







- Specific Eiffel Tower, Golden Gate Bridge, Taj Mahal, ...
- General bakery, store, street, park, ...
- Methods for dealing with each may be different - exact appearance matching vs. generalization





### Global Image Geolocation

- Hays and Efros. *Im2gps: estimating geographic information from a single image*. CVPR 2008.
- Quack, Leibe, Van Gool. World-Scale Mining of Objects and Events from Community Photo Collections. CIVR 2008
- Crandall, Backstrom, Huttenlocher, and Kleinberg. *Mapping the World's Photos*. WWW 2009.

### Landmark Recognition

- What's that I'm looking at?
  - Google Goggles
  - Microsoft Bing for iPhone
  - Layar
  - Hyperlinking reality via camera phones (Univ. Ljubljana)
    - Take photo of a place and hyperlinks to information on the place and possible actions to take pop up



# Scene Reconstruction and Visualization

- Tour into the Picture General places from a single view
- **Façade** Specific places from multiple views
- Photo Tourism / Photosynth Specific places from multiple views
- Finding Paths through World's Photos
- Tour the World Landmark recognition
- Photo Pop-Up General places from a single view
- **Single View Metrology** Reconstruct general places from a single view
- Im2GPS General or specific places

















![](_page_4_Picture_4.jpeg)

![](_page_5_Picture_1.jpeg)

### Façade Overview

- Take a few widely-separated photographs
- Build a simple 3D geometric model of scene
- Use correspondences between photos to adjust scene parameters
- Paste photos back onto simple geometry of scene for realistic façade

Slide credit: D. Luebke

### Photogrammetric Modeling

- User builds a simple geometric model using *blocks*: primitive solid shapes
  - Boxes, wedges, prisms, frusta, surfaces of revolution
- User marks correspondences between images and model
- System fits model to images

Slide credit: D. Luebke

### Photogrammetric Modeling

- The system needs to solve for the parameters of blocks
  - Height, width, translation, rotation, etc.

![](_page_5_Picture_17.jpeg)

Slide credit: D. Luebke

### Photogrammetric Modeling

- Known: image segments to block edge correspondences
- Unknown: block parameters, camera position and orientation
- Architectural constraints reduce the number of unknowns

![](_page_6_Figure_5.jpeg)

Slide credit: D. Luebke

![](_page_6_Picture_7.jpeg)

![](_page_6_Picture_8.jpeg)

![](_page_7_Picture_1.jpeg)

### View-Dependent Texture Mapping

- Given the model, treat each camera position as a "projector"
- But some images overlap
  - Idea: pick image taken from viewpoint *closest* to desired rendering viewpoint
  - Better: use weighted average or do texture mapping on a per-pixel basis

Slide credit: D. Luebke

![](_page_7_Picture_8.jpeg)

![](_page_7_Picture_9.jpeg)

### Photogrammetric Modeling

• Model of UC Berkeley campus constructed from 15 photographs

![](_page_8_Picture_3.jpeg)

![](_page_8_Picture_4.jpeg)

![](_page_8_Picture_5.jpeg)

- Technique used in many movies, including
  - The Matrix
  - The Matrix Reloaded
  - Mission Impossible

### **Automatic 3D Scene Modeling**

- Many products have been developed for visualizing, recognizing, and navigating 3D scenes from a set of photos
  - Microsoft Photosynth
  - -Autodesk 123D Catch
  - -Google Goggles
  - Nokia Image Space

![](_page_9_Picture_7.jpeg)

![](_page_9_Picture_8.jpeg)

![](_page_9_Figure_9.jpeg)

![](_page_10_Picture_1.jpeg)

![](_page_10_Picture_2.jpeg)

![](_page_10_Figure_3.jpeg)

![](_page_10_Figure_4.jpeg)

![](_page_11_Picture_1.jpeg)

![](_page_11_Picture_2.jpeg)

![](_page_11_Picture_3.jpeg)

![](_page_11_Picture_4.jpeg)

![](_page_12_Picture_1.jpeg)

![](_page_12_Figure_2.jpeg)

![](_page_12_Picture_3.jpeg)

Epipolar Geometry and the Fundamental Matrix

![](_page_13_Figure_1.jpeg)

![](_page_13_Figure_2.jpeg)

epipolar plane  $\pi$ 

![](_page_13_Figure_3.jpeg)

![](_page_14_Figure_1.jpeg)

![](_page_14_Figure_2.jpeg)

![](_page_14_Picture_3.jpeg)

• Epipolar geometry constrains search for x' from 2D to 1D

![](_page_14_Figure_5.jpeg)

