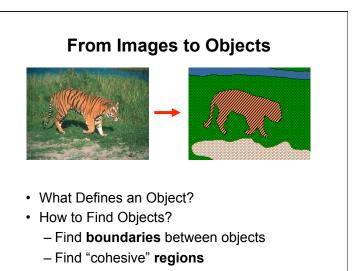
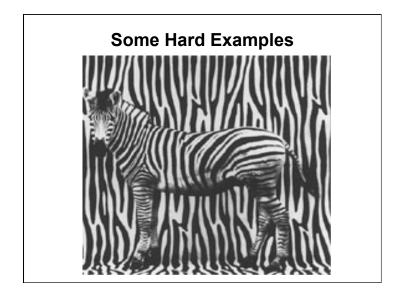
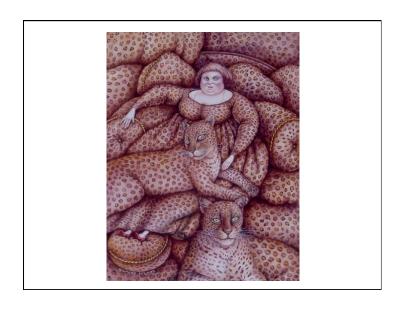


Applications

- Background Subtraction
- · Cut-and-paste
- · Object search
- Scene description







What is Segmentation?

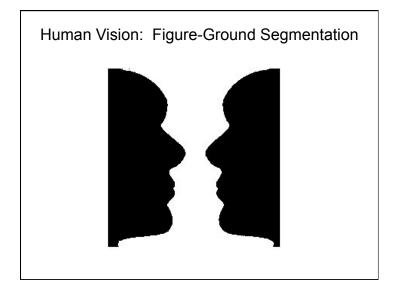
- · Clustering image elements that "belong together"
 - Partitioning
 - · Divide into regions with coherent internal properties
 - Grouping
 - · Identify sets of coherent tokens in image
- · Tokens: Whatever we need to group
 - Pixels
 - "Superpixels" (regions with small range of color or texture)
 - Features (corners, lines, etc.)

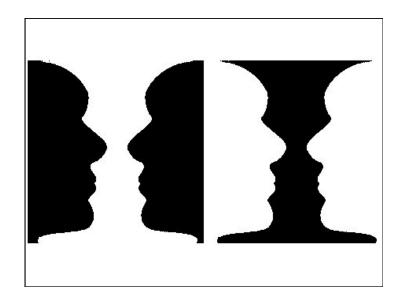
Some Criteria for Segmentation

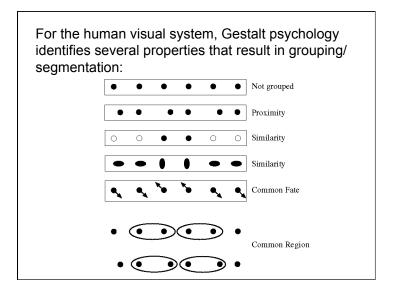
- Pixels within a region should have similar appearance, i.e., the statistics of their pixel intensities, colors, textures, etc. should fit some model. Region should be compact.
- The boundaries between regions should
 - Have discontinuities in color or texture or ...
 - -Smooth or piecewise smooth or ...

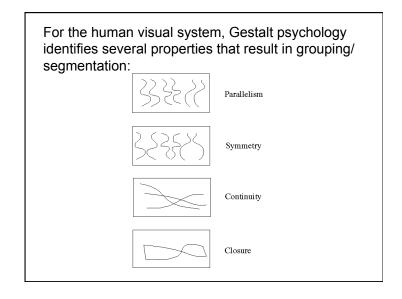
Approaches to Image Segmentation

- Segmentation by Humans
- Manual Segmentation with Games
- Automatic Segmentation Methods
- Interactive Segmentation Methods









