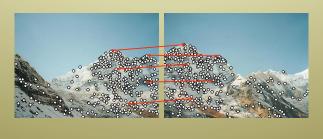
Feature Point Detection and Matching

Wide Baseline Matching

- Images taken by cameras that are far apart make the *correspondence problem* very difficult
- Feature-based approach: Detect and match feature points in pairs of images

Matching with Features

- Detect feature points
- Find corresponding pairs



Matching with Features

- Problem 1:
 - Detect the *same* point *independently* in both images

no chance to match!

We need a repeatable detector

Matching with Features

- Problem 2:
 - For each point, correctly recognize the corresponding point

We need a reliable and distinctive **descriptor**

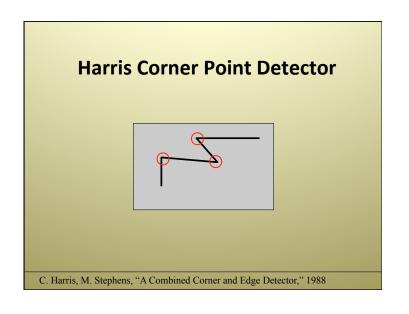
Properties of an Ideal Feature

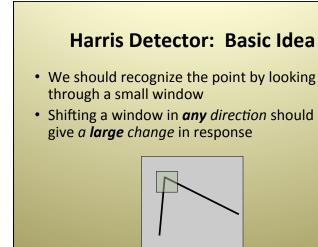
- Local: features are local, so robust to occlusion and clutter (no prior segmentation)
- Invariant (or covariant) to many kinds of geometric and photometric transformations
- Robust: noise, blur, discretization, compression, etc. do not have a big impact on the feature
- Distinctive: individual features can be matched to a large database of objects
- Quantity: many features can be generated for even small objects
- Accurate: precise localization
- Efficient: close to real-time performance

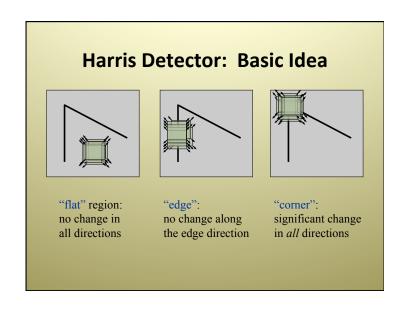
Problem 1: Detecting Good Feature Points

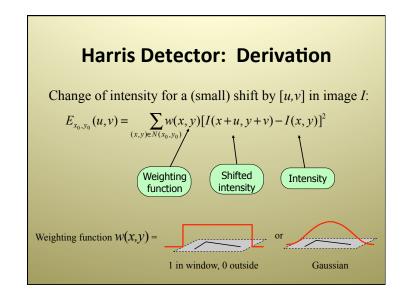
Feature Detectors

- Hessian
- Harris
- Lowe: SIFT (DoG)
- Mikolajczyk & Schmid: Hessian/Harris-Laplacian/Affine
- Tuytelaars & Van Gool: EBR and IBR
- Matas: MSER
- Kadir & Brady: Salient Regions
- and many others









Harris Detector

Approximate using 1st order Taylor series expansion of I:

$$I(x+u, y+v) \approx I(x, y) + I_x u + I_y v$$

$$\approx I(x, y) + \begin{bmatrix} I_x & I_y \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix}$$

Plugging this into previous formula, we get:

$$E(u,v) = Au^2 + 2Cuv + Bv^2$$

$$A = \sum_{x,y} w(x,y) I_x^2(x,y)$$

$$A = \sum_{x,y} w(x,y) I_x^2(x,y)$$

$$B = \sum_{x,y} w(x,y) I_y^2(x,y)$$

$$C = \sum_{x,y} w(x,y) I_x(x,y) I_y(x,y)$$

$$E(u,v) = \begin{bmatrix} u & v \end{bmatrix} \begin{bmatrix} A & C \\ C & B \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix}$$
where $I_x = \partial I(x,y) / \partial x$

$$I_y = \partial I(x,y) / \partial y$$

$$B = \sum_{x,y} w(x,y) I_y^2(x,y)$$

where
$$I_x = \partial I(x, y) / \partial x$$

$$C = \sum_{x,y} w(x,y) I_x(x,y) I_y(x,y)$$

Harris Corner Detector

In summary, expanding E(u,v) in a Taylor series, we have, for small shifts, [u,v], a bilinear approximation:

$$E(u,v) \cong \begin{bmatrix} u & v \end{bmatrix} \mathbf{M} \begin{bmatrix} u \\ v \end{bmatrix}$$

where \mathbf{M} is a 2 x 2 matrix computed from image derivatives:

$$\mathbf{M} = \sum_{x,y} w(x,y) \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix} \qquad I_x = \frac{\partial I(x,y)}{\partial x}$$

$$I_y = \frac{\partial I(x,y)}{\partial y}$$

Note: Sum computed over small neighborhood around given pixel

Harris Corner Detector

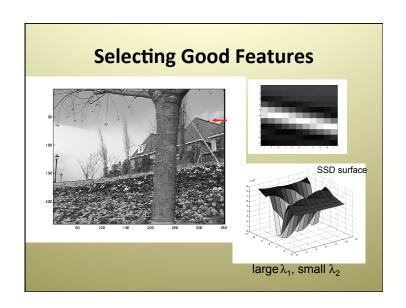
Intensity change in shifting window: eigenvalue analysis

