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Abstract 

The paper describes a computerized process of myocardial perfusion diagnosis from cardiac Single 
Proton Emission Computed Tomography (SPECT) images using data mining and knowledge 
discovery approach. We use a six-step knowledge discovery process. A database consisting of 267 
cleaned patient SPECT images (about 3000 2D images), accompanied by clinical information and 
physician interpretation was created first. Then, a new user-friendly algorithm for computerizing 
the diagnostic process was designed and implemented. SPECT images were processed to extract a 
set of features, and then explicit rules were generated, using inductive machine learning and 
heuristic approaches to mimic cardiologist’s diagnosis. The system is able to provide a set of 
computer diagnoses for cardiac SPECT studies, and can be used as a diagnostic tool by a 
cardiologist. The achieved results are encouraging because of the high correctness of diagnoses. 
 
Keywords: knowledge discovery and data mining, SPECT myocardial perfusion imaging, CLIP3 
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1. Introduction 

Modern medicine generates huge amounts of image data that can be analyzed and processed only 
with the use of specialized computer software. Since imaging techniques like SPECT, PET, and 
MRI can generate gigabytes of data per day. There are many advantages of computerized analysis 
of data over human analysis: lower price, shorter time, automatic recording of analysis results, 
consistency, relatively inexpensive re-use of previous solutions. 
Our goal is to create a computer system that is able to semi-automate the cardiac SPECT 
myocardial perfusion diagnostic process, using knowledge discovery approach, to reveal some new 
and useful information from the data. The data are cardiac SPECT images, clinical information, 
and physician’s interpretation.  
Our first sub-goal is to automatically obtain a set of partial diagnoses for regions of the left 
ventricle (LV) muscle, and the second sub-goal is the overall diagnosis, which describes perfusion 
of the entire LV cardiac muscle. To achieve these goals we first calculate cardiologist-defined set 
of features from cardiac SPECT images using image analysis algorithms. Then, using these 
features we generated diagnostic rules. 
Two sets of diagnostic rules will are generated. One for partial diagnoses using features extracted 
directly from images, and the second for overall diagnosis (using partial diagnoses as an input). A 
heuristics approach is used to generate the set of rules for partial diagnoses, and inductive machine 
learning algorithm CLIP3 [2, 4] is used to generate overall diagnostic rules. 
In this work we follow the six-step knowledge discovery process of Cios et al. [5, 6, 13], which is 
summarized below: 
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1. Understanding the problem domain - learning the terminology and current solutions, 
determination of medical and data mining goals. 

2. Understanding the data – understanding mechanisms of data collection, initial data 
exploration and verification.  

3. Preparation of the data - deciding algorithms inputs, cleaning and reformatting the database, 
creation of a new database (for latter use). This new database will consist of cardiac SPECT 
images, patient’s clinical information, and other attributes derived at this step. Data preparation 
is the most time consuming step but its quality largely determines the success of the entire 
project. 

4. Data mining – design of an image analysis algorithms, features extraction, deciding on 
training and testing procedures, generation of diagnostic rules. 

5. Evaluation of the discovered knowledge - description and discussion of the results, 
description of possible improvements into the diagnostic algorithm. 

6. Using the discovered knowledge – before the discovered knowledge can be used it needs to 
undergo clinical trials, which is not a part of this investigation. 

2. Understanding the Medical Problem Domain 

First we need to understand the medical problem domain. Our system is primarily designed for 
cardiologists and cardiology fellows as the second-opinion computer-based diagnostic tool. 