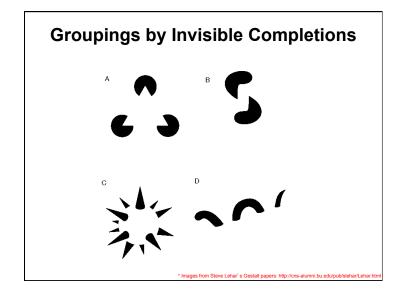


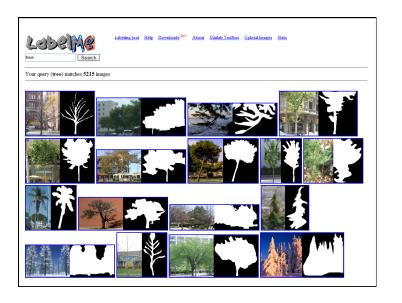
Image Segmentation by Humans

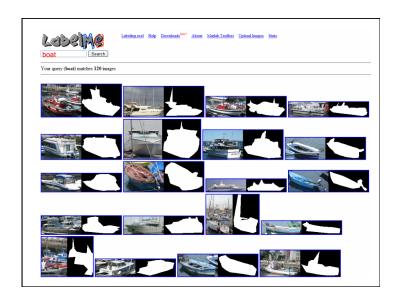
LabelMe

http://labelme.csail.mit.edu/

LabelMe Goals

- The goal of LabelMe is to provide an online annotation tool to build a large database of annotated (= roughly segmented and labeled) images by collecting contributions from many people
- Large set of scenes (indoor, outdoor) and many object classes in context
- Collect the large, high quality database of annotated images
- Images come from multiple sources, taken at many cities/countries (to help avoid overfitting)
- Allow researchers immediate access to the latest version of the database
- LabelMe Matlab toolbox



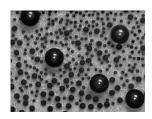


Segmentation as Clustering

- Cluster together (pixels, tokens, etc.) that belong together
- Agglomerative clustering
 - attach to cluster it is closest to
 - -repeat
- Divisive clustering
 - -split cluster along best boundary
 - -repeat

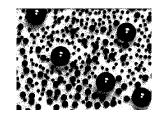
Histogram-Based Segmentation: A Simple Agglomerative Clustering Method

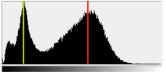
- Goal
 - Segment the image into K regions
 - Solve this by reducing the number of colors to K and mapping each pixel to the closest color



Histogram-Based Segmentation: A Simple Agglomerative Clustering Method

- Goal
 - Segment the image into K regions
 - Solve this by reducing the number of colors to K and mapping each pixel to the closest color

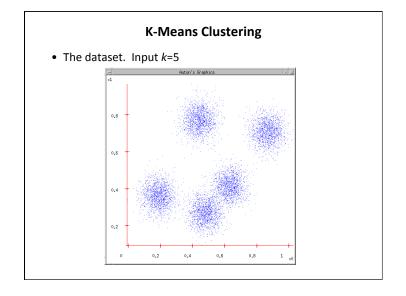


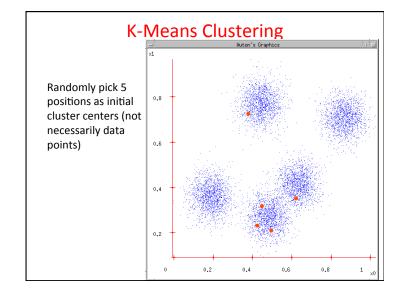


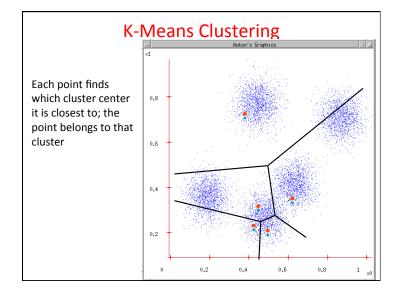
K-Means Clustering

- · K-means clustering algorithm
 - 1. Randomly initialize the cluster centers, $c_1, ..., c_K$
 - 2. Given cluster centers, determine points in each cluster
 - For each point p, find the closest c, Put p in cluster i
 - 3. Given points in each cluster, solve for c_i
 - Set c_i to be the mean of points in cluster i
 - 4. If c_i have changed, go to Step 2
- Properties
 - Will always converge to some solution
 - Can be a "local minimum"
 - does not always find the global minimum of objective function: $\sum \qquad \qquad \sum \qquad ||p-c_i||^2$