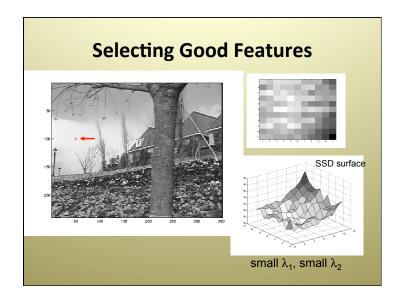
$$E(u,v) \cong \begin{bmatrix} u & v \end{bmatrix} \mathbf{M} \begin{bmatrix} u \\ v \end{bmatrix} \qquad \lambda_{\text{max}}, \ \lambda_{\text{min}} - \text{ eigenvalues of } \mathbf{M}$$

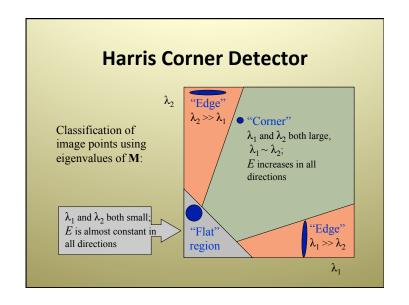
Eigenvector associated with $\lambda_{max} =$ direction of the fastest change in E

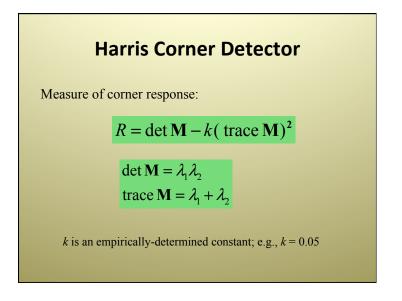
Ellipse E(u,v) = const

Selecting Good Features Image patch SSD surface λ_1 and λ_2 both large





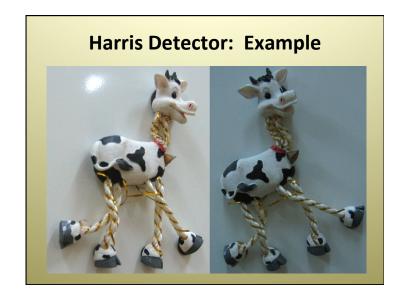


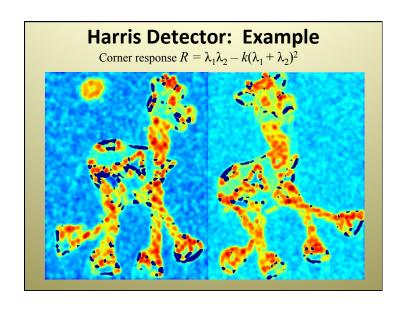


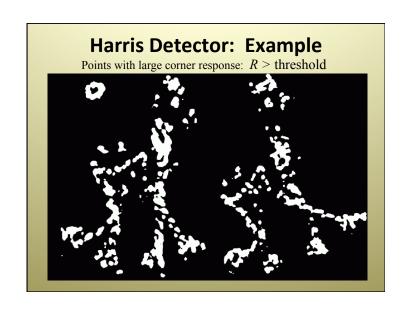
Harris Corner Detector "Edge" "Corner" • R depends only on R < 0eigenvalues of M • *R* is large for a corner R > 0• *R* is negative with large magnitude for an edge • |R| is small for a flat region "Edge" 'Flat' |R| small R < 0 λ_1

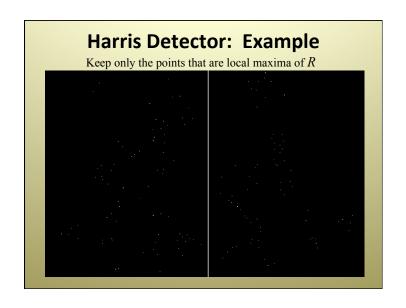
Harris Corner Detector: Algorithm

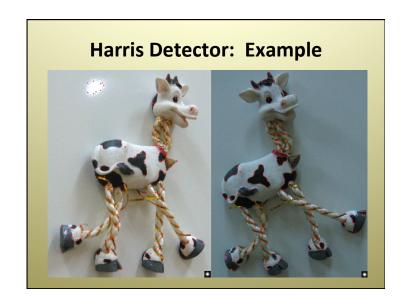
- Find points with large corner response function R
 (i.e., R > threshold)
- 2. Keep the points that are local maxima of *R* (i.e., value of *R* at a pixel is greater than the values of *R* at *all* neighboring pixels)

