent configuration. A binary image of the silhouettes of the
human actor in each image captured is computed by compar-
ing the pixel values with those from the fixed background.
The human model consists of 16 articulated body parts, each
represented by a triangular mesh, and 17 joints. 35 parame-
ters are used to define the body pose. The model parameters
are computed by a nonlinear minimization approach, where
the global translation and rotation are estimated first, fol-
lowed by other parameters such as head and hip joint rota-
tions, etc. Since the geometry extracted is inexact, a
consistent texture map is used for rendering. 

In the marker-less human motion transfer system of
Cheung et al. [59], a more detailed person-specific model is
used and both silhouette and color information are employed
for motion tracking. The shape of a person is first acquired
from a video taken on a rotating turntable using the “shape-
from-silhouette across time” (SFSAT) algorithm [60]. The
model has 22 degrees of freedom. The joint skeleton is then
estimated one element at a time. During motion capture, the
shape is recovered using the SFSAT algorithm and is aligned
to the human model. The captured motion of one person can
be directly transferred to another through the joint motions.
A more detailed summary of these and other related systems
can be found in [4] and [61].

CONCLUSIONS
A brief review of the technological advances and future chal-
lenges of IBR has been presented. This includes the basic princi-
ples, key research problems, important techniques,
state-of-the-art systems, and possible future extensions of IBR.
We hope this article gives readers a grasp of this emerging tech-
nology and contributes to the further development of multiview
systems, 3DTV, and other immersive viewing applications.

ACKNOWLEDGMENT
This work was supported in part by the Research Grant Council
of Hong Kong Special Administrative Region, China.

AUTHORS
S.C. Chan (scchan@eee.hku.hk) received the B.Sc. (Eng.) and
Ph.D. degrees from the University of Hong Kong in 1986 and
1992, respectively. He joined the University of Hong Kong in
1994 and is now an associate professor. He was a visiting
researcher in Microsoft Corporation, Redmond, USA, and
Microsoft, Beijing, China, in 1998 and 1999, respectively. His
research interests include fast transform algorithms, filter
design and realization, multirate signal processing, and image-
based rendering. He is currently a member of the Digital Signal
Processing Technical Committee of the IEEE Circuits and
Systems Society. He was chair of the IEEE Hong Kong Chapter
of Signal Processing from 2000–2002. 

Heung-Yeung Shum (hshum@microsoft.com) received a
doctorate in robotics from the School of Computer Science at
Carnegie Mellon University in Pittsburgh, Pennsylvania. He is
a corporate vice president at Microsoft. He oversees the
research activities at Microsoft Research Asia and the lab’s col-
laborations with universities in Asia Pacific. Recently, Dr.
Shum has taken the additional responsibility of driving the
long-term and short-term technology investments in search
and advertising at Microsoft. He is an IEEE Fellow and an
American Computational Machinery (ACM) Fellow. He serves
on the editorial board of the International Journal of
Computer Vision and is a program chair of the International
Conference of Computer Vision (ICCV) 2007. He has published
more than 100 papers in computer vision, computer graphics,
pattern recognition, statistical learning, and robotics. He holds
more than 50 U.S. patents. 

King-To Ng (ktng@graduate.hku.hk) received the B.Eng.
degree in computer engineering from the City University of
Hong Kong in 1994 and the M.Phil. and Ph.D. degrees in elec-
trical and electronic engineering from the University of Hong
Kong, in 1998 and 2003, respectively. In 2004, he worked as a
visiting associate researcher at Microsoft Research Asia,
Beijing, China. Currently, he is a postdoctoral fellow in the
Department of Electrical an Electronic Engineering, The
University of Hong Kong. His research interests include visual
communication, image-based rendering, and video broadcast
and transmission.

REFERENCES
[1] E.H. Adelson and J. Bergen, “The plenoptic function and the elements of early
vision,” in Computational Models of Visual Processing. Cambridge, MA: MIT Press,
pp. 3–20, 1991. 

[2] H.Y. Shum, S.B. Kang, and S.C. Chan, “Survey of image-based representations
and compression techniques,” IEEE Trans. Circuits Syst. Video Technol., vol. 13,
no. 11, pp. 1020–1037, Nov. 2003. 

[3] C. Zhang and T. Chen, “A survey on image-based rendering—Representation,
sampling and compression,” in EURASIP Signal Processing: Image Commun.,
vol. 19, no. 1, pp. 1–28, Jan. 2004.

[4] H.Y. Shum, S.C. Chan, and S.B. Kang, Image-Based Rendering. New York:
Springer-Verlag, 2006.

[5] L. McMillan and G. Bishop, “Plenoptic modeling: An image-based rendering
system,” in Proc. SIGGRAPH (ACM Trans. Graphics), Aug. 1995, pp. 39–46.