2.1 Cardiac SPECT Diagnosing 

SPECT imaging is used as a diagnostic tool for myocardial perfusion. The patient is injected with 
radioactive tracer (in our case Tl-201). Then two studies are performed, one 10-15 min. after 
injection during maximal stress – called stress study (stress image), and one 2-5 hours after 
injection – called rest study (rest image). The studies are collected as two sets of three-dimensional 
images. All the images represent LV muscle perfusion that is proportional to distribution of 
radioactive counts within the myocardium [10]. Cardiologists compare stress and rest studies in 
order to detect abnormalities in the LV perfusion. 
Since contemporary devices cannot directly display 3D images several transformations are 
performed to display them. As a result we obtain two-dimensional images or three-dimensional 
surface rendering [15]. The 2D images preserve intensity information while 3D relations are hard 
to reconstruct. In the rendering case all 3D information is explicit, but density information is 
represented only indirectly by color and shape of the 3D surface [11, 12]. 
Normally the SPECT images are presented to a cardiologist as three sets of two-dimensional 
images, which contain series of intensity slices (about 15 to 30 slices each). Only these images are 
used in this paper. Slices that show left ventricle perpendicular to its long axis are called "short 
axis", parallel to its long axis are called "vertical long axis" and "horizontal long axis", see Fig 1. 
The three-dimensional relations can only be mentally reconstructed from these images. The 
cardiologists diagnose such studies by visually comparing corresponding slices with their mental 
model of the normal LV. 
There are also other visualization methods used for cardiac SPECT images. One is bull’s-eye 
method that is based on projection of 3D image of LV into 2D plane by radial projection into 
spherical coordinates [16], or into combination of spherical and cylindrical coordinates [20]. 
Another family of methods is connected with 3D surface rendering of the LV; they use gated 
blood-pool SPECT images in order to visualize motion of the heart muscle [7]. There are also 
studies that concern dynamic cardiac scenes interpretation [18]. Cardiac motion analysis in general 
enables to identify pathologies related to myocardial anomalies or coronary arteries circulation 
deficiencies. Similarity to the technique described in this paper they use 2D LV contour images to 
perform quantitative and qualitative evaluation of the heart function. 
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Many visualization methods have been developed to help in interpretation of the SPECT images, 
but it has been shown that visual analysis of images is often inconsistent and error prone [9]. Thus, 
there is a need for tools to assist in diagnosis that is based on computer-aided image display and 
quantification. Quantitation decreases the variability of image interpretation [14]. 

2.2 Determination of Medical Goals 

From the medical point of view our goal is to semi-automate cardiac SPECT diagnostic process in 
order to assist a cardiologist in diagnosing cardiac SPECT images, to make this procedure easier, 
more consistent, and efficient. 
To achieve these goals we will follow a knowledge discovery process described above. 

 

Fig 1. Series of 2D-intensity slices: (a) short axis, (b) vertical long axis, (c) horizontal long axis view. 

2.3 Determination of Data Mining Goals 

The main data mining goal is to identify key features from cardiac SPECT images. This will be 
done using image analysis and processing algorithm. Next, two types of diagnostic rules will be 
generated:  
• For partial diagnoses. These rules will use features extracted from SPECT images; they will be 

generated using heuristics approach. 
• For the overall diagnosis. These rules will use partial diagnoses as an input. They will be 

generated using the CLIP3 machine learning algorithm [2, 4]. 
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The set of input variables consist of: images from rest and stress SPECT studies, and one clinical 
information: patient’s sex, because sex is the only information used by a physician during 
diagnosing SPECT images. Extraction of features from SPECT images is a very complex task due 
to anatomical differences between patients, artifacts in the images, diverse location of objects 
representing heart perfusion on the image, etc. Thus we build a model of the normal left ventricle 
for reconstruction of the poorly perfused parts that may not be visible in the images. We also have 
to consider anatomical differences between male and female hearts. 
In addition, image analysis functions like scaling, rotation, labeling, indexing, and feature 
extraction etc. need to be implemented. Parameters of the image analysis algorithms are optimized 
during development stage and after completion of the project. Our experience in the field of cardiac 
SPECT imaging [19] helped us to determine and define these goals. 

3. Understanding the cardiac SPECT Data 

The data was collected at the Medical College of Ohio (MCO). Patient clinical records were 
manually entered into MS Excel spreadsheet. There are about 180 parameters recorded for each 
patient. Each row in the spreadsheet corresponds to a single patient visit. Images were recorded 
selectively to reduce storage capacity requirements, thus from over 4000 recorded visits we will 
analyze only about 600, only those which are accompanied by the corresponding SPECT image. 
Only about half of the records and SPECT image sets have complete physician interpretation that 
consists of partial diagnoses for the regions of interest along the LV muscle, and the overall LV 
perfusion classification.  