![](_page_15_Figure_1.jpeg)

### **Fundamental Matrix F**

- The fundamental matrix is the algebraic representation of the epipolar geometry
- The fundamental matrix is the unique 3 x 3, rank 2 matrix that satisfies the condition that for any pair of corresponding points  $\mathbf{x} \leftrightarrow \mathbf{x}'$  in the two images:  $x'^{\mathrm{T}} \mathbf{F} x = 0$
- F has 7 dof's since only known up to scale

![](_page_15_Figure_6.jpeg)

![](_page_15_Picture_7.jpeg)

- Simplifying matching (1D search)

- Verifying candidate SIFT feature point matches

![](_page_16_Figure_1.jpeg)

![](_page_16_Figure_2.jpeg)

![](_page_16_Figure_3.jpeg)

![](_page_16_Picture_4.jpeg)

Refine matching using RANSAC to estimate "fundamental matrices" between pairs of images

F is a 3x3 matrix with rank 2 such that for corresponding points  $y_1$  and  $y_2$ 

 $\mathbf{y_2^T}\mathbf{F}\mathbf{y_1} = 0.$ 

![](_page_16_Picture_8.jpeg)

![](_page_17_Picture_1.jpeg)

![](_page_17_Figure_2.jpeg)

![](_page_17_Figure_3.jpeg)

#### **From Pairwise Matches to Tracks**

 Given pairwise matches, next link up matches to form "tracks"

![](_page_17_Figure_6.jpeg)

### **Correspondence Estimation**

Link up pairwise matches to form connected "tracks" of matching feature points across several images

![](_page_18_Picture_3.jpeg)

![](_page_18_Picture_4.jpeg)

Image 2

![](_page_18_Picture_5.jpeg)

Image 1

Image 3

Image 4

### The Power of Transitivity

![](_page_18_Picture_11.jpeg)

### Most Tracks are Short

Example image collection with 3,000 images:

- 1,546,612 total tracks
- 79% have length 2
- -90% have length ≤ 3
- -98% have length ≤ 10
- Longest track: 385 features

![](_page_18_Picture_19.jpeg)

![](_page_19_Figure_1.jpeg)

![](_page_19_Figure_2.jpeg)

![](_page_19_Figure_3.jpeg)

![](_page_19_Figure_4.jpeg)

![](_page_20_Figure_1.jpeg)

![](_page_20_Figure_2.jpeg)

![](_page_20_Figure_3.jpeg)

![](_page_20_Figure_4.jpeg)

![](_page_21_Picture_1.jpeg)

![](_page_21_Figure_2.jpeg)

![](_page_21_Picture_3.jpeg)

### **Factorization Method for Solving SfM**

- Given a set of matching feature points, estimate the 3D structure and 3D motion (camera poses)
- Assumption: Orthographic Projection camera model
- Matched points:  $(q_{fp}, q_{fp}), f$ : frame, p: point

![](_page_22_Figure_1.jpeg)

![](_page_22_Figure_2.jpeg)

![](_page_22_Figure_3.jpeg)

![](_page_22_Figure_4.jpeg)

![](_page_23_Picture_1.jpeg)

![](_page_23_Picture_2.jpeg)

![](_page_23_Picture_3.jpeg)

- Optimize parameters for two cameras and matching points
- Find new image with most matches to existing points
- Initialize new camera using pose estimation
- Add new points
- Etc.

![](_page_23_Figure_10.jpeg)

![](_page_24_Figure_1.jpeg)

![](_page_24_Figure_2.jpeg)

# Reconstruction Performance • For photo sets from the Internet, 20% to 75% of the photos were registered • Most unregistered photos belonged to different connected components Image: Ima

Dame processed and matched, and 600 reconstructed)

### Example Uses of Reconstruction: Navigation Controls

- Free-flight navigation
- Object-based browsing
- Relation-based browsing
- Overhead map

![](_page_25_Picture_1.jpeg)

![](_page_25_Picture_2.jpeg)

![](_page_25_Picture_3.jpeg)

![](_page_25_Picture_4.jpeg)

![](_page_26_Figure_1.jpeg)

![](_page_26_Picture_2.jpeg)

![](_page_26_Picture_3.jpeg)

![](_page_26_Picture_4.jpeg)

![](_page_27_Picture_1.jpeg)

![](_page_27_Picture_2.jpeg)

![](_page_27_Picture_3.jpeg)

![](_page_27_Figure_4.jpeg)