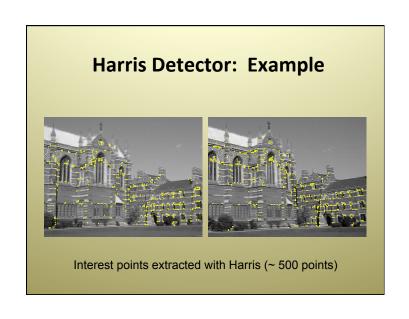












Harris Detector: Example 100 200 300 400 500 100 200 300 400 500 600 700 800

Harris Detector: Summary

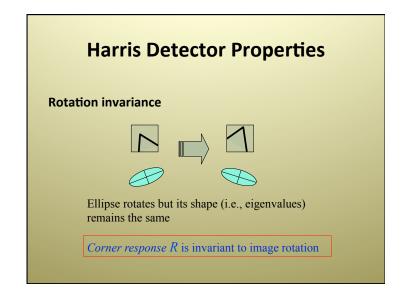
• Average intensity change in direction [*u,v*] can be expressed (approximately) in bilinear form:

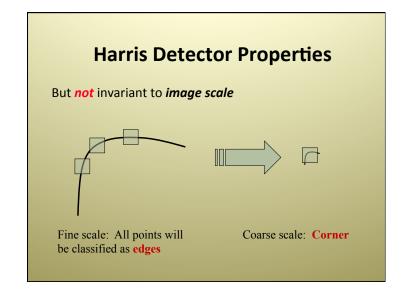
$$E(u,v) \cong \begin{bmatrix} u & v \end{bmatrix} \mathbf{M} \begin{bmatrix} u \\ v \end{bmatrix}$$

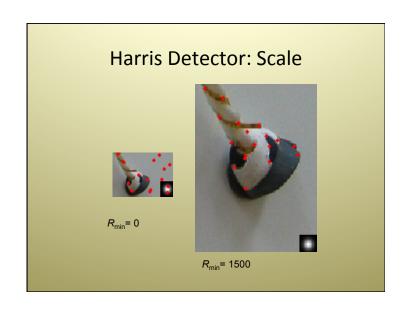
• Describe a point in terms of the eigenvalues of **M**: measure of "cornerness":

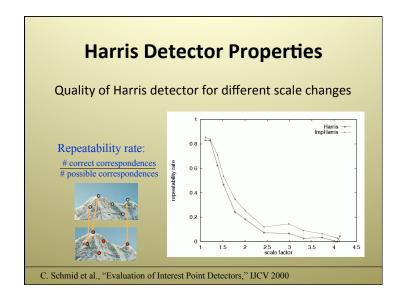
$$R = \lambda_1 \lambda_2 - k (\lambda_1 + \lambda_2)^2$$

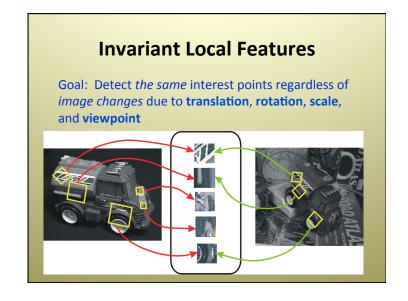
 A good (corner) point should have a large intensity change in most directions, i.e., R should be a large positive value