[6] R. Szeliski and H.Y. Shum, “Creating full view panoramic image mosaics and
environment maps,” in Proc. SIGGRAPH (ACM Trans. Graphics), Aug. 1997, pp.
251–258.

[7] H.Y. Shum and L.W. He, “Rendering with concentric mosaics,” in Proc.
SIGGRAPH (ACM Trans. Graphics), Aug. 1999, pp. 299–306.

IEEE SIGNAL PROCESSING MAGAZINE [32] NOVEMBER 2007

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 4, 2008 at 11:27 from IEEE Xplore.  Restrictions apply.



IEEE SIGNAL PROCESSING MAGAZINE [33] NOVEMBER 2007

[8] M. Levoy and P. Hanrahan, “Light field rendering,” in Proc. SIGGRAPH (ACM
Trans. Graphics), Aug. 1996, pp. 31–42. 

[9] S.J. Gortler, R. Grzeszczuk, R. Szeliski, and M.F. Cohen, “The lumigraph,” in
Proc. SIGGRAPH (ACM Trans. Graphics), Aug. 1996, pp. 43–54.

[10] H.Y. Shum, J. Sun, S. Yamazaki, Y. Lin, and C.K. Tang, “Pop-up light field: An
interactive image-based modeling and rendering system,” ACM Trans. Graphics,
vol. 23, no. 2, pp. 143–162, Apr. 2004.

[11] C.L. Zitnick, S.B. Kang, M. Uyttendaele, S. Winder, and R. Szeliski,
“High-quality video view interpolation using a layered representation,” in
Proc. SIGGRAPH (ACM Trans. Graphics), Aug. 2004, pp. 600–609.

[12] S.C. Chan, K.T. Ng, Z.F. Gan, K.L. Chan, and H.Y. Shum, “The plenoptic
videos,” IEEE Trans. Circuits Syst. Video Technol., vol. 15, no. 12, pp. 1650–1659,
Dec. 2005.

[13] B. Wilburn, M. Smulski, H.H. Lee, and M. Horowitz, “The light field video
camera,” in Proc. SPIE Electronic Imaging: Media Processors’2002, vol. 4674, Jan.
2002, pp. 29–36. 

[14] T. Naemura, J. Tago and H. Harashima, “Real-time video-based modeling and
rendering of 3D scenes,” IEEE Comput. Graphics Applicat., vol. 22, no. 2, pp.
66–73, Mar.–Apr. 2002.

[15] J.C. Yang, M. Everett, C. Buehler, and L. McMillan, “A real-time distributed
light field camera,” in Proc. Eurographics Workshop on Rendering, 2002, pp.
77–86.

[16] B. Goldlücke, M. Magnor, and B. Wilburn, “Hardware-accelerated dynamic
light field rendering,” in Proc. VMV’2002, pp. 455–462.

[17] C. Zhang and T. Chen, “Active rearranged capturing of image-based rendering
scenes-Theory and practice,” in IEEE Trans. Multimedia, vol. 9, no. 3, pp. 520–531,
Apr. 2007.

[18] K.T. Ng, S.C. Chan, and H.Y. Shum, “The data compression and transmission
aspects of panoramic videos,” IEEE Trans. Circuits Syst. Video Technol., vol. 15,
no. 1, pp. 82–95, Jan. 2005.

[19] M. Agrawala, R. Ramamoorthi, A. Heirich, and L. Moll, “Efficient image-based
methods for rendering soft shadows,” in Proc. SIGGRAPH (ACM Trans. Graphics),
2000, pp. 372–384.

[20] R. Ng, R. Ramamoorthi, and P. Hanrahan, “Triple product wavelet inte-
grals for all-frequency relighting,” in Proc. SIGGRAPH (ACM Trans. Graphics),
2004, pp. 477–487.

[21] P. Sloan, J. Kautz, and J. Snyder, “Precomputed radiance transfer for real-time
rendering in dynamic, low- frequency lighting environment,” in Proc. SIGGRAPH
(ACM Trans. Graphics), 2002, pp. 527–536.

[22] K. Zhou, Y. Hu, S. Lin, B. Guo, and H.Y. Shum, “Precomputed shadow fields
for dynamic scenes,” in Proc. SIGGRAPH (ACM Trans. Graphics), 2005, pp.
1196–1201.

[23] Z.F. Gan, S.C. Chan, K.T. Ng, and H.Y. Shum, “An object-based approach to
plenoptic videos,” in Proc. IEEE Int. Symp. Circuits and Systems, May 2005, pp.
3435–3438.

