
How MapQuest Works

Michael O’Brien

February 21, 2006

Abstract

MapQuest is a free online service that calculates the optimal route

for driving between two locations. It uses some variant of the bidi-

rectional version of Dijkstra’s algorithm with some “heuristic tricks

to minimize the size of the graph that must be searched” [1]. Apart

from this, AOL (MapQuest’s parent company) is reluctant to release

information on the specifics of their algorithm as this would jeopardise

their position as a market leader.

In this project we consider 5 point-to-point shortest path algorithms

(Dijkstra, A∗, ALT, RE and REAL) and consider their applicability to

the MapQuest problem.

Contents

1 Introduction 3

2 Formulation of the Problem 4

3 Variants of Dijkstra’s Algorithm 5

3.1 The Basic Dijkstra Algorithm 5

3.2 Bidirectional Version of Dijkstra’s Algorithm 9

4 Variants of the A∗ Algorithm 12

4.1 The Original A∗ Algorithm 12

4.2 Bidirectional Lower Bounding Algorithms 16

5 The ALT Algorithm 19

6 The Reach Algorithm 22

7 Combining the Reach and ALT Algorithms 24

8 Performance of Algorithms 25

2

1 Introduction

The problem of finding your way through the back roads and byways of

Ireland is familiar to most, but fumbling with cumbersome fold-out maps

and struggling with inadequate road signs could soon become a thing of the

past due to services like MapQuest. MapQuest produces detailed driving

directions and customised maps within a few seconds for tens of millions of

people a day [1]. These driving directions can go from one specific street

address to another and also give an estimate of travel time. Such a service

obviously takes a lot of the hassle out of journey planning.

The problem of finding the shortest path between two different places

can essentially be seen as the problem of finding the shortest path between

two vertices on a graph, where vertices are locations and edges are roads.

Thus we consider algorithms for finding the shortest path between two points

on a graph. Starting with the most well known, Dijkstra’s algorithm, we

gradually add more and more heuristic tricks until we construct an algo-

rithm capable of finding the shortest path between any two places in North

America in under 4ms [6].

While MapQuest is not yet available in Ireland, services like Yahoo!

Maps and the AA do provide driving directions between most places. And

while they are not yet as specific as MapQuest is in the US, it is really only

a matter of time before they catch up.

3

2 Formulation of the Problem

To begin with, we define a graph. A graph G is a finite set of vertices,

V , together with a collection of pairs of vertices, E, called edges. This is

written as G = (V,E). The vertices are represented by points and the edges

by lines joining pairs of points. If an edge, e, joins a pair of vertices x and

y then x and y are said to be adjacent.

A graph G is said to be weighted if each edge, e, is assigned a nonnegative

number, w(e). We exclude multiple (i.e. parallel) edges. If e joins the

vertices x and y we define l(x, y) = w(e). If a path from a to z is defined by

a → b → . . . → z, then the length of this path is l(a, b)+ l(b, c)+ . . .+ l(y, z).

The length of a shortest path between two vertices a and z (there may be

more than one such path) is defined as dist(a, z).

Figure 1: An example of a graph.

Note that some vertices may not be adjacent to any other (e.g. vertex g

in Figure 1). The numbers beside the edges represent the weights of those

edges. In Figure 1, the path a → d → e → f (written a–d–e–f) has length

15 and dist(a, f) = 15 also.

In the context of this project, the vertices are locations and the edges are

4

the roads between them. The weights are generally travel times or distances

between locations but do not have to be given a physical interpretation.

The MapQuest problem is defined as follows: given a starting point s

and a terminal point t, find a shortest path between s and t. We always

assume that t is reachable from s (i.e. that it is possible to travel along

edges in the graph from s to t).

3 Variants of Dijkstra’s Algorithm

Dijkstra’s is the most intuitive shortest path algorithm that we will present.

3.1 The Basic Dijkstra Algorithm

The original version of the algorithm was developed by E.W. Dijkstra in

1959 [2]. It is best illustrated by use of an example. Consider the graph of

Figure 2:

Figure 2:

What is the shortest path from s to t? Although the solution is obvious

in this case, we will proceed by finding the closest vertex to s, then the

second closest vertex to s and so on until t is reached.

The only paths leaving s are s–a and s–c. As the lengths of these paths

are 4 and 2 respectively, c is the closest vertex to s.