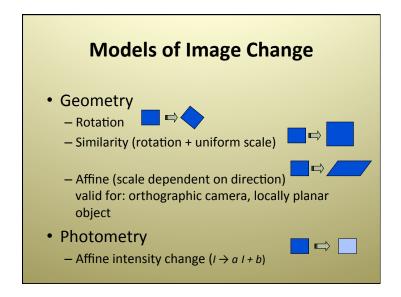




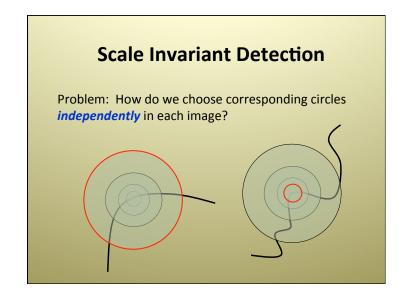


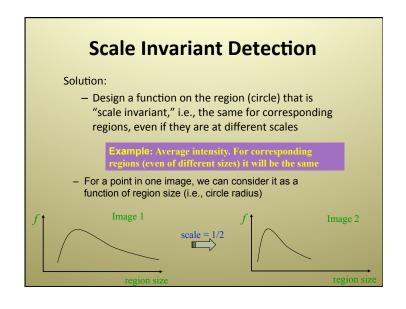


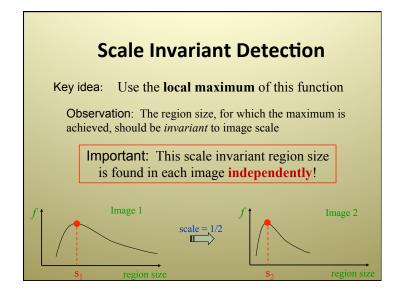


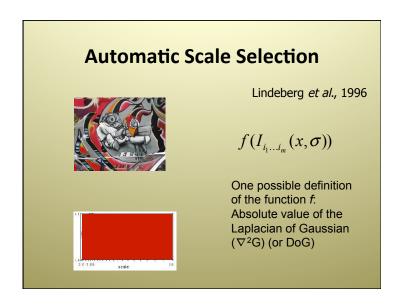


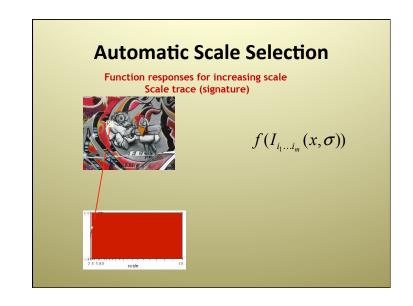
Scale Invariant Detection Consider regions (e.g., circles) of different sizes around a point Regions of corresponding sizes will look the same in both images