[24] S.C. Chan, Z.F. Gan, K.T. Ng, and H.Y. Shum, “An object-based approach to a
class of dynamic image-based representations,” submitted for publication. 

[25] J. Shade, S. Gortler, L.W. He, and R. Szeliski, “Layered depth images,” in Proc.
SIGGRAPH (ACM Trans. Graphics), Orlando, FL, July 1998, pp. 231–242.

[26] C. Chang, G. Bishop, and A. Lastra, “LDI tree: A hierarchical representa-
tion for image-based rendering,” in Proc. SIGGRAPH (ACM Trans. Graphics),
Aug. 1999, pp. 291–298.

[27] P.E. Debevec, Y. Yu, and G. Borshukov, “Efficient view-dependent image-based
rendering with projective texture-mapping,” in Proc. Eurographics Workshop on
Rendering, 1998, pp. 150–116.

[28] L. Wang, W. Wang, J. Dorsey, X. Yang, B. Guo, and H.Y. Shum, “Real-time ren-
dering of plant leaves,” in Proc. SIGGRAPH (ACM Trans. Graphics), July 2005, pp.
712–719.

[29] J.X. Chai, X. Tong, S.C. Chan and H.Y. Shum, “Plenoptic sampling,” in Proc.
SIGGRAPH (ACM Trans. Graphics), July 2000, pp. 307–318.

[30] Y.Y. Chuang, B. Curless, D.H. Salesin, and R. Szelishi, “A Bayesian approach to
digital matting,” in Proc. IEEE Conf. CVPR, vol. 5, 2001, pp. 264–271.

[31] Q. Wu, K.T. Ng, S.C. Chan and H.Y. Shum, “On object-based compression for a
class of dynamic image-based representations,” in Proc. IEEE Int. Conf. Image
Processing, Italy, vol. 3, Sept. 11–14, 2005, pp. 405–408.

[32] Y. Li, J. Sun, C.K. Tang, and H.Y. Shum, “Lazy snapping,” in Proc. SIGGRAPH
(ACM Trans. Graphics), 2004, pp. 303–308.

[33] S.J. Osher and J.A. Sethian, “Fronts propagation with curvature dependent
speed: Algorithms based on Hamilton-Jacobi formulations,” J. Compute. Phys.,
vol. 79, no. 1, pp. 12–49, 1988.

[34] T.F. Chan and L.A. Vese, “Active contours without edges,” IEEE Trans. Image
Processing, vol. 10, no. 2, pp. 266–277, Feb. 2001.

[35] D. Scharstein and R. Szeliski, “A taxonomy and evaluation of dense two-frame
stereo correspondence algorithms,” Int. J. Computer Vision, vol. 47, no. 1/2/3, 
pp. 7–42, 2002 [Online]. Available: http://www.middlebury.edu/stereo/

[36] A. Klaus, M. Sormann, and K. Karner, “Segment-based stereo matching using
belief propagation and a self-adapting dissimilarity measure,” in Proc. ICPR, vol. 3,
2006, pp. 15–18. 

[37] Q. Yang, L. Wang, R. Yang, H. Stewenius, and D. Nister, “Stereo matching
with color-weighted correlation, hierarchical belief propagation and occlusion
handling,” in Proc. IEEE Conf. CVPR, June 2006, vol. 2, pp. 2347–2354.

[38] J. Sun, Y. Li, S.B. Kang, and H.Y. Shum, “Symmetric stereo matching for
occlusion handling,” in Proc. IEEE Conf. CVPR, vol. 2, 2005, pp. 399–406. 

[39] H. Hirschmueller, “Stereo vision in structured environments by consistent
semi-global matching,” in Proc. IEEE Conf. CVPR, 2006, pp. 2386–2393. 

[40] C. Lei, J. Selzer, and Y. Yang, “Region-tree based stereo using dynamic pro-
gramming optimization” in Proc. IEEE Conf. CVPR, 2006, pp. 2378–2385. 

[41] K.J. Yoon and I.S. Kweon, “Adaptive support-weight approach for corre-
spondence search,” IEEE Trans. Pattern Anal. Machine Intell., vol. 28, no. 4,
pp. 650–656, 2006. 

[42] V. Kolmogorov and R. Zabih, “Computing visual correspondence with occlu-
sions using graph cuts,” in Proc. ICCV, 2001, vol. 2, pp. 508–515.

[43] S. Rusinkiewicz, “Survey of BRDF representation for computer graphics,”
1997 [Online]. Available: http://www.cs.princeton.edu/~smr/cs348c-97/
surveypaper.html

[44] A. Wenger, A. Gardner, C. Tchou, J. Unger, T. Hawkins, and P. Debevec,
“Performance relighting and reflectance transformation with time-multi-
plexed illumination,” in Proc. SIGGRAPH (ACM Trans. Graphics), 2005, pp.
756–764.