clusters i points p in cluster i







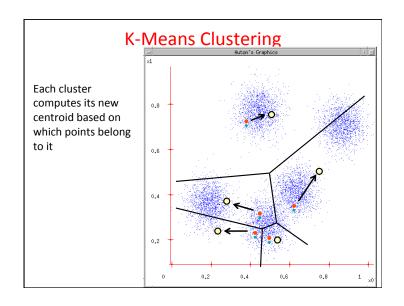
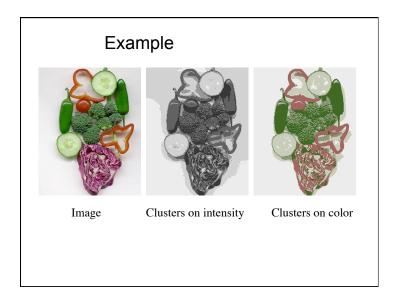
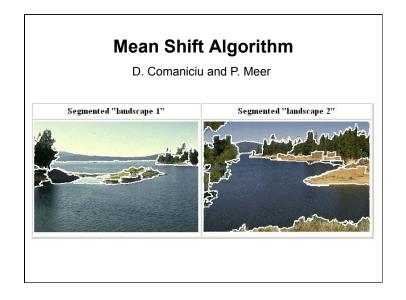


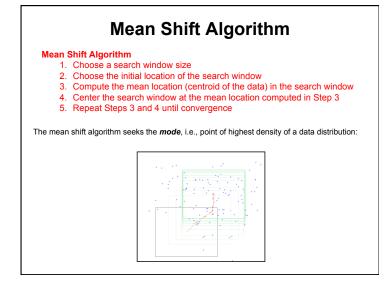


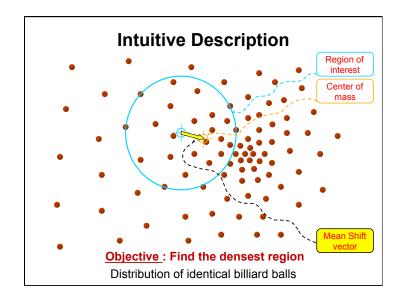
Image Segmentation using K-Means

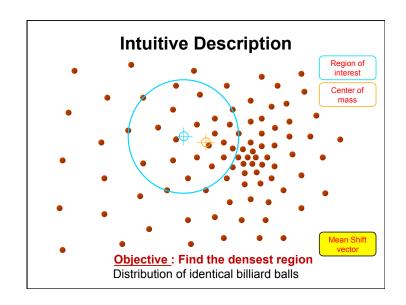
- · Select a value of K
- Select a feature vector for every pixel (color, texture, position, etc.)
- Define a similarity measure between feature vectors (e.g., Euclidean Distance)
- · Apply K-Means algorithm
- Apply Connected Components algorithm
- Merge any components of size less than some threshold to an adjacent component that is most similar to it