3.1 SPECT Imaging 

During cardiac SPECT study patient is injected with radioactive agent, (Tl-201), that during decay 
emits single photon of 150 [keV] energy. The detector collects the emitted photons. The collimator, 
part of the detector, collects photons only from specified direction – in this way information about 
location of the source of emission can be reconstructed. During the study the detectors are located 
around the patient body and rotated. Using high-level reconstruction algorithms one 3D image, 
from a set of 2D planar views at different angles, is created. 
Cardiac SPECT imaging technique is characterized by low sensitivity, high signal to noise ratio, 
and application of very complex image reconstruction algorithms. However, it is successfully used 
in clinical trials because of the relatively low cost. 
Cardiac SPECT images represent LV myocardial muscle perfusion that is proportional to 
distribution of radioactive counts within the myocardium. Typical 2D-image resolution is 64x64, 
all the images are black and white, 8 bits-per-pixel with 256 shades of gray. Brighter areas on the 
image correspond to well perfused areas of myocardium. When part of myocardium is not visible 
an ischemia is suspected, see Fig. 2. 
 

 
 

Fig 2. Perfusion on cardiac SPECT images, (a) normal perfusion, (b) abnormal perfusion. 
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3.2 Description of the SPECT Database 

The SPECT database consists of images and clinical patient records. Data contained in the 
spreadsheet is converted to a relational database. Then it is analyzed and the significant attributes 
are extracted: encrypted patient ID, sex, weight, height, encrypted date of the study, 22 partial 
diagnoses, and the overall diagnosis. All are recorded in a text file. 
Image database is also analyzed. Images are stored in a predetermined directory structure, defined 
according to the encrypted study date, and encrypted patient hospital number. For each patient 
there are two 3D images, one for each study and six 2D images (three for each study). 
The database design goal is to simplify maintenance and ability to add new patients records and 
images when they become available. 

3.3 Verification of the Quality of the Data 

The original database was semi-manually analyzed to eliminate errors like typos, etc. All records 
and image sets that were incomplete were eliminated. Available records were counted to avoid 
situation when there is no sufficient number of examples for each diagnostic case. Most common 
encountered errors included typographical errors, missing values or images, or a very poor quality 
of a recorded image (in terms of contrast). In Table 1 a breakdown of the records and images 
available, after cleaning, is shown for each overall perfusion diagnosis.  
 

Table 1. Breakdown of the SPECT database after cleaning of the data. 
 

Overall diagnosis Number of correct records Overall diagnosis Number of correct records 

NL (Normal) 49 INF, LVD 8 
IS (Ischemia) 27 REV, LVD 1 
INF (Infarct) 47 IS, ART 8 
ART (Artifact) 31 IS-IN, LVD 3 
IS-IN(Ischemia and Infarct) 48 ART, IS-IN 4 
EQ (Equivocal) 3 IS, IS-IN 1 
REV (Reversible 0 REV, ART 1 
LVD (LV dysfunction) 2 IS-IN, INF 2 
IS, REV, ART 1 REV, INF 2 
NL, ART 6 IS-IN, LVD 2 
INF, ART 6 IS, ART, LVD 1 
ART, REV 1 IS, REV 3 
IS, INF 9 INF, REV 1 
Sub-total 230 Sub-total 37 
Total # of correct records 267 

 

