

Canon Powershot

Also, smile and blink detection too in some cameras

Robust Real-Time Face Detection

Viola and Jones, 2003

The Viola-Jones Algorithm

- Feature Extraction
 - At each position and scale, compute a feature vector based on a 24 x 24 window of pixels
- Classification
 - A type of decision tree classifier is used to decide if window contains a face or not

Computing Features

- Given a window size of 24 x 24, the set of 4 types of rectangular features is scaled and shifted over image, resulting in a feature vector of length ~160,000
- Want to rapidly compute these features

Integral Image

- Aka "Summed Area Table" (1984)
- Intermediate representation of the image
 Sum of all pixels above and to left of (x, y) in image i:

$$ii(x, y) = \sum_{x' \le x, y' \le y} i(x', y')$$

· Computed in one pass over the image:

$$ii(x, y) = i(x, y) + ii(x-1, y) + ii(x, y-1) - ii(x-1, y-1)$$

Boosting (Schapire 1989)

- Randomly select n₁ < n samples from training set D without replacement to obtain D₁
 Train weak classifier C₁
- Select n₂ < n samples from D with half of the samples misclassified by C₁ to obtain D₂
 Train weak classifier C₂
- Select all samples from *D* that C₁ and C₂ disagree on

 Train weak classifier C₃
- Final classifier is the majority vote of the 3 weak classifiers

Terminology

- Weak Classifier: < 50% error over any distribution
- Strong Classifier: thresholded linear combination of weak classifier outputs

AdaBoost - Adaptive Boosting

- Instead of sampling, re-weight
- · Learn a single simple classifier
- · Classify the data
- · Look at where it makes errors
- Re-weight the data so that the inputs where errors
 were made get higher weight in the learning process
- Now learn a 2nd simple classifier using the weighted data
- Combine the 1st and 2nd classifiers and weight the data according to where they make errors
- Learn a 3rd classifier based on the weighted data
- · Continue until T simple classifiers are learned
- Final classifier is the weighted combination of all T classifiers

AdaBoost

AdaBoost combines many weak classifiers into one strong classifier

AdaBoost Main Ideas

- Individual features will be used as weak classifiers
- Concatenate several detectors serially into a cascade
- Boost (using a version of AdaBoost) a number of features to get 'good enough' detectors

Weak Classifiers

 Defined by a feature, *f*, computed on a window in the image, a threshold, θ, and a parity, p:

$$a_j(x) = \begin{cases} 1 & \text{if } p_j f_j(x) < p_j \theta_j \\ 0 & \text{otherwise} \end{cases}$$

- Thresholds are obtained by the mean value for the feature on both classes and then averaging the two values
- · Parity defines the direction of the inequality

1

• Given a training set of images

- For t = 1, ...,T (rounds of boosting)
 - A weak classifier is trained using a *single* feature
 - · The error of the classifier is calculated
- The classifier (i.e., single feature) with the lowest error is selected, and combined with the previous ones to make a strong classifier
- After a T rounds a T-strong classifier is created
 - It is the weighted linear combination of the selected weak classifiers

Main Ideas

- Individual features will be used as weak classifiers
- Concatenate several detectors serially into a cascade
- Boost (using a version of AdaBoost) a number of features to get 'good enough' detectors

Cascading

- Start with a simple classifier that rejects many of the negative windows while detecting almost all positive windows plus some negative windows
- Positive results from the first classifier triggers the evaluation of a second (more complex) classifier, and so on
 - Each classifier is trained with the false positives from the previous classifier
- A negative outcome at any point leads to the immediate rejection of the window (i.e., the window does *not* contain a face)

Detection in Real Images

- Basic classifier operates on 24 x 24 windows
- Scaling
 - Features evaluated at multiple scales
 - Scale by factors of 1.25
 - Scale the detector (rather than the images)
- Location
 - Move detector around the image (e.g., 1 pixel increments)
- Final Detection
 - A real face may result in multiple nearby detections
 - Postprocess detected windows to combine overlapping detections into a single detection

Recognition should be Invariant to

- Lighting variation
- Head pose variation
- Different expressions ٠
- Beards, disguises ٠
- Glasses, occlusion ٠
- Aging, weight gain ٠
- ٠ ...