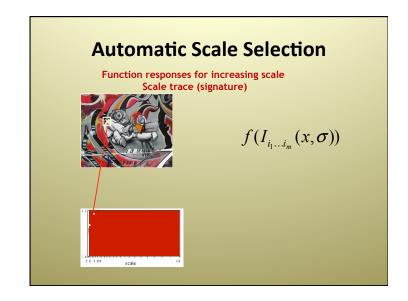


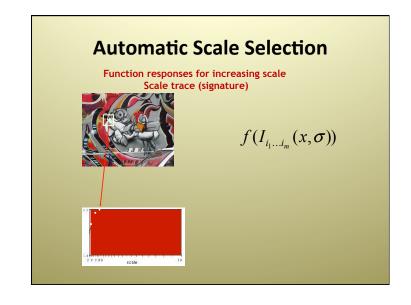


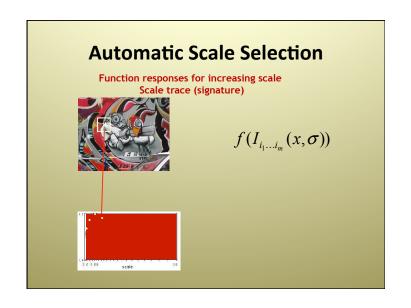


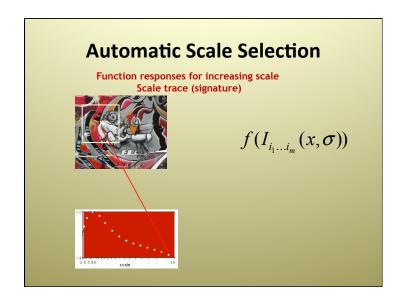


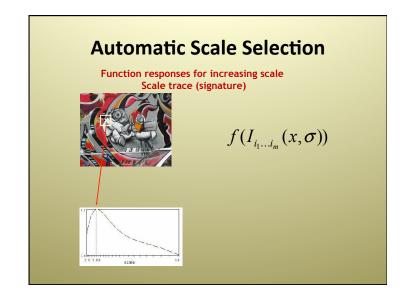


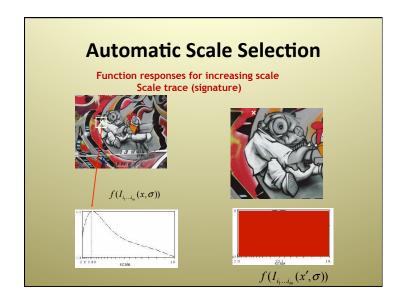


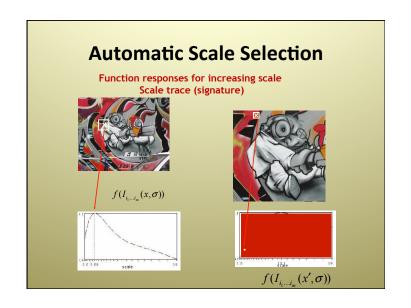


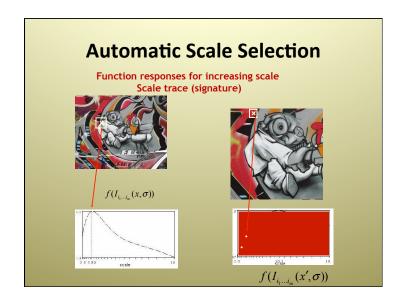


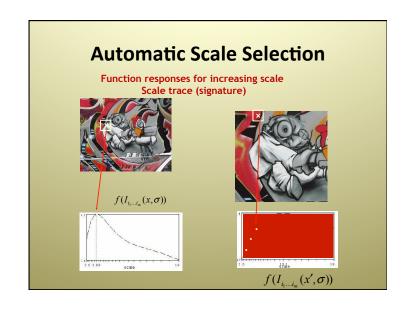


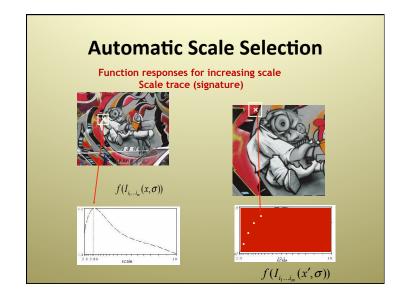


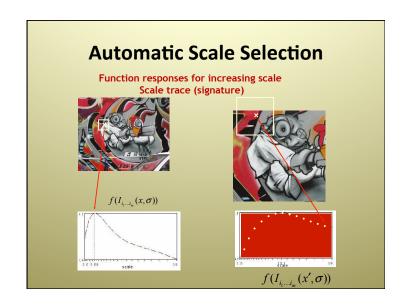


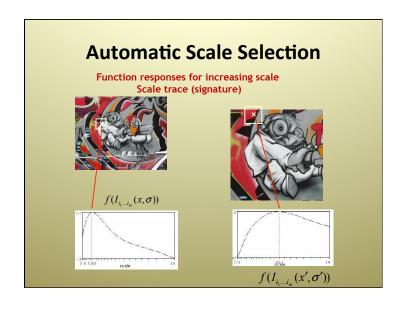


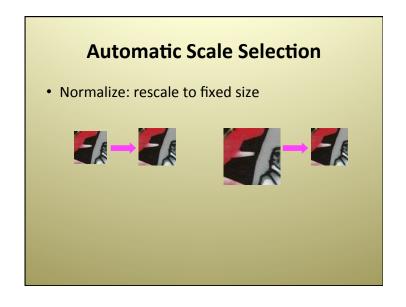


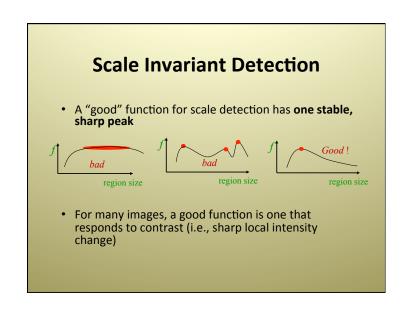


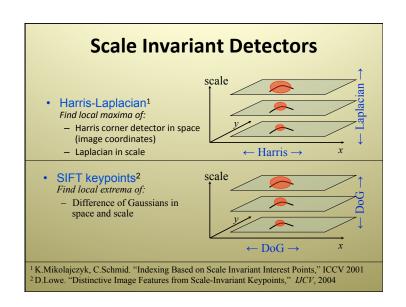


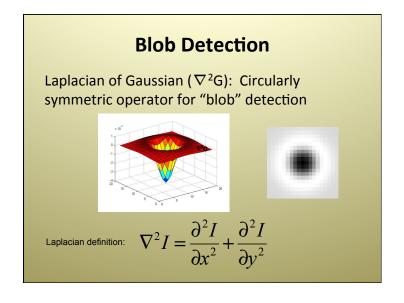


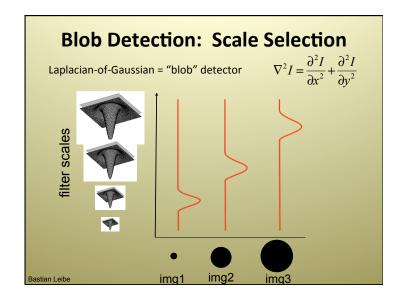


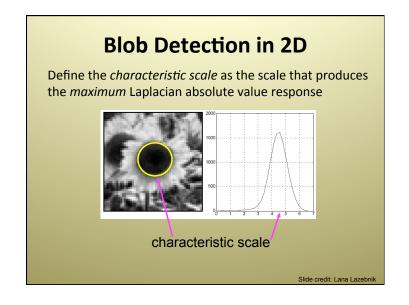


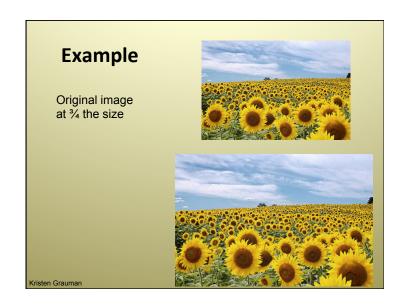


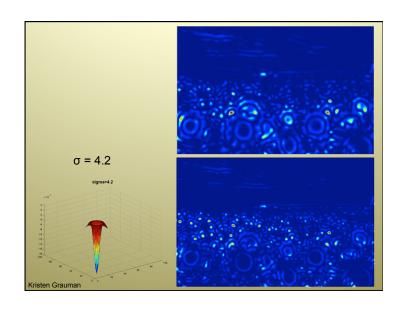


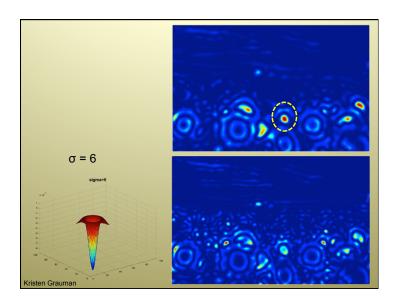


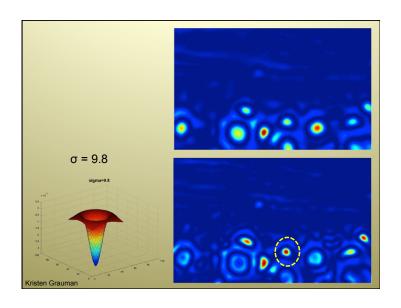