5

To find the second closest vertex to s, we need only consider vertices

adjacent to s and c. The shortest path to a is still s–a and has length 4

whereas the shortest path to d is s–c–d and has length 5. Therefore a is the

second closest vertex to s.

Similarly, for the third closest vertex we need vertices adjacent to s, c

and a. There is a path of length 8 from s to b (s–a–b) and a path of length

5 from s to d. Hence d is the third closest vertex to s.

Finally, proceeding as before, we see that t is the fourth closest vertex

to s and the shortest path is s–c–d–t.

We will now generalise this technique and formulate Dijkstra’s algorithm

for finding a shortest path between a starting point, s, and a terminal point,

t, in a simple, connected, undirected, weighted graph.

The algorithm is an iterative one. At each iteration it adds another

vertex to a distinguished set S. Throughout the process, the algorithm

maintains a distance label d(v) for each vertex v. This is the length of the

shortest path from s to v that contains only vertices already in S and the

vertex v itself. The parent vertex, p(v), of every vertex v is also recorded.

This is the vertex immediately preceding v in the shortest path to v.

Initially d(v) = ∞ and p(v) is not yet defined for every vertex v. The

algorithm starts by setting d(s) = 0 and adding s to the distinguished set,

S. While there are vertices in S, the algorithm ‘relaxes’ all edges from the

last vertex added to S to vertices outside S. To relax an edge (v, w) one

checks if d(w) > d(v) + l(v, w) and, if true, sets d(w) = d(v) + l(v, w). We

then say that the vertex w has been scanned. When w has been scanned,

d(w) will be equal to the length of the shortest path from s to w seen so far.

We say w has been labelled with d(w). At each iteration the algorithm adds

to S the vertex outside S with the smallest label. If multiple vertices have

the same smallest label, any such vertex may be chosen. We say that the

6

vertex added to S has been selected. When a vertex v is selected, p(v) is set

equal to the vertex immediately preceding it in the shortest path from s to

v. Each iteration of the algorithm ends with the selection of a vertex. The

algorithm terminates when t has been selected. Note that the algorithm

must terminate as there are a finite number of vertices in the graph and one

vertex is added to S at each iteration.

Theorem 3.1. [3] Consider a weighted graph G = (V,E). When a vertex

v is selected by Dijkstra’s algorithm it has been labelled with dist(s, v), the

length of the shortest path from s to v.

Proof. The proof of this theorem is by induction on k, the iteration counter.

Let Sk be the set S after the kth iteration.

The inductive hypothesis is as follows: at the kth iteration

(i) the label of a vertex v in Sk is the length of the shortest path from s

to v, and

(ii) the label of a scanned vertex w not in Sk is the length of the shortest

path from s to w that contains only vertices in Sk (apart from w itself).

If no such path exists (i.e. w is not adjacent to a vertex in S and so

has not been scanned) then its label is ∞.

The first step of the algorithm sets d(s) = 0, d(v) = ∞ for v 6= s and

then selects s. The shortest path from s to itself is of length 0 so (i) is true

for the case k = 1. As no other vertices have been scanned yet, (ii) is also

true for the case k = 1.

Assume that the inductive hypothesis holds true for the kth iteration.

Let v be the vertex added to Sk at the (k + 1)st iteration to form Sk+1.

By the inductive hypothesis, every vertex x in Sk is labelled with the

length of the shortest path from s to x. Also, v must be labelled with the

length of the shortest path from s to v. If this were not the case, at the end

7

of the kth iteration there would be a path of length less than d(v) containing

at least one vertex not in Sk (because d(v) is the length of the shortest path

from s to v containing only vertices in Sk). Let u be the first vertex not in

Sk in such a path. Then there is a path of length less than d(v) from s to

u containing only vertices in Sk. This contradicts the choice of v (because

v is the vertex with the smallest label outside Sk). Thus (i) is true at the

(k + 1)st iteration.

Let w be a scanned vertex not in Sk+1. Then w must be adjacent to

some vertex in Sk (otherwise it would not have been scanned). By part (i)

we know the length of the shortest path to all vertices in Sk to which w is

adjacent. When all edges from these vertices are relaxed w must be labelled

with the length of the shortest path from s to w containing only vertices

in Sk and w itself by the way the labelling process is defined. If a vertex

has not been scanned, then its label remains ∞. Thus (ii) holds true at the

(k + 1)st iteration.

If the inductive hypothesis holds true at the kth iteration, we have shown

that it holds true at the (k +1)st iteration. By the priciple of induction, the

theorem has been proved.