4. Preparation of the cardiac SPECT Data 

4.1 Description of SPECT Data 

As said before each patient study contains two three-dimensional cardiac SPECT image sets of the 
LV. A cardiologist diagnoses, say, ischemia, infarct or artifact, by comparing these two images. 
Evaluation of the images is a highly subjective process, with a great potential for substantial 
variability [9]. We use procedure similar to one described by us in [3] to analyze the images. The 
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raw image data taken from multiple planar views are processed by filtered back-projection to create 
a three-dimensional image. Each of these 3D images is displayed as three sets of two-dimensional 
images. These 2D images correspond to the following sections of the LV myocardium: short axis 
view, horizontal long axis view and vertical long axis view. From these 2D sets of images a 
cardiologist selects five slices for each study that constitute the final report of the Yale system. 
Definitions of these five slices and regions of interest are shown in Fig. 3. 
The five slices are chosen according to the following:  
• Three slices for short axis view - one slice near heart's apex, one in middle of the LV and one 

near the heart base. 
• One slice corresponds to the center of the LV cavity for horizontal long axis view. 
• One slice corresponds to the center of the LV cavity for vertical long axis view. 
Each of these five images is divided into 4 or 5 regions of interest (ROI), along the LV 
myocardium. As a result for each study there are 22 regions of interest. The cardiologist evaluates 
appearance and count in each of these regions. Comparison between corresponding ROIs in stress 
and rest study is performed. Partial diagnoses are made for each ROI by the cardiologist; they are 
classified into seven categories: Normal, Reversible, Partially Reversible, Artifact, Fixed, 
Equivocal and Reverse Redistribution. Cardiologist makes the overall diagnosis based on the 
partial diagnoses. The overall diagnosis is classified into eight categories: Normal, Ischemia, 
Infarct, Infarct and Ischemia, Artifact, Equivocal, Reverse Redistribution, and the LV 
Dysfunction. Some of these categories may coexist, e.g. Ischemia and Artifact, Normal and 
Artifact etc. (see Table 1). 
 

 
 

Fig 3. Slices and regions of interest. From the left first three images are in short axis view, the fourth in 
horizontal long axis view, the last in vertical long axis view. At the bottom five slices chosen according to the 
definition. 
 
The cardiologist during diagnosing process compares cardiac SPECT images to his or her mental 
image of the normal LV. In case of automatic image analysis one of the most difficult tasks is to 
properly establish the location of the ROI within the SPECT image. This task is complicated by 
two factors: 
• LV defects. Changes in perfusion of the LV myocardium affect the changes in brightness of the 

cardiac SPECT image. When perfusion is low the corresponding brightness (count) is also low; 
as a result part of the LV myocardium can be absent from the image. The cardiologist deals 
with this fact by mentally reconstructing missing parts of the myocardium. 

• Artifacts. The most common artifact for Thallium 201 tracer is decreased brightness of the LV 
myocardium; usually it is caused by breast tissue in females, or by diaphragm in males. 
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Artifacts not only complicate localization of ROI but also presence of artifact in a region can 
lead to incorrect computer diagnosis because of the decreased brightness in the region. 

In addition, SPECT quantitative information can be incorrect because of physical phenomena like 
radiation attenuation, scatter of radiation, ‘partial volume effect’, etc. [1]. All those factors can 
change the shape and visibility of the LV in the cardiac SPECT image; they are obviously cause of 
major problems for image analysis. After establishing the localization of ROI we compare 
corresponding regions in stress and rest studies, and counts in each region, against the same regions 
in the predefined normal LV model (described in section 5.1). 

4.2 Cleaning of the SPECT Images 

We manually looked for incomplete patient records, paying attention to missing partial and overall 
diagnoses, and information about patient sex. Each record with missing information was discarded. 
The second part of data cleaning is cleaning the SPECT image database. We looked for incomplete 
image sets and for very poor quality images (without sufficient contrast). Each incomplete image 
set was discarded. Another problem was that pixel count values recorded in image files were in 
different ranges for different patient images. We found the solution for this problem by calibration 
of pixel values to the range from 0 to a maximal value of pixels in all images that are recorded for 
each patient. We also had to calibrate pixel values of every patient image to values in the range 
from 0 to 255. After cleaning we obtained a new database consisting of 267 patients covering all 
the diagnostic cases. The number of patients for each diagnostic case is shown in Table 1. 