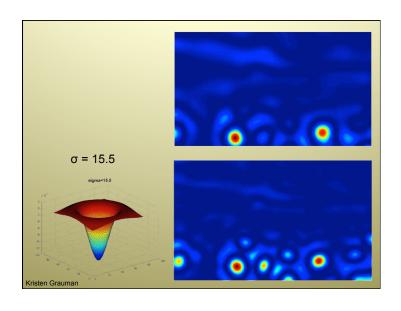


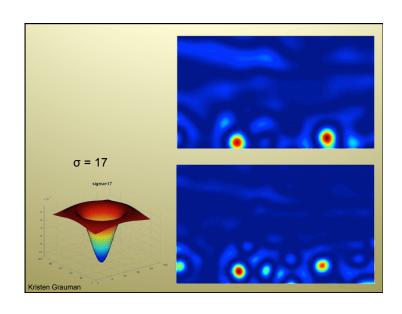


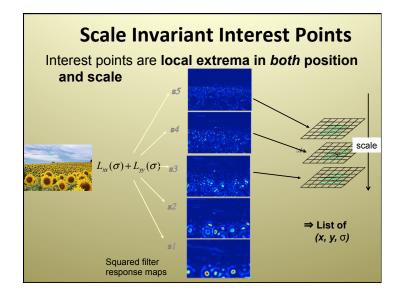


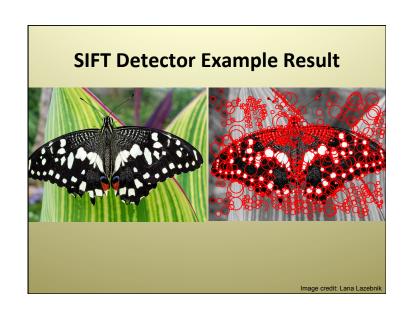


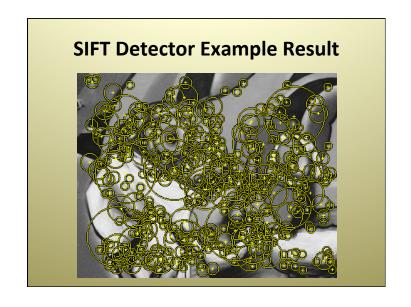


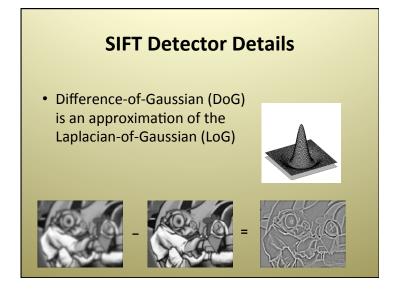


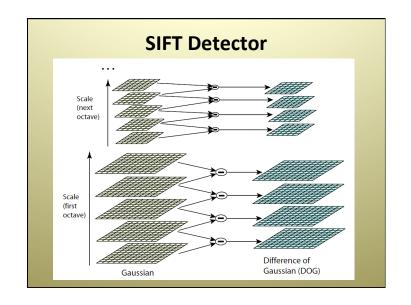


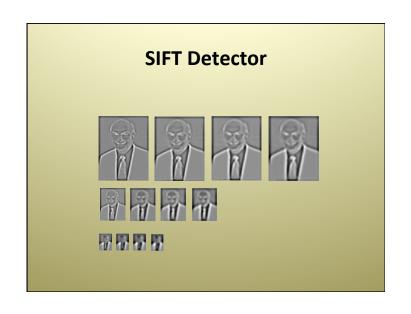




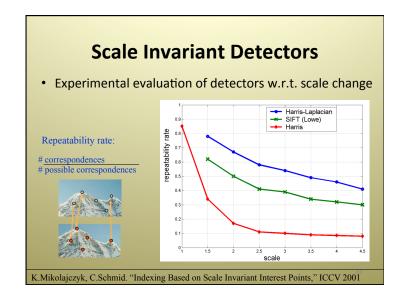


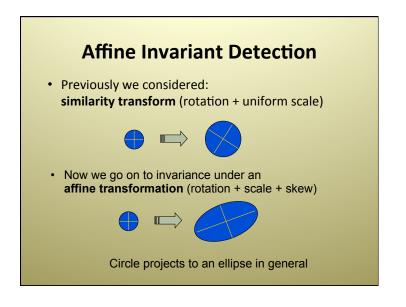


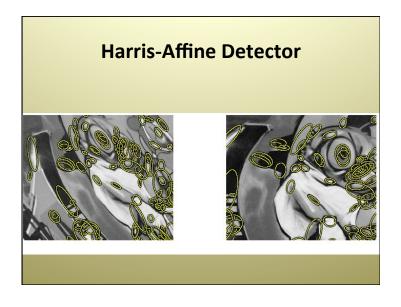


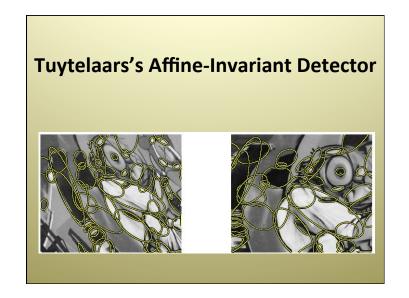


Detect local maxima in position and scale of squared values of Difference-of-Gaussian Fit a quadratic to surrounding values for sub-pixel and sub-scale interpolation Output = list of (x, y, σ) points





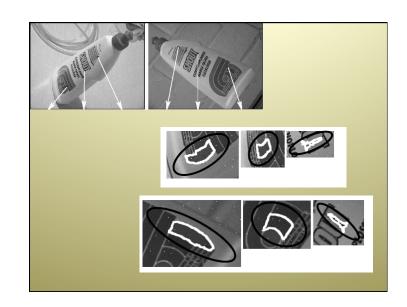


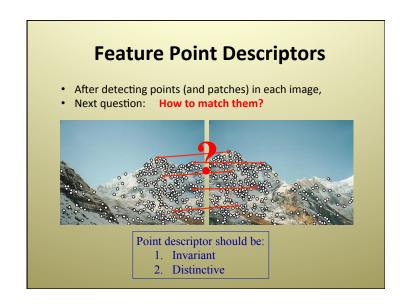


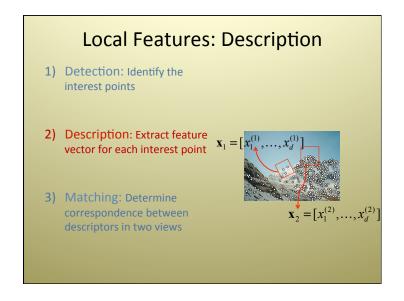
Affine Invariant Region Detection

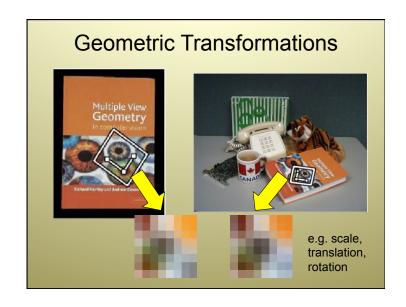
- Algorithm