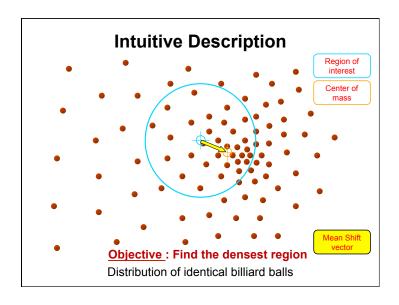


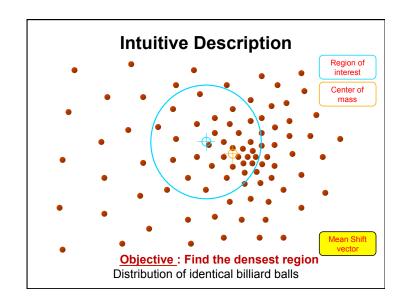


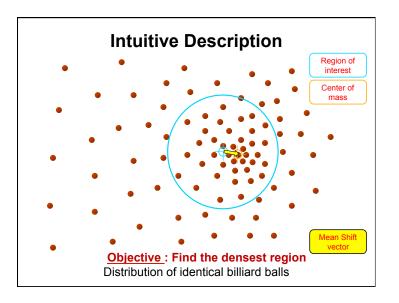


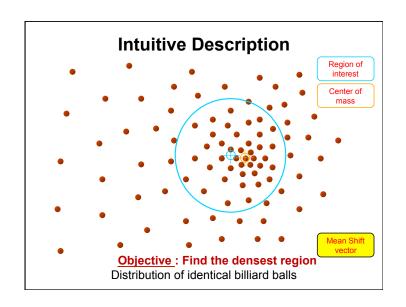


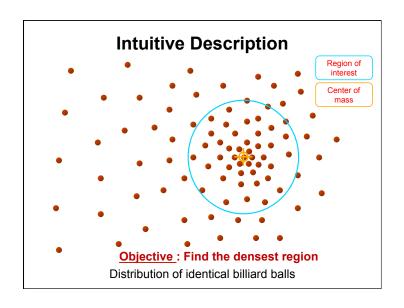


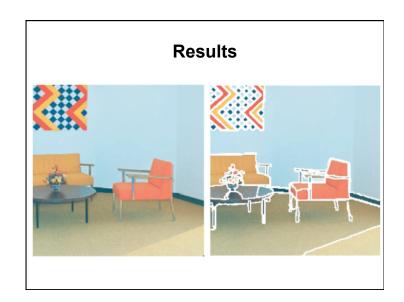


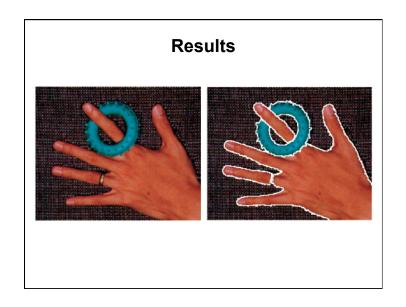


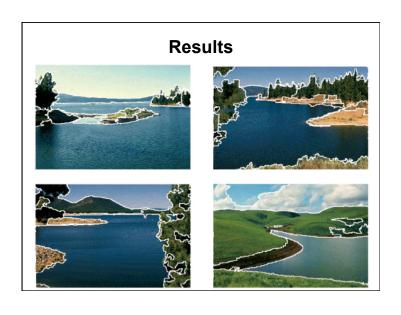






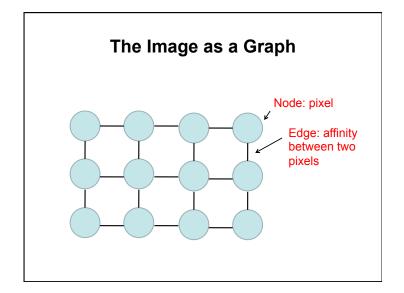






Graph-based Clustering: Images as Graphs

- · Fully-connected graph
 - node for every pixel
 - link between pairs of pixels, p,q
 - cost **affinity**_{pq} for each link
 - affinity_{pg} measures similarity
 - similarity is *inversely proportional* to difference in color, texture, etc.



Affinity (Similarity) Measures

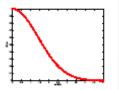
Intensity

$$\operatorname{aff}(\mathbf{x},\mathbf{y}) = e^{-\|I(\mathbf{x}) - I(\mathbf{y})\|^2 / 2\sigma_I^2}$$

Distance

$$\operatorname{aff}(\mathbf{x},\mathbf{y}) = e^{-\|\mathbf{x}-\mathbf{y}\|^2/2\sigma_d^2}$$

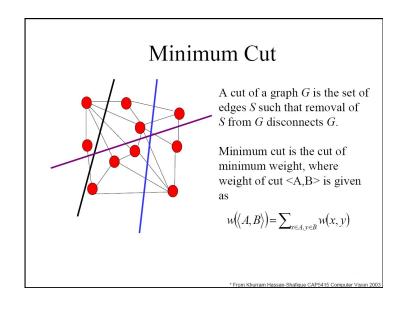
- Color
- Texture
- Motion

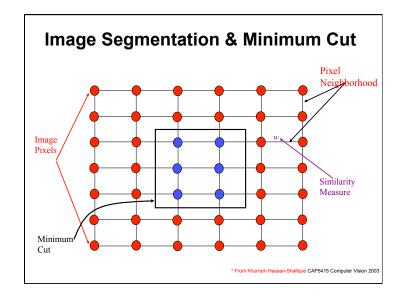


Problem Formulation

- Given an undirected graph G = (V, E), where V is a set of nodes, one for each data element (e.g., pixel), and E is a set of edges with weights representing the affinity between connected nodes
- Find the image partition that maximizes the "similarity" within each region and minimizes the "dissimiliarity" between regions
- Finding the optimal partition is NP-complete