4.3 Construction of the new Database 

New Database is created based on the initial SPECT database (after cleaning). This database 
contains the following modules: 
1. Module with patient images consisting of 267 patients, ten 2D images per patients (five images 

for rest and five for stress study). Images are recorded in a predefined structure according to the 
encrypted date of the SPECT study and the encrypted patient hospital ID. 

2. Module with clinical patient records, including encrypted patient hospital ID, sex, age, weight, 
height, encrypted date of the SPECT study and complete diagnosis (22 partial diagnoses and 1 
overall diagnosis). It is used for evaluation of the results. 

3. Module containing additional images: pattern-masks images for model of the normal LV, and 
images chosen for evaluation of the normal LV model. The total number of image files in this 
module is 225. 

Images included in module 1 are chosen from cardiac SPECT images according to the procedure 
that is performed by a cardiologist during the diagnostic process as described in section 4.1. 
Process of choosing the ten images is done using our software that makes it possible to view the 
entire set of the 2D images using sliders. The user can freeze and save the chosen set of 10 images 
into ten separate files within the predefined directory structure. 
The entire record (including images) for one patient in the new database occupies about 51kB of 
memory. The entire new database contains 2896 files of size of about 15MB.  
New Database is created for the purpose of calculating the accuracy of the system. The system 
requires only currently diagnosed patient data to calculate diagnoses. 

5. Data Mining 

We use image analysis in combination with machine learning tools to mimic a diagnostic process 
performed by a cardiologist. Automatic extraction of information from images is difficult because 
we need to model the human way of analyzing the images [8]; humans do it at the sub-conscious 
level. 
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To achieve it we first have to correctly establish each of the predefined ROI in the SPECT images. 
Next, we extract a set of features from the images to estimate brightness in each of the ROIs. We 
extract a single feature for each ROI for both stress and rest studies. Each feature is represented by 
a single number describing perfusion inside one of the ROI’s. This approach is similar to the one 
described in [3]. As a result 44 features are used for classification of the LV perfusion. Based on 
them and using a set of production rules, we obtain partial diagnoses, one for each ROI. For generation of 
the rules for partial diagnoses we use two separate approaches: inductive machine learning CLIP3 
algorithm [2, 4], and the heuristic approach. After comparison of the results obtained by these two 
approaches we decided to keep the rules generated heuristically. The heuristic diagnostic algorithm 
very closely imitates cardiologist’s diagnostic process. Then, using partial diagnoses as input we 
apply CLIP3 algorithm to generate the overall diagnostic rules. The diagram of the entire 
diagnostic process is shown in Fig. 4. 
 

 
 

Fig 4. Schematic diagram of the proposed diagnostic algorithm. 
 

5.1 Image analysis algorithm 

The goal of the image analysis algorithm is to extract 44 features from cardiac SPECT studies. 
Each feature is a single number that measures radioactive counts that represents perfusion in the 
LV muscle in a specified ROI. This task is complicated by changes in appearance of the LV 
myocardium due to artifacts, actual LV defects and anatomical differences between patients. To 
deal with these problems two approaches are used: 
1. We calculate one set of 44 features by using template-masks created directly from the 

diagnosed images. We use SPECT image of the currently analyzed patient to create template-
mask, which defines position of all ROI in this image. This set is called the basic-set. 

2. The template-masks of the normal LV model are used to calculate the second set of 44 
features. The template-masks are stored in the database; they are part of the created model of 
the normal LV. This second set of features is called emergency-set – if some of the features 
cannot be correctly calculated using the first approach, then we use features calculated in the 
second approach. 

It is important to remember that features from the basic-set are more accurate since they are 
derived directly from input images. The emergency-set has a full set of correctly extracted features, 
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which we can use when the first approach fails. As a result there are two sets of 44 features to 
operate on. From these two sets a final set of 44 features is created: Simply the features from the 
basic-set that were calculated incorrectly by the algorithm are replaced with features taken from the 
emergency-set.  
The inputs for the image analysis algorithm are: 10 cardiac SPECT images chosen using the rules 
described in section 4.1, and information about the patient’s sex. Due to the anatomical differences 
of LV myocardium between males and females the diagnostic process is automated for the two 
sexes separately. We also built a separate model of the normal LV for males and females. 
Image analysis algorithm is divided into three parts: initial preparation of images, low-level image 
analysis, and high-level image analysis. Fig. 5 shows diagram of the algorithm. 
 