 - Start from a *local intensity extremum* point
 - Go in every direction until the point of extremum of some function f
 - Curve connecting the points is the region boundary
 - Compute geometric moments of orders up to 2 for this region
 - Replace the region with an ellipse

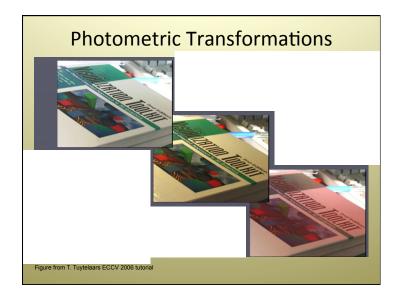
T.Tuytelaars, L.V.Gool. "Wide Baseline Stereo Matching Based on Local, Affinely Invariant Regions," BMVC 2000

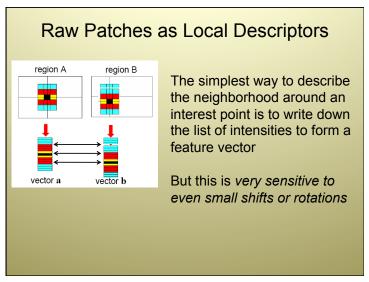


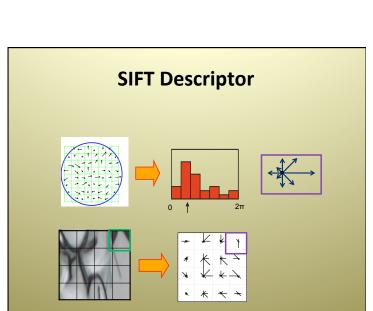






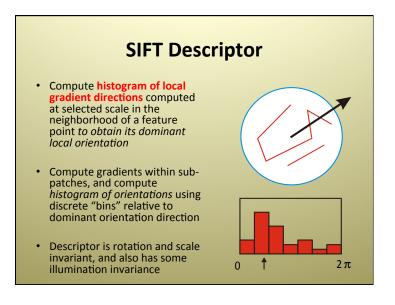






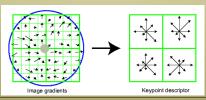
Making Descriptors Invariant to Rotation 1. Find local dominant orientation Direction of gradient: 2. Compute description relative to this orientation

¹ K.Mikolajczyk, C.Schmid. "Indexing Based on Scale Invariant Interest Points". ICCV 2001 ² D.Lowe. "Distinctive Image Features from Scale-Invariant Keypoints". Accepted to IJCV 2004