Inter-class Similarity

• Different people may have very similar appearance

Twins

Father and son

Blurred Faces *are* Recognizable

P. Sinha and T. Poggio, I think I know that face, Nature 384, 1996, 404.

Key Idea: "Visual Words" Cluster the keypoint descriptors Assign each descriptor to a cluster number What does this buy us? Each descriptor was 128-dimensional, now is integer (easy to match!)

- Is there a catch?
 - Need **a lot** of clusters (e.g., 1 million) if we want points in the same cluster to be very similar

Slide by D. Hoiem

Key Idea: "Visual Words"

- Cluster the keypoint descriptors
- Assign each descriptor to a cluster number
- Represent an image region with a count of these "visual words"

Slide by D. Hoiem

Key Idea: "Visual Words"

- Cluster the keypoint descriptors
- Assign each descriptor to a cluster number
- Represent an image region with a count of these "visual words"
- An image is a good match if it has a lot of the

The Space of All Face Images When viewed as vectors of pixel values, face images are extremely high-dimensional 100 x 100 image = 10,000 dimensions However, relatively few 10,000-dimensional vectors correspond to valid face images We want to effectively model the subspace of face images

Eigenfaces (Turk and Pentland, 1991)

Use Principle Component Analysis
 (PCA) to reduce the dimensionality

Principal Component Analysis (PCA)• Pattern recognition in high-dimensional spaces• Problems arise when performing recognition in a high-dimensional
space ("curse of dimensionality")• Significant improvements can be achieved by first mapping the
data into a *lower-dimensional sub-space* $x = \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_N \end{bmatrix} - -> reduce dimensionality - -> y = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_K \end{bmatrix} (K << N)$ • The goal of PCA is to reduce the dimensionality of the data while
retaining as much as possible of the variation present in the
original dataset

Principal Component Analysis

- Given: N data points (images) x₁, ..., x_N in R^d
- We want to find a new set of features, *u*, that are linear combinations of original ones:

 $u(\mathbf{x}_i) = \mathbf{u}^{\mathrm{T}}(\mathbf{x}_i - \mathbf{\mu})$

(**µ**: mean of data points)

• What vector **u** in R^d captures the *most variance* of the data?

Principal Component Analysis (PCA)

- Geometric interpretation
 - PCA projects the data along the directions where the data varies the most
 - These directions are determined by the eigenvectors of the covariance matrix corresponding to the largest eigenvalues
- The magnitude of an eigenvalue corresponds to the variance of the data along the eigenvector direction

Eigenfaces: Key Idea

- Assume that most face images lie in a low-dimensional subspace determined by the first k (k < d) directions of maximum variance
- Use PCA to determine the eigenvectors or "eigenfaces," u₁,..., u_k with largest eigenvalues
- Represent all face images in the training set as linear combinations of these eigenfaces

M. Turk and A. Pentland, Face Recognition using Eigenfaces, CVPR 1991

Experimental Results

- Training set: 7,562 images of approximately 3,000 people
- *k* = 20 eigenfaces computed from a sample of 128 images
- Test set accuracy on 200 faces was 95%

Limitations

- The same person may appear differently due to
 - Beard, moustache
 - Glasses
 - Makeup
 - Facial expression
- These have to be represented separately

Human Gesture Recognition

Communicative human movement

Face Verification Problem: Are these Images of the Same Person?

Recognition using Visual Attributes

Method 2: Describe Faces using Similes

Describe a person's appearance in terms of the similarity of different parts of their face to a limited set of "reference" people

Experimental Evaluation Labeled Faces in the Wild Dataset • 6,000 face pairs (3,000 same; 3,000 different) • 10-fold cross-validation