Theorem 3.2. [4, Theorem 3.1] In a weighted graph G = (V,E), Dijkstra’s

algorithm selects vertices in nondecreasing order of their distances from the

starting vertex s.

Proof. The proof of this theorem is by induction on k, the iteration counter.

The inductive hypothesis is that d(v) ≥ d(x) where v is the vertex se-

lected at the kth iteration of the algorithm and x is any vertex already in

S.

The first step of the algorithm selects s. As no other vertex can be closer

to s than s itself, the case k = 1 is true.

Assume the hypothesis holds true for the kth iteration and that v is the

8

vertex selected at this iteration. Let w be the vertex selected at the (k+1)st

iteration.

The shortest path to w either contains v or it does not. If it does

contain v, then d(w) = d(v) + l(v, w) ≥ d(v) as l(v, w) is nonnegative. By

the inductive hypothesis, d(v) ≥ d(x) for all vertices x in S prior to the kth

iteration. Thus d(w) ≥ d(x) for all vertices x in S prior to the (k + 1)st

iteration.

If the shortest path from s to w does not contain v then w must be

adjacent to some vertex selected earlier (as only vertices adjacent to selected

vertices can possibly be selected). As v was selected before w, so d(w) ≥

d(v), otherwise w would have been selected before v. Thus, as before, d(w) ≥

d(x) for all vertices x in S prior to the (k + 1)st iteration.

Thus the hypothesis is true for the (k + 1)st iteration if it is true for the

kth iteration.

By the principle of induction, this theorem has been proved.

The algorithm terminates when t is selected. By Theorem 3.1, the vertex

t has been labelled with the length of the shortest path from s to t when it

is selected. By Theorem 3.2 all vertices selected before t will be as close or

closer to s than t. When the algorithm terminates we find the shortest path

from s to t by noting p(t), p(p(t)) and so on until s is reached.

3.2 Bidirectional Version of Dijkstra’s Algorithm

If we are dealing with a weighted graph each of whose edges has length

1, it can be seen intuitively that Dijkstra’s algorithm searches a ball with

s at the centre and t on the boundary. If the distance from s to t is D,

then Dijkstra searches an area of roughly πD2. If we run the algorithm

forward from s and backwards from t (i.e. with t as the starting point

and s as the terminating point) simultaneously, terminating when the two

searches meet (i.e. their distinguished sets have a non-empty intersection),

9

then this algorithm searches an area of roughly 2π(D/2)2, which is half the

area scanned by the original algorithm. This is a very useful improvement

for a service such as MapQuest as it would drastically reduce computation

time.

Formally, the algorithm works as follows: the forward algorithm begins

at s and proceeds to add vertices to its distinguished set based on their

label, ds(v). The reverse algorithm begins at t and adds vertices to its

distinguished set by virtue of their labels, dt(v). At each iteration of the

bidirectional algorithm the forward algorithm selects one vertex and then

the reverse algorithm selects one vertex. The algorithm also maintains the

length µ of the shortest path between s and t seen so far. Initially, µ = ∞.

When an arc (v, w) is scanned by the forward algorithm and w has already

been scanned by the reverse algorithm, we know the lengths ds(v) and dt(w)

of the shortest paths from s to v and from t to w. If µ > ds(v) + l(v, w) +

dt(w), we have found a shorter path and µ is updated accordingly. The value

of µ is similarly updated by the reverse search. The algorithm terminates

when the search in one direction selects a vertex that has been selected by

the search in the reverse direction.

Figure 3:

To illustrate the bidirectional version of Dijkstra’s algorithm we will

10

consider the graph of Figure 3, which was discussed in §3.1. In the first

iteration the forward search scans the vertices a and c and labels them with

4 and 2 respectively. Then c, the closest vertex to s, is selected. The reverse

search scans the vertices b and d and labels them with 6 and 2 respectively.

Then d, the closest vertex to t, is selected. In the second iteration the

forward search scans the vertices adjacent to c: a and d. The label on a

remains unchanged and d is labelled with 5. The forward search selects a,

the second closest vertex to s. The reverse search scans the vertices adjacent

to d, that is a and c, and labels them both with 5. As there is a tie for the

second closest vertex to t, the search can choose which vertex it selects next.

Let’s say a is selected. As a has already been selected by the forward search

the algorithm terminates here. The shortest path from s to t (s–c–d–t)

contains only vertices already selected.