SIFT Descriptor

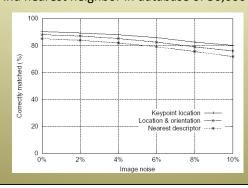
- Compute gradient orientation histograms on 4 x 4 neighborhoods over 16 x 16 array of locations in scale space around each feature point position, relative to the feature point orientation using thresholded image gradients from Gaussian pyramid level at feature point's scale
- · Quantize orientations to 8 values
- 4 x 4 array of histograms
- SIFT feature vector of length 4 x 4 x 8 = 128 values for each feature point
- Normalize the descriptor to make it invariant to intensity change

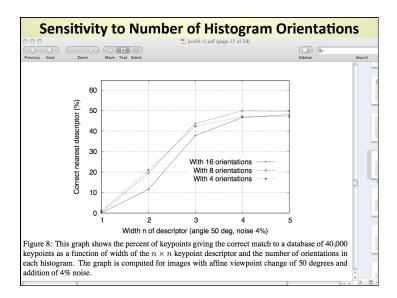


D.Lowe. "Distinctive Image Features from Scale-Invariant Keypoints," IJCV 2004

Feature Stability to Noise

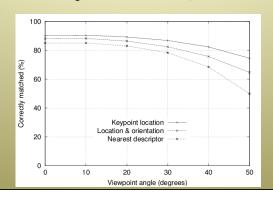
- Match features after random change in image scale & orientation, with differing levels of image noise
- Find nearest neighbor in database of 30,000 features





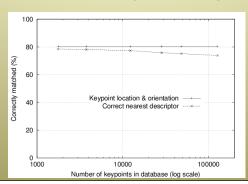
Feature Stability to Affine Change

- Match features after random change in image scale & orientation, with 2% image noise, and affine distortion
- Find nearest neighbor in database of 30,000 features



Distinctiveness of Features

- Vary size of database of features, with 30 degree affine change, 2% image noise
- Measure % correct for single nearest neighbor match



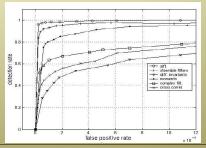
Feature Detection and Description Summary

- Stable (repeatable) feature points can currently be detected that are invariant to
 - Rotation, scale, and affine transformations, but *not* to more general perspective and projective transformations
- Feature point descriptors can be computed, but
 - are noisy due to use of differential operators
 - are *not* invariant to projective transformations

SIFT Descriptor Performance

Empirically found to have good performance in terms of invariance to *image rotation, scale, intensity change,* and to moderate *affine* transformations, illumination changes, viewpoint, occlusion

Scale = 2.5Rotation = 45°

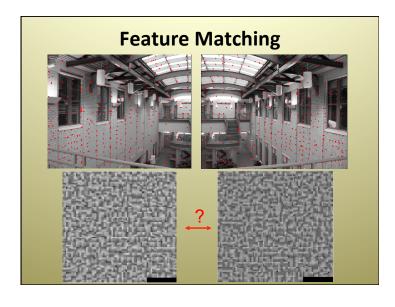


D.Lowe, "Distinctive Image Features from Scale-Invariant Keypoints," IJCV 2004

²K.Mikolajczyk, C.Schmid, "A Performance Evaluation of Local Descriptors," CVPR 2003

How to Improve Feature Detectors and Descriptors?

- Invariant to large changes in camera viewpoint, i.e., projective invariance
- Robust to image noise by using descriptor based on integral invariants instead of differential features
- Incorporate color and texture into descriptor



Feature Matching

- Standard approach for pairwise matching:
 - For each feature point in image A
 - Find the feature point with the closest descriptor in image B
 - Euclidean distance between descriptors
 - Angle between unit-length normalized vectors

From Schaffalitzky and Zisserman '02

Feature Matching

- Compare the distance, d1, to the closest feature, to the distance, d2, to the second closest feature
- Accept if *d1/d2* < 0.6
 - If the ratio of distances is less than a threshold, keep the feature
- Why the ratio test?
 - Eliminates hard-to-match repeated features
 - Distances in SIFT descriptor space seem to be nonuniform

Feature Matching

- Exhaustive search
 - for each feature in one image, look at all the other features in the other image(s)
- Hashing
 - compute a short descriptor from each feature vector, or hash longer descriptors (randomly)
- Nearest neighbor techniques
 - kd-trees and variants

Wide-Baseline Feature Matching

- Because of the high dimensionality of features, approximate nearest neighbors are often used for computational efficiency
- See ANN package, Mount and Arya http://www.cs.umd.edu/~mount/ANN/

Summary

- Interest point detection
 - Harris corner detector
 - SIFT (Laplacian of Gaussian, automatic scale selection)
- Compute descriptors
 - Rotation according to dominant gradient direction
 - Histograms for robustness to small shifts and translations (SIFT descriptor)
- Match descriptors
 - Approximate nearest-neighbor in feature space