[45] K.Y.K. Wong and R. Cipolla, “Reconstruction of sculpture from its profiles
with unknown camera positions,” IEEE Trans. Image Process., vol. 13, no. 3,
pp. 381–389, Mar. 2004.

[46] S. Osher and N. Paragios, Geometric Level Set Methods in Imaging, Vision,
and Graphics. New York: Springer-Verlag, 2003.

[47] J.E. Lengyel, “Compression of time-dependent geometry,” in ACM Symp.
Interactive 3D Graphics, pp. 89–96, 1999.

[48] S. Gupta, K. Sengupta, and A. Kassim, “Registration and partitioning-based
compression of 3-D dynamic data,” IEEE Trans. Circuits Syst. Video Technol.,
vol. 13, no. 11, pp. 1144–1155, 2003. 

[49] W. Martin and J. Aggarwal, “Volumetric descriptions of objects from multiple
views,” IEEE Trans. Pattern Anal. Machine Intell., vol. 5, no. 2, pp. 150–158, 1983.

[50] B. García and B. Brunet, “3D reconstruction with projective octrees and
epipolar geometry,” in Int. Conf. Computer Vision, pp. 1067–1072, Jan. 1998.

[51] A. Laurentini, “The visual hull concept for silhouette-based image under-
standing,” IEEE Trans. Pattern Anal. Machine Intell., vol. 16, no. 2, pp. 150–162,
Feb. 1994.

[52] W. Matusik, C. Buehler, R. Raskar, S. Gortler, and L. McMillan, “Image-based
visual hulls,” in Proc. SIGGRAPH (ACM Trans. Graphics), July 2000, pp. 369–374. 

[53] R. Cipolla and A. Blake, “Surface shape from the deformation of apparent con-
tours,” Int. J. Computer Vision, vol. 9, no. 2, pp. 83–112, 1992.

[54] R. Vaillant and O. Faugeras, “Using extremal boundaries for 3-D object model-
ing,” IEEE Trans. Pattern Anal. Machine Intell., vol. 14, no. 2, pp. 157–173, Feb.
1992.

[55] C. Liang and K.Y. Wong, “Robust recovery of shapes with unknown topology
from dual space,” IEEE Trans. Pattern Anal. Machine Intell., to be published. 

[56] T. Kanade, P. W. Rander, and P. J. Narayanan, “Virtualized reality: constructing
virtual worlds from real scenes,” IEEE Multimedia, Immersive Telepresence, vol. 4,
no. 1, pp. 34–47, Jan. 1997. 

[57] S. Vedula, S. Baker, and T. Kanade, “Image-based spatio-temporal modeling
and view interpolation of dynamic events,” ACM Trans. Graphics, vol. 24, no. 2,
pp. 240–261, Apr. 2005.

[58] J. Carranza, C. Theobolt, M.A. Magnor, and H.P. Seidel, “Free-viewpoint video
of human actors,” in Proc. SIGGRAPH (ACM Trans. Graphics), July 2003, pp.
569–577. 

[59] G. Cheung, S. Baker, J. Hodgins, and T. Kanade, “Markerless human motion
transfer,” in Proc. 2nd Int. Symp. 3D Data Processing Visualization Transmission,
Thessaloniki, Greece, Sept. 2004, pp. 373–378. 

[60] G. Cheung, S. Baker, and T. Kanade, “Visual hull alignment and refinement
across time: A 3D reconstruction algorithm combining shape-from-silhouette with
stereo,” in Proc. IEEE Conf. CVPR, vol. 2, June 2003, pp. 375–382. 

[61] M. Magnor, Video-Based Rendering. Wellesley, MA: A.K. Peters, 2005. 

[62] T. Fujii, “A basic study on integrated 3-D visual communication,” Ph.D disser-
tation, The University of Tokyo, 1994 (in Japanese).

[63] T. Fujii, T. Kimoto, and M. Tanimoto, “Ray space coding for 3D visual commu-
nication,” in Proc. Picture Coding Symp. ‘96, Mar. 1996, pp. 447–451.

[64] M. Bertalmino, G. Sapiro, V. Caselles, and C. Ballester, “Image inpainting,” in
Proc. SIGGRAPH ACM Trans. Graphics, 2000, pp. 417–424.

[65] A. Criminisi, P. Perez, and K. Toyama, “Object removal by exemplar-based
inpainting,” in Proc. IEEE Conf. CVPR, 2003, vol. 2, pp. 721–728. [SP]

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 4, 2008 at 11:27 from IEEE Xplore.  Restrictions apply.