### Scaling Up: Building Rome in a Day

- City-scale Structure-from-Motion
- Rome: 150,000 images, 21 hours processing time using 496 cores
- Venice: 250,000 images, 65 hours using 496 cores
- 2.7 million images on Flickr from search on "Rome"

## Scene Summarization for Image Collections

- Goal: Select a set of images that efficiently represents the visual content of a given scene. The ideal summary presents the most interesting and important aspects of the scene with minimal redundancy
- Find clusters of images based on SIFT points, then pick 1 "canonical" image for each cluster

Scene Summarization for Online Image Collections

Supplementary Video #1

(this video contains audio)

Scene Summaries for Internet Photo Collections Supplementary Video

![](_page_29_Picture_1.jpeg)

### Where am I?

- Nokia Multimedia Conference Grand Challenge: Where was this photo taken?
- Is geolocation just instance-level landmark recognition or can you reason about location and geography from non-specific scene properties?
- Can image similarity be a proxy for geographic proximity?

![](_page_29_Picture_6.jpeg)

What can you say about where these photos were taken?

### How?

### Collect a large collection of geo-tagged photos

6.5 million images with both GPS coordinates and geographic keywords, removing images with keywords like birthday, concert, abstract, ...

Test set – 400 randomly sampled images from this collection. Manually removed abstract photos and photos with recognizable people – 237 test photos

### Im2gps Image Features

- Gist descriptor 5x5 spatial resolution, 4 scales, 8 orientations. <u>Code</u>
- Tiny Color Image 5x5 and 16x16 spatial resolutions.
- Color Histogram L\*A\*B\* 4x14x14 histograms.
- Texton Histogram 512 entry, filter bank based. Code
- Line Features Histograms of straight line lengths and angles.
- Geometric Context 8x8 probability of geometric class (e.g. Ground, Sky, Vertical, Porous). <u>Code</u>
- Histograms are compared with Chi Squared measure, other features with L1 distance.

### How?

Data-driven geolocation:

- 1. For each input image, compute features
- 2. Compute distance in feature space to all 6 million images in the database (each feature contributes equally)
- 3. Label the image with GPS coordinates of:
  - a. 1-nearest neighbor
  - b. k = 120 nearest neighbors probability map over entire globe

![](_page_30_Picture_16.jpeg)

### im2gps Geographic Photo Density

![](_page_30_Picture_18.jpeg)

6.4 mil. photos by 110K photographers.1 TB of visual data.Photographs had at least one place keyword.Photos average ~1 content descriptive keyword.

![](_page_31_Picture_1.jpeg)

![](_page_31_Picture_2.jpeg)

![](_page_31_Picture_3.jpeg)

![](_page_31_Picture_4.jpeg)

### Modeling Places

Idea: Pop-up book world modeling of places

![](_page_32_Picture_3.jpeg)

# Automatic Photo Pop-Up Three classes of surface: "ground," "sky," "vertical" Not just a box: can model more kinds of scenes Automatic segmentation, classification, and reconstruction

![](_page_32_Picture_5.jpeg)

![](_page_32_Picture_6.jpeg)

![](_page_33_Picture_1.jpeg)

![](_page_33_Picture_2.jpeg)

![](_page_33_Picture_3.jpeg)

![](_page_33_Picture_4.jpeg)

![](_page_34_Picture_1.jpeg)

![](_page_34_Picture_2.jpeg)

![](_page_34_Figure_3.jpeg)

![](_page_35_Figure_1.jpeg)

### What Else can be Computed?

- Assume that images are obtained by perspective projection
- Uncalibrated cameras
- Assume that, from the image, a:
  - vanishing line of a reference plane
  - <u>vanishing point</u> of another *reference direction* can be determined

![](_page_35_Figure_8.jpeg)

### What can be Computed?

- 1. Measurements of the distance between any planes that are parallel to the reference plane
- 2. Measurements on these planes
- 3. The camera's position relative to the reference plane and direction

Results are sufficient for a partial or complete 3D reconstruction of the observed scene

![](_page_36_Figure_1.jpeg)

![](_page_36_Figure_2.jpeg)

![](_page_36_Figure_3.jpeg)

![](_page_36_Figure_4.jpeg)

![](_page_37_Figure_1.jpeg)

![](_page_37_Figure_2.jpeg)

![](_page_37_Figure_3.jpeg)

![](_page_37_Figure_4.jpeg)

![](_page_38_Picture_1.jpeg)

![](_page_38_Picture_2.jpeg)

![](_page_38_Picture_3.jpeg)

11/15/16

![](_page_39_Picture_1.jpeg)