 
 

Fig 5. Block diagram of image analysis algorithm. 
 

Initial preparation of images includes operations like color inversion, background standardization, 
and binarization. Two threshold values are used and we consider different binarization methods in 
the initial preparation step. These parameters are subject to system optimization, see section 5.3. 
Goal of the initial preprocessing is to reduce the amount of information by leaving only few objects 
of interest in the image. 
Low-level image analysis includes operations like labeling, indexing, contour extraction, division 
of object into regions, calculation of object parameters, etc., see Fig. 6. The goal of this step is to 
process objects on the image (objects represent the LV myocardium) to obtain image with just one 
object divided into a number of ROIs. 
 

 
 

Fig 6. Important operations performed during low-level image analysis. 
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High-level image analysis includes operations like systematized labeling, calculation of the 
features, registration (registrations is a process of scaling, shifting and rotating the object to reach 
the desired position), calculation of output features from basic and emergency features sets, see 
Fig. 7. The goal of the high -level image analysis is to calculate the set of features, which represent 
the counts in each of the ROIs.  
 

 
 

Fig 7. Important operations performed during high-level image analysis. 
 

Each feature is calculated according to the following equation: 
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where :  R – current region (one of the ROI), N(R) – number of pixels belong to R 
C(m,n)  - value of pixel belong to R with coordinates (m,n) (brightness of pixel) 
mj – maximal value of pixel taken from 2 corresponding images of LV, from rest and stress study 
j – [1,2,3,4,5] – index of current image, featurei – value of feature , i - index of feature in features set. 

 
 
Features are calculated as an average count of pixels located in the current ROI, which is defined 
by the template-mask. This value is calibrated as a percentage value of the highest brightness of 
two corresponding images, from rest and stress studies. We considered different methods for 
calculation of the features – this was the subject of the system optimization, see section 5.3. 
To create the model of the normal LV we took from the database 20 cases diagnosed earlier by 
cardiologist as normal (10 females and 10 males). The model is build by averaging 10 image sets 
of male patients and 10 image sets of female patients, respectively. Model of the normal LV 
contains information about localization of all ROIs, it consist of 10 images corresponding to ten 
slices chosen by the cardiologist during the diagnostic process. Fig. 8 shows template-model of the 
normal LV for females. 
The output of the image analysis algorithm is a set of 44 features representing perfusion in 22 
ROIs, for stress and rest studies respectively. Based on these features we generate rules for 22 
partial diagnoses; each partial diagnosis describing perfusion in one of the ROIs. 
One of the advantages of this algorithm is that it produces correct set of features, even for very 
noisy images, or images showing strong abnormality. The algorithm is able to work with images in 
which parts of the myocardium are not apparent, or with images that have a very low contrast. 
Another advantage of the algorithm is that it includes mechanisms for checking the values of the 
features. We check if each of the ROIs is correctly established and also the correctness of the 
sequence of the established ROIs. 
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Fig 8. Template-model of normal LV for female patients. 
 

Original images are used without enhancing image quality. The assumption was that any change to 
an original image can deform either the shape or count information inherent in cardiac SPECT 
images, and thus should be avoided. 

5.2 Diagnostic rules for partial diagnoses 

To generate rules for partial diagnoses we use the CLIP3 algorithm, and a heuristic approach 
mimicking the cardiologist’s diagnostic process. After both sets of rules are generated we compare 
the results. As a reference point cardiologist’s partial diagnoses were used. We decided to keep 
heuristic rules because they gave us slightly better results. These rules have very specific structure 
and are based on comparison of values between features in the corresponding ROIs. An example 
rule is: 

IF featurei > (featurej + threshold) THEN…. 
 