This example illustrates an important point: the shortest path found by

the bidirectional version of Dijkstra’s algorithm does not necessarily include

the vertex on which the algorithm terminates (in this example, vertex a).

Theorem 3.3. The bidirectional version of Dijkstra’s algorithm finds the

length of a shortest path between two vertices.

Proof. Let v be the vertex on which the algorithm terminates. Then v has

been selected by both the forward and reverse searches and Theorem 3.1

implies that ds(v) = dist(s, v) and dt(v) = dist(v, t) (i.e. the distance labels

are exact). Therefore the length of the shortest path from s to t through

v is ds(v) + dt(v). We want to show that the length of any path from s

to t containing vertices that have not been selected by either search must

be greater than ds(v) + dt(v). Assume there is a path going from s to

t through an unselected vertex w whose length is shorter than any path

through vertices that have already been selected. If this were true, then

the length of the path through w would be less than the length of the path

11

through v, i.e.

dist(s, w) + dist(w, t) < dist(s, v) + dist(v, t)

This must mean that dist(s, w) < dist(s, v) or dist(w, t) < dist(v, t) or

both. If this were true then w would already have been selected by one of

the searches as Dijkstra’s algorithm selects vertices in nondecreasing order

of their distance from the starting vertex (Theorem 3.2). We assumed w had

not been selected and hence we have a contradiction. Thus the shortest path

from s to t must contain only vertices that have already been selected.

To find the shortest path from s to t we consider the set S of vertices

selected by the forward search and the set T of vertices selected by the

reverse search. Let U = S∪T . To find the shortest path between s and t we

run Dijkstra’s algorithm on U starting at s. We already know the shortest

path from s to all vertices in S and from t to all vertices in T and we also

note that for large graphs, U will be considerably smaller than the entire

graph. Thus Dijkstra’s algorithm will converge rapidly and by Theorem 3.3

will find the shortest path between s and t.

4 Variants of the A∗ Algorithm

Although the bidirectional version of Dijkstra’s algorithm is a significant

improvement, it is still not efficient enough on very large graphs of the type

used by MapQuest.

4.1 The Original A∗ Algorithm

One way to improve the efficiency of Dijkstra’s algorithm is to estimate the

distance from every vertex, v, to the terminal point, t. These estimates are

made using an easily computed potential function πt, with πt(v) estimating

dist(v, t). For example, the Euclidean distance between each vertex and t

12

could be used as the potential function. Then the vertex with the smallest

value of ks(v) = ds(v) +πt(v) (with ds(v) defined as in §3.2) is added to the

distinguished set at each step in the algorithm. This is known as the best

first search algorithm. Unfortunately, it does not always yield a shortest

path.

We define a new length function lπt(v, w) for adjacent vertices v and w

as follows:

lπt(v, w) = l(v, w)− πt(v) + πt(w)

The potential function πt is said to be feasible if lπt(v, w) ≥ 0 for all v, w.

The best first search algorithm combined with a feasible potential func-

tion is known as the A∗ algorithm. The algorithm runs as follows: initially

ks(v) = ∞ and p(v) is not defined for every vertex v. The vertex s is then

added to the distinguished set S. While there are vertices in S, the algorithm

‘relaxes’ all edges from the last vertex added to S to vertices outside S. The

A∗ algorithm relaxes an edge (v, w) by checking if ks(w) > ks(v) + lπt(v, w)

and, if true, setting ks(w) = ks(v) + lπt(v, w). Note that

ks(v) + lπt(v, w) = ds(v) + πs(v) + l(v, w)− πs(v) + πs(w)

= ds(v) + l(v, w) + π(w)

and is therefore a reasonable estimate on the length of the path from s to

t through w. At each iteration the algorithm selects the vertex with the

smallest label. If multiple vertices have the same smallest label, any such

vertex may be chosen. When a vertex v is selected its parent vertex p(v)

is updated as in Dijkstra’s algorithm. Each iteration of the algorithm ends

with the selection of a vertex. The algorithm terminates when t is selected.

Note that the algorithm must terminate as there are a finite number of

vertices in the graph and one vertex is selected at each iteration.