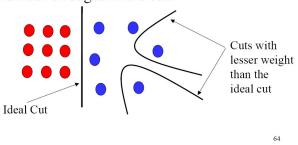
- Let A, B partition G. Therefore, A ∪ B = V, and A ∩ B = Ø
- The **dissimilarity** between A and B is defined as $cut(\mathsf{A},\mathsf{B}) = \sum_{i \in A, j \in B} affinity_{ij}$
 - = total weight of edges removed
- The optimal bi-partition (i.e., segment image into 2 regions) of G is the one that minimizes cut





Drawbacks of Minimum Cut

• Weight of cut is directly proportional to the number of edges in the cut.



* Slide from Khurram Hassan-Shafique CAP5415 Computer Vision 2003

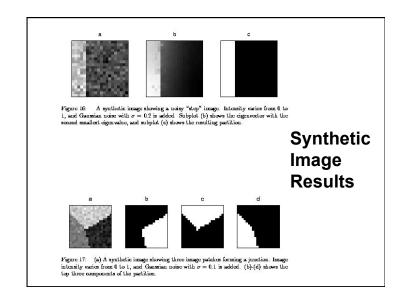
• So, instead define the **normalized** similarity, called the **normalized-cut**(A, B), as

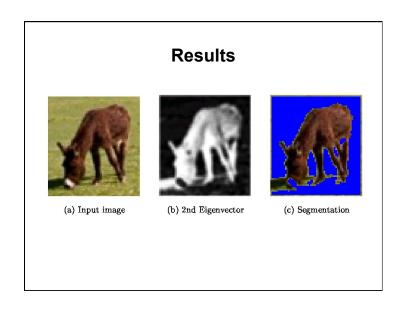
$$ncut(A,B) = \frac{cut(A,B)}{assoc(A,V)} + \frac{cut(B,A)}{assoc(B,V)}$$

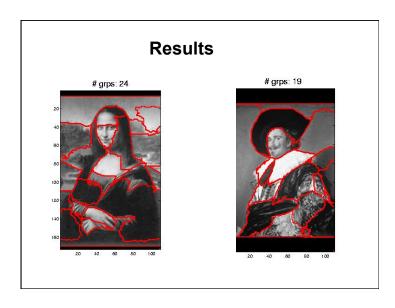
where
$$assoc(A, V) = \sum_{i \in A.k \in V} affinity_i$$

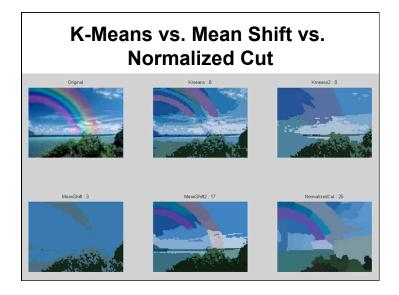
= total connection weight from nodes in A to all nodes in G

- Ncut removes the bias based on region size
- New goal: Find bi-partition that minimizes ncut(A, B)
- Can be found in polynomial time in number of pixels









Some Weaknesses of Normalized Cut

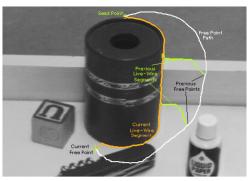
- Very large storage requirement
- Bias towards partitioning into equal segments
- Often over-segments
- Has problems with textured backgrounds

* Slide from Khurram Hassan-Shafique CAP5415 Computer Vision 2003

Interactive Image Segmentation

- Boundary-based methods
 - Intelligent scissors
 - Uses local edge information
 - Snakes / Active contours
 - Uses local edge information and contour smoothness
- · Graph-cut methods
 - GrabCut
 - Uses boundary and region terms

Intelligent Scissors



E. N. Mortensen and W. A. Barrett, Intelligent Scissors for Image Composition, in *Proc. SIGGRAPH*, 1995
Similar to Photoshop's "Magnetic Lasso" tool

Intelligent Scissors

- Approach answers a basic question
 - Q: How to find a path from seed to mouse that follows object boundary as closely as possible?
 - A: Define a path that stays as close as possible to edges

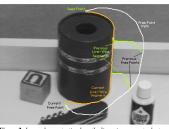
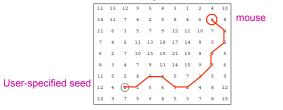


Figure 2: Image demonstrating how the live-vire segment adapts and snaps to an object boundary as the free point moves (via cursor movement). The path of the free point is shown in white. Live-vire segments from previous free point positions (t₀, t₁, and t₂) are shown in green.