Most, if any, machine learning algorithms, are not able to generate this type of rules. Below the 
process of generating diagnostic rules using the heuristic approach is described. 
We look only for two categories of partial diagnoses: Normal (NL) – which corresponds to Normal 
diagnosis performed by a cardiologist and Abnormal (ABN) – which corresponds to six diagnoses: 
Reversible, Partially Reversible, Artifact, Fixed, Equivocal and Reverse Redistribution. 
We also know that cardiologist’s diagnosis of cardiac SPECT images has the following properties: 
• Cardiologists compare perfusion in the corresponding regions of myocardium in stress and rest 

studies, to evaluate if there is a defect in this particular region 
• They also compare perfusion across all regions in the diagnosed image, to find if there is a 

difference in perfusion between the regions in the entire cross-section of the heart muscle. 
Using this knowledge we generate rules that follow this way of reasoning. All threshold values are 
initially estimated heuristically and then changed during the optimization process, see 5.3. Below 
we show the rules. 
 

Rule 1: IF [feature_stressi – feature_resti] < threshold THEN Regioni ABN 
where:  i – number of ROI 
 

This rule compares features representing perfusion in corresponding ROIs from stress and rest 
studies, and by using the threshold decides if the difference is big enough to classify the region as 
Abnormal. For normal patients perfusion in stress should be bigger than perfusion in rest for the 
same region of the heart muscle. Threshold value is calculated using values of all features from the 
same cross-section of the myocardium for both rest and stress studies. The value of the threshold is 
adjusted for each case and each heart cross-section due to differences in contrast. 
 

Rule 2: IF [feature _resti <50 AND feature _stressi <50] THEN Regioni ABN 
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This rule checks if perfusion in stress and rest studies is high enough to classify the region as 
Normal. If perfusion is low then the value of feature is low and when perfusion is below certain 
threshold we consider the corresponding region as abnormal. Threshold value is established as 50 – 
it dependents on the formula used to calculate features. Regions with features values below the 
threshold are considered as Abnormal. 
 

Rule 3:  IF [featurei < meanj – threshold] THEN Regioni ABN 
where: i – number of features, j – number of heart-cross section, 

meanj – mean value of features along entire cross-section (entire image) 
 

This rule compares appearance of perfusion in the entire cross-section of the heart muscle with 
perfusion inside one of the ROIs. If the difference between perfusion in analyzed ROI is below the 
mean value of the entire cross-section minus the value of the threshold, then this region is 
considered as abnormal. Threshold values are different for features representing regions from stress 
(threshold =14) and rest (threshold =11) studies. The difference results from our knowledge that 
perfusion of normal patients in stress should be higher than in rest. The reason for this comparison 
is in a situation when low perfusion will occur only in one, or few regions of the heart muscle, and 
it is lower than perfusion in the surrounding regions, but the same when comparing perfusion 
between stress and rest studies. If the difference is greater then a certain threshold the region is 
classified as abnormal; this is in case where both Rule1 and Rule2 were not able to recognize it. 
 

Rule 4: IF [feature_stressi – feature _resti] < threshold THEN Regioni ABN 
 where:  i – number of ROIs from the specific part of the LV 
 

This rule was found useful since it improved accuracy of the algorithm during the optimization 
process. The structure of this rule is identical to the Rule1, but it is used only after Rule1, Rule2 
and Rule3 have been used (we have initial classification for all ROIs into NL and ABN categories). 
The value of the threshold is much lower then the value used in Rule1. The reason for Rule4’s re-
diagnosing is that cardiologists have tendency to diagnose the entire parts of the heart muscle (e.g. 
anterior or inferior part) with the same category label. For example, if anterior part of the heart near 
the apex is diagnosed with low perfusion then most likely low perfusion will occur also in the 
entire anterior part of the heart muscle (mid and base). Thus, we define five different parts of the 
heart muscle (A,B,C,D,E) as being connected. They are shown in Table 2. In order to include this 
anatomical dependency all the ROIs belonging to that part of the heart muscle, in which we found 
at least one abnormal region using the first three rules, are re-diagnosed. To achieve that Rule 4 
with low threshold value (threshold = 4) is used. 
 