To illustrate the A∗ algorithm we consider the graph of Figure 4, which

was previously considered in Sections 3.1 and 3.2. The potential function

13

Figure 4:

we use is the Euclidean distance between each vertex and t. This distance is

measured by hand and in cm. The potential function is defined as follows:

πt(a) = πt(c) = 5 and πt(b) = πt(d) = 2. The algorithm begins by scanning

a and c and labelling them with ks(a) = ds(a) + πt(a) = 9 and ks(c) =

ds(c) + πt(c) = 7 respectively. The first vertex selected is c. Relaxing all

edges from c results in no change in the label of a and d is labelled with

ks(d) = ds(c)+ l(c, d)+πt(d) = 7. The second vertex selected is d. Relaxing

all edges from d results in no change in the label of a and t is labelled with

7. The third vertex selected is t. The algorithm terminates and the shortest

path (s–c–d–t) has been found. Note that only vertices on the shortest path

were selected. This is because the estimates given by the potential function

were almost exact. In general, the better the estimates given by the potential

function, the fewer vertices selected outside the shortest path.

Theorem 4.1. In a weighted graph G = (V,E), the A∗ algorithm finds a

shortest path between s and t.

Proof. At each iteration, the A∗ algorithm checks whether

ks(w) > ks(v) + lπt(v, w)

This is equivalent to Dijkstra’s algorithm with distance label ks(v) and

14

length function lπt(·, ·). Observe that lπt(·, ·) ≥ 0, because πt is feasible.

Thus the proof of Dijkstra’s algorithm implies that the A∗ algorithm finds

a shortest path from s to t with respect to the length function lπt(·, ·).

To show that this path is the same shortest path as that found by Dijk-

stra’s algorithm applied to the original problem, observe that for any 2

vertices a and z, the length of any path a–b–c–. . .–z with length function l

is

l(a, b) + l(b, c) + . . . + l(y, z) (4.1)

whereas with the length function lπt it’s

lπt(a, b) + lπt(b, c) + . . . + lπt(y, z)

= l(a, b)− πt(a) + πt(b) + l(b, c)− πt(b)

+ πt(c) + . . . + l(y, z)− πt(y) + πt(z)

= l(a, b) + l(b, c) + . . . + l(y, z) + πt(z)− πt(a), (4.2)

a shift by a fixed amount πt(z) − πt(a) (that is independent of the precise

path chosen from a to z) of the original length.

Thus the length of all paths between a given pair of vertices is shifted by

a constant when l is replaced by lπt . Consequently a shortest path from s

to t in the graph with length function l is also a shortest path in the graph

with length function lπt . The proof is complete.

We refer to the class of A∗ algorithms that use a feasible potential func-

tion πt with πt(t) ≤ 0 and πt(v) ≥ 0 for all v 6= t as lower-bounding algo-

rithms. To see why, consider a path s–a1–a2–. . .–an–t. The length of this

path with the length function l is

l(s, a1) + l(a1, a2) + . . . + l(an, v)

15

whereas with the length function lπt , by (4.2) it is

l(s, a1) + l(a1, a2) + . . . + l(an, t) + πt(t)− πt(s)

≤ l(s, a1) + l(a1, a2) + . . . + l(an, t)

because πt(t) ≤ 0 and πt(s) ≥ 0. That is lπt gives a lower bound on the

length of any path from any vertex s to t.

For the remainder of §4 we assume that πt is a feasible potential function

with πt(t) ≤ 0 and πt(v) ≥ 0 for all v 6= t. We also assume that πt(v) is a

lower bound for dist(v, t) for all vertices v.

4.2 Bidirectional Lower Bounding Algorithms

A bidirectional version of the A∗ algorithm seems trivial: just run the algo-

rithm forwards and backwards and terminate when the two searches meet.

Unfortunately, there is no guarantee that this will work. It is quite possible,

for example, that the potential function used πt by the forward search and

the potential function πs used by the reverse search give rise to different

length functions lπt and lπs . We therefore have no guarantee that the short-

est path between s and t has been found when the algorithm terminates.

There are two ways to overcome this problem. The first is to ensure

that both the forward and reverse search use the same length function (the

consistent approach) and the second is to develop a new stopping condition

(the symmetric approach).

We define kt(v) = dt(v) + πs(v).

The Consistent Approach

We say πs and πt are consistent if lπt(v, w) = lπs(w, v) for every edge (v, w)

in the graph. Now, lπt(v, w) = lπs(w, v) is equivalent to

l(v, w)− πt(v) + πt(w) = l(w, v)− πs(w) + πs(v) ∀v, w. (4.3)

16

But l(v, w) = l(w, v) so (4.3) yields

πt(w) + πs(w) = πt(v) + πs(v) ∀v, w,

i.e. πt + πs is a constant function.