Intelligent Scissors

- · Basic Idea
 - Define edge score for each pixel
 - · edge pixels have low cost
 - Find lowest cost 8-path from seed to mouse



Questions

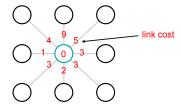
- · How to define costs?
- How to find the path?

Intelligent Scissors

Define boundary cost between neighboring pixels

- a) Lower if edge is present (e.g., with edge(im, 'canny'))
- b) Lower if gradient is strong
- c) Lower if gradient is in direction of boundary

Dijkstra's Shortest Path Algorithm



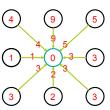
Algorithm

- initialize node costs to ∞; set p = seed point, cost(p) = 0
- 2. expand p as follows:

for each of ${\it p}'$ s neighbors, ${\it q}$, that are not already expanded

 $set cost(\mathbf{q}) = min(cost(\mathbf{p}) + c_{\mathbf{pq}}, cost(\mathbf{q}))$

Dijkstra's Shortest Path Algorithm

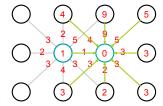


Algorithm

- 1. initialize node costs to ∞ ; set p = seed point, cost(p) = 0
- 2. expand p as follows:

foreach of p's neighbors, q, that are not expanded set $cost(q) = min(cost(p) + c_{pq}, cost(q))$ » if q's cost changed, make q point back to pput q on the ACTIVE list (if not already there)

Dijkstra's Shortest Path Algorithm



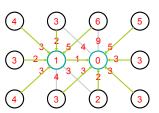
Algorithm

- 1. initialize node costs to ∞ ; set p = seed point, cost(p) = 0
- 2. expand p as follows:

foreach of p' s neighbors, q, that are not expanded

- » set $cost(\mathbf{q}) = min(cost(\mathbf{p}) + c_{\mathbf{pq}}, cost(\mathbf{q}))$
 - » if **q**'s cost changed, make **q** point back to **p**
- " II q 3 cost changed, make q point back to p
- » put \boldsymbol{q} on the ACTIVE list (if not already there)
- 3. set r = node with minimum cost on the ACTIVE list
- 4. goto Step 2 with p = r

Dijkstra's Shortest Path Algorithm



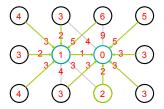
Algorithm

- 1. initialize node costs to ∞ ; set p = seed point, cost(p) = 0
- 2. expand p as follows:

foreach of p's neighbors, q, that are not expanded set $cost(q) = min(cost(p) + c_{pq}, cost(q))$

- » if **q**'s cost changed, make **q** point back to **p** put **q** on the ACTIVE list (if not already there)
- 3. set r = node with minimum cost on the ACTIVE list
- 4. goto Step 2 with p = r

Dijkstra's Shortest Path Algorithm



Algorithm

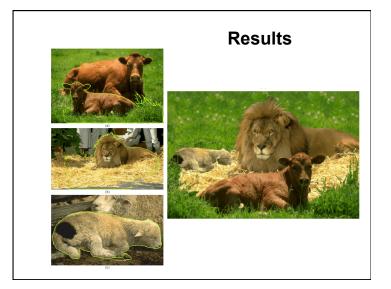
- 1. initialize node costs to ∞ ; set p = seed point, cost(p) = 0
- 2. expand **p** as follows:

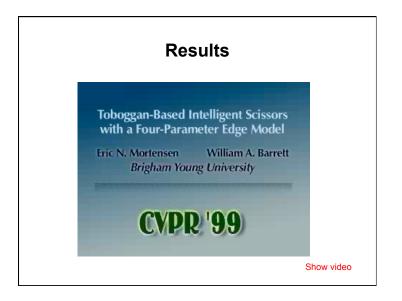
foreach of **p**'s neighbors, **q**, that are not expanded

- » set $cost(q) = min(cost(p) + c_{pq}, cost(q))$
 - » if **q**'s cost changed, make **q** point back to **p**
- » put **q** on the ACTIVE list (if not already there)
- 3. set r = node with minimum cost on the ACTIVE list
- 4. goto Step 2 with p = r