Note that if p is a given feasible potential function for the forward search

then the use of −p in the reverse search will be consistent because (4.3) is

then satisfied.

In general, if we are given any two potential function πt and πs we can

construct consistent potential functions by using pt(v) = [πt(v) − πs(v)]/2

for the forward search and ps(v) = [πs(v)−πt(v)]/2 = −pt(v) for the reverse

search. These are known as the average potential functions.

The consistent bidirectional algorithm terminates when the search in one

direction selects a vertex that has already been selected by the search in the

other direction. The shortest path has been found at this point. The proof

that this algorithm works is the same as that of Theorem 3.3 upon noting

that both the forward and reverse searches are merely modified versions of

Dijkstra’s algorithm.

The Symmetric Approach

In the symmetric bidirectional algorithm the length µ of the shortest path

between s and t seen so far is maintained. Initially µ = ∞. When the

forward search scans a vertex w that has already been scanned by the re-

verse search, the algorithm checks if µ is greater than the length of the path

formed by concatenating the shortest s–w path seen so far with the shortest

w–t path seen so far. If it is, µ is updated accordingly. Similar updates are

also made during the reverse search. The algorithm terminates when the

search in one direction selects a vertex with ks(v) ≥ µ or kt(v) ≥ µ or when

all vertices have been selected. If ks(v) = ds(v) + πt(v) ≥ µ then any path

from s to t through v will have length greater than or equal to ks(v) (because

17

πt(v) is a lower bound for the distance from s to t) which is greater than or

equal to µ. For any vertices w selected after v, we have ks(w) ≥ ks(v) ≥ µ,

as the algorithm selects vertices in nondecreasing order of the value of ks.

Hence the length of the path from s to t through any vertices selected after

v will be greater than or equal to µ. Thus the shortest path must contain

only vertices that have already been selected. Similar observations can be

made for the reverse search using kt(v). If all vertices have been selected

then we must know the shortest path. Thus the algorithm works.

These approaches both have their advantages. The consistent approach

can stop when the two searches meet but may not use the best potential

functions available. This means that the potential functions used might give

bad estimates and so don’t improve the efficiency of the algorithm as much.

The symmetric approach, on the other hand, can use the best potential func-

tions available but cannot stop when the searches meet. This may mean the

algorithm runs for a long time after the searches meet and so is less efficient.

The most efficient algorithm can be chosen in practice (e.g. if one has very

good potential functions the symmetric approach would be used).

18

5 The ALT Algorithm

This is a version of the A∗ algorithm that uses landmarks and the triangle

inequality to improve efficiency. It is the first algorithm we consider that

was explicitly constructed to solve the MapQuest problem. For that reason

it takes a somewhat different approach to the previous algorithms. It is as-

sumed in the construction of the ALT algorithm that the MapQuest problem

would be solved repeatedly on the same graph. Therefore a much greater

amount of preprocessing is allowed because it can improve the efficiency of

all subsequent shortest path queries. This is also true of all the algorithms

we consider later.

Given a graph G = (V,E), we take a subset of the vertices and call

them landmarks. Prior to commencing the algorithm, the shortest distance

between each vertex v and each landmark L is calculated using one of the

previous algorithms. We then define our potential function πt as πt(v) =

dist(v, L)− dist(t, L) for a given L. By the triangle inequality

dist(v, L)− dist(t, L) ≤ dist(v, t). (5.1)

Thus πt(v) gives a lower bound for the distance between v and t.

Note also that if vertices v and w are adjacent, then

lπt(v, w) = l(v, w)− πt(v) + πt(w)

= l(v, w)− (dist(v, L)− dist(t, L)) + (dist(w,L)− dist(t, L))

= l(v, w)− dist(v, L) + dist(w,L) ≥ 0,

again by the triangle inequality. Thus lπt is a feasible potential function.

We call the A∗ algorithm with this potential function the ALT algorithm.

The set of landmarks is usually taken to be much smaller than the set of

vertices (e.g. in [4] 64 landmarks are selected from graphs of over 6,000,000

vertices). There are a number of methods of selecting the best possible k

landmarks for a graph. The simplest is to select the k vertices at random,

19

which works reasonably well. The method favoured by Goldberg et al. [4]

is that of farthest landmark selection. The method works as follow: select

any starting vertex and find a vertex v1 that is farthest away from it. Add

v1 to the set of landmarks. Proceed in iterations, adding the vertex farthest

from the current set of landmarks to the set of landmarks at each iteration.

This process can be viewed as a rough solution to the problem of selecting a

set of k vertices so that the minimum distance between each pair of vertices

is maximised.

For each given s, t pair, a subset P of the set of landmarks (usually 16

in [4]) that give the highest lower bounds on dist(s, t) by (5.1) are chosen.

When the algorithm is scanning a vertex v, the landmark L ∈ P that gives

the highest lower bound on dist(v, L) is used in the potential function.

Figure 5: The advantages of the ALT algorithm

To see why this algorithm can be much more efficient than previous

algorithms, consider the practical driving example in Figure 5 where s and t

are locations that are far apart and L is the landmark location. The shortest

path from s to L will typically consist of a segment from s to a highway,

a segment that uses highways only and a segment from a highway to L. If

L is chosen so that t lies approximately between s and L as in Figure 5,

the shortest path from s to t will consist of the same segment from s to a

highway, a segment using highways only and a segment from the highway

20

to t.

For adjacent vertices v, w on the segment shared by the two paths (as in

Figure 5)

dist(v, L) = l(v, w) + dist(w,L)

⇒ lπt(v, w) = l(v, w)− πt(v) + πt(w)

= l(v, w)− dist(v, L) + dist(w,L)

= l(v, w)− (l(v, w) + dist(w,L)) + dist(w,L)

= 0.

It follows that edges on the shared path have a weight of 0 in the A∗ algo-

rithm and will be the first selected.

The bidirectional ALT algorithm finds a shortest path much more quickly

than previous algorithms because both forward and reverse searches follow

paths of weight 0 for a time.

Remark 5.1. The algorithm is attracted towards whatever landmarks you

use and, therefore, bad landmark selection can attract the search away from

the shortest path. 2

21

6 The Reach Algorithm

Another heuristic trick to minimise the size of the graph that must be

searched is considered by R. Gutman [5]. The idea is to discard all ver-

tices that cannot possibly lie on the shortest path between s and t.

It is important to note that the reach algorithm is highly impractical as

the preprocessing involves calculating the shortest paths between all pairs of

vertices. Nevertheless, the theory is still valid and it gives good motivation

to consider a more practical version of the algorithm later.

Consider a vertex v on a path P from a to z. We define the reach of v

with respect to P , rP (v), as the minimum of the length of the path from a

to v along P and the length of the path from v to z along P . The reach of

v, r(v), is defined as the maximum value of rP (v) over all shortest paths P

between all pairs of vertices (s, t) on the graph that pass through v.

The reach algorithm for finding the shortest path between s and t works

as follows: run Dijkstra’s algorithm and every time a vertex v is scanned

check if

r(v) < dist(s, v) and r(v) < dist(v, t). (6.1)

If this is true v cannot possibly lie on the shortest path between s and t

because its reach isn’t big enough (i.e. the maximum value of its distance

from s and from t isn’t big enough). Thus Dijkstra’s algorithm need not

select it. We say the search has been pruned at v.

Theorem 6.1. [5] In a weighted graph, G = (V,E), the reach algorithm

finds a shortest path between s and t.

Proof. Let G′ be the graph with all vertices for which (6.1) holds true re-

moved. The reach algorithm on G is equivalent to Dijkstra’s algorithm on

G′.

Let P be a shortest path from s to t in G. Assume that there is at least

one vertex (v, say) that lies on P but was pruned by the reach algorithm.

22

Hence, r(v) < dist(s, v) and r(v) < dist(v, t). But v lies on P and so

r(v) ≥ rP (v) = min{dist(s, v), dist(v, t)}. This is a contradiction. Thus the

reach algorithm retains all vertices lying on each shortest path from s to t

and will consequently find a path of the same length as the shortest path

found by Dijkstra’s algorithm.

This bidirectional version of this algorithm works by alternating between

the forward search from s to t and the reverse search from t to s and using

(6.1) to eliminate vertices that cannot lie on the shortest path between s

and t. As both the forward and reverse searches are equivalent to Dijkstra’s

algorithm with these vertices removed, Theorem 3.3 can easily be adapted to

prove that the bidirectional reach algorithm finds the shortest path between

s and t.

The Bounded Reach Algorithm

Let r(v) be an upper bound on r(v) and dist(v, w) be a lower bound on

dist(v, w). The bounded reach algorithm is the same as the reach algorithm

except that at every iteration of the bounded reach algorithm we check if

r(v) < dist(s, v) and r(v) < dist(v, t).