Dijkstra's Shortest Path Algorithm

- Computes the minimum cost path from the seed to every node in the graph. This set of minimum paths is represented as a tree
- Running time, with N pixels:
 - O(N2) time if you use an active list
 - O(N log N) if you use an active priority queue (heap)
 - takes < second for a typical image
- Once this tree is computed, we can extract the optimal path from any point to the seed in O(N/2) time
 - it runs in real time as the mouse moves





Segmentation using Graph Cut

- · Interactive image segmentation using graph cut
- · Binary labeling problem: foreground vs. background
- · User labels some pixels
- Exploit
 - Statistics of known, labeled Foreground and Background pixels
 - Smoothness of boundary
- · Turn into discrete graph optimization problem
 - Graph cut (min cut / max flow)

Graph-Cut Segmentation

Boykov and Jolly, Proc. ICCV, 2001

minimize
$$E(L) = R(L) + \lambda \cdot S(L)$$

- L is a vector specifying the assignment of each pixel p as either foreground (F) or background (B)
- R(L) defines a region term specifying penalties for assigning L_n to F or B
- S(L) describes the boundary properties of the segmentation, S_{p,q} is large when p and q are similar, and is close to 0 when p and q are very different

Energy Function

One labeling:

- · Binary labeling: one value per pixel, F or B
- Energy (labeling) = region + boundary smoothness

- Will be minimized

• Region: for each pixel

- Probability that this intensity belongs to F (resp. B)

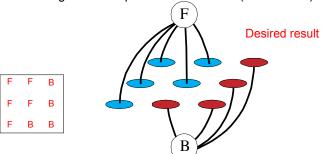
• Boundary:

for each neighboring pixel pair

- Penalty for having different label
- Penalty is down-weighted if the two pixel intensities are very different

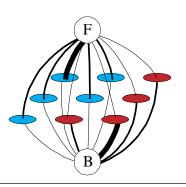
Labeling as a Graph Problem

- Each pixel = node
- · Add two more nodes: F and B
- Labeling: link each pixel to either F or B (but not both)



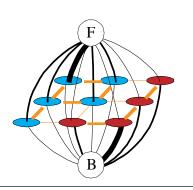
Region Term

- Put one edge between each pixel and both F and B
- Weight of edge = $-R(L_i)$



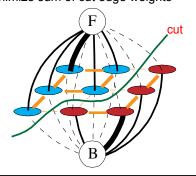
Boundary Term

- Add an edge between each neighboring pair
- Weight = S



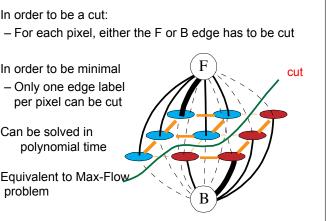
Min Cut

- Energy optimization equivalent to graph min-cut
- · Cut: remove edges to disconnect F from B
- Minimum: minimize sum of cut edge weights



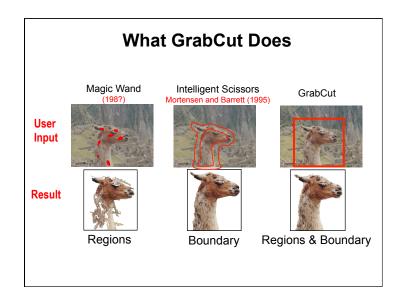
Min Cut ⇔ Labeling

- In order to be a cut:
- In order to be minimal - Only one edge label per pixel can be cut
- Can be solved in polynomial time
- · Equivalent to Max-Flow problem



GrabCut Interactive Image Segmentation

Carsten Rother
Vladimir Kolmogorov
Andrew Blake
Antonio Criminisi
Geoffrey Cross



GrabCut Method

- 1. User draws bounding box; initialize border-of-box pixels as Background
- 2. Initialize interior pixels as Foreground (user does *not* specify foreground pixels)
- 3. Learn models of Foreground and Background regions
- 4. Apply GraphCut
- 5. Update Foreground and Background regions
- 6. Goto Step 3
- 7. Allow user to add cleanup strokes

Iterated Graph Cut

User Initialization

K-means for learning K Gaussian color distributions

Graph cuts to infer the segmentation

179