If this is true, then, because r(v) ≤ r(v) and dist(v, w) ≤ dist(v, w) for all

v and w, one has

r(v) < dist(s, v) and r(v) < dist(v, t),

and hence v cannot possibly lie on the shortest path between s and t as

before.

The pruning conditions for the bounded reach algorithm don’t discard

vertices on a shortest path and so the proof that the bounded reach algorithm

finds a shortest path between two vertices is the same as Theorem 6.1.

23

If ∞ is used as the upper bound for the reach of each vertex then the

bounded reach algorithm becomes Dijkstra’s algorithm.

The bidirectional bounded reach algorithm is known as RE.

Calculation of the upper and lower reach bounds required for the algo-

rithm (considered in [5, Section 5] and [6, Section 5]) are quite complicated

and will only be briefly outlined here. The Euclidean distance between two

vertices can be used as a lower bound for dist(·, ·) if dist(·, ·) is the travel

distance between vertices. Upper bounds for the reach of a vertex are very

complicated to compute. The general idea is to run Dijkstra’s algorithm

starting at each vertex v until some given termination condition is reached.

This creates a shortest path ‘tree’ consisting of the shortest paths from v to

its nearest vertices. This is initially done for vertices close to s and t. This

information is then used to compute reach bounds for vertices slightly fur-

ther away. This process is repeated until reach bounds have been computed

for the desired number of vertices.

7 Combining the Reach and ALT Algorithms

The reach and A∗ algorithms can be easily combined. When a vertex v is

about to be selected by the A∗ algorithm we check if r(v) < ds(v) and r(v) <

πt(v). If true, we prune the search at v. It is possible to do this because

πt(v) is a lower bound for dist(v, t) and at this point ds(v) = dist(s, v). This

combined algorithm finds a shortest path because, as we have shown before,

the pruning conditions will only disregard vertices not on the shortest path.

The bidirectional version of this algorithm works like the bidirectional A∗

algorithm (symmetric or consistent) combined with the pruning conditions.

Again it finds a shortest path because the bidirectional A∗ algorithm finds

a shortest path and the pruning conditions don’t effect shortest paths.

We call the combination of the bidirectional ALT algorithm and the RE

algorithm REAL. For the graph of the North American road network (con-

24

taining almost 30 million vertices), REAL finds the shortest path between two

random vertices in less than four milliseconds while scanning fewer than 2000

vertices on average [6].

8 Performance of Algorithms

To give some idea of the efficiency of each of these algorithms we will quote

some results from [4] and [6]. The following table lists each algorithm along-

side the average time taken to find the shortest path between two random

vertices in the graph of the San Francisco Bay Area with 330,024 vertices.

The A∗ algorithm uses the Euclidean distance as its potential function.

The ALT and REAL algorithms each use 16 landmarks. The bidirectional ALT

uses the consistent approach with average potential functions.

Algorithm Time (in ms)

Dijkstra 82.4

Bidirectional Dijkstra 59.8

A∗ 135.2

ALT 12.8

Bidirectional ALT 11.6

RE 1.17

REAL 0.45

Table 1: A comparison of algorithms.

Note that the A∗ algorithm seems to perform much worse than Dijkstra’s

algorithm. This is because of the time taken to estimate the distance from

each vertex to t using the potential function.

Although we cannot know exactly how MapQuest works, it is clear that

the REAL algorithm we have derived is very efficient and would provide a

suitable solution to the MapQuest problem.

25

References

[1] S. Robinson, Mapping Magic. http://www.siam.org/siamnews/09-

04/mapping.htm

[2] E.W. Dijkstra, A Note on Two Problems in Connexion with Graphs.

Numer. Math., 1:269-271, 1959

[3] K.H. Rosen, Discrete Mathematics and Its Applications, Fourth Edi-

tion.

[4] A.V. Goldberg and C. Harrelson, Computing The Shortest Path: A∗

Search Meets Graph Theory. Technical Report MSR-TR-2004-24, Mi-

crosoft Research, 2004.

[5] R. Gutman, Reach-based Routing: A New Approach to Shortest Path

Algorithms Optimized for Road Networks. In Proc. Algorithm engineer-

ing and experimentation: sixth annual international workshop, 2004

[6] A.V. Goldberg, H. Kaplan and R.F. Werneck, Reach for A∗: Efficient

Point-to-Point Shortest Path Algorithms. In Proceedings of the eighth

workshop on algorithm, engineering and experiments (ALENEX 06),

SIAM, 2006.

26