Table 2. Definition of anatomically connected parts of the LV used to re-diagnose partial diagnoses with 
Rule 4. 
 

Cross-section A B C D E 
Short Apical ANT LAT LAT INF SEPTAL 
Short Mid ANT ANT-LAT INF-LAT INF ANT-SEPTAL 
Short Basal ANT ANT-LAT INF-LAT INF ANT-SEPTAL 

 
The entire process of converting features extracted from cardiac SPECT images, using the four 
diagnostic rules into partial diagnoses is shown in Fig. 9. 
 

 
 

Fig 9. Process of obtaining partial diagnoses from 44 features extracted from SPECT images. 
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5.3 Optimization of the system and partial diagnoses results 

After rules for partial diagnoses are generated we optimize important parameters to achieve the 
best accuracy of diagnosing. To perform this task we choose group of 24 patients (training data set) 
from the new database that includes all diagnostic cases: 3 patients for each of 8 groups for overall 
diagnoses, as described in section 4.1. Using this set, the following parameters of the system were 
adjusted:  
• Binarization method and binarization threshold value in the image analysis algorithm 
• Threshold values used to produce the final set of features from basic-set and emergency-set of 

features 
• Formula to calculate a feature value for each ROI (4 different formulas were considered) 
• Threshold values used in diagnostic rules for partial diagnoses 
The parameters were adjusted one at a time. We choose the value corresponding to the best 
performance of the system, and then switch to optimize another parameter. In each step when 
change in parameter value gives improvement in performance then this new value is kept, 
otherwise the old value is kept. We also assumed certain ranges for parameter adjusting. 
Three accuracy criteria are used: ALL (performance of the rules vs. 22 partial diagnoses for the 
entire training data set as done by cardiologists), NL (performance of the rules for partial diagnoses 
of patients who were diagnosed by cardiologists as normal) and ABN (performance of the rules, 
but only for partial diagnoses of those who were diagnosed by cardiologists as abnormal). The 
values in tables represent percentage of correct partial diagnoses. Table 3 shows the results before 
and after optimization process. 
 
Table 3.  Comparison of system accuracy for partial diagnoses calculated before and after optimization. 
 

ALL NL ABN 
Criterion 

[%] Correct / Total [%] Correct / Total [%] Correct / Total 

Before optimization (24 patients) 67.99 359 / 528 65.66 262 / 399 73.69 95 / 129 
After optimization (24 patients) 84.09 444 / 528 87.22 348 / 399 74.42 96 / 129 
 
After the optimization process the rules are validated on all 267 diagnostic cases from the new 
database.  
 
Table 4.  Results for partial diagnoses obtained using validation data set of 267 patients. 
 

ALL NL ABN Criterion 
[%] Correct / Total [%] Correct / Total [%] Correct / Total 

Overall diagnosis: NL (49 pat.) 89.52 965 / 1078 91.76 946 / 1031 40.43 19 / 47 
Overall diagnosis: IS (27 pat.) 82.32 489 / 594 81.41 346 / 425 84.61 143 / 169 
Overall diagnosis: INF (47 pat.) 81.53 843 / 1034 86.43 618 / 715 70.53 225 / 319 
Overall diagnosis: ART (31 pat.) 81.52 556 / 682 88.17 462 / 524 59.49 94 / 158 
Overall diagnosis: IS-IN (48 pat.) 77.65 820 / 1056 78.06 459 / 588 77.14 361 / 468 
ENTIRE NEW DB (267 pat.) 81.34 4778 / 5874 84.98 3581 / 4214 72.11 1197 / 1660 
 
 
In addition we analyzed the results for groups of patients defined as having different overall 
diagnoses.  Within these groups we analyzed accuracy of rules for partial diagnoses, as well as for 
the entire validation data set. The results are shown in Table 4. The accuracy of the system for 
partial diagnoses is about 81%. For partial diagnoses evaluated by cardiologists as normal, the 
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system correctness is about 85%, and for those evaluated by cardiologists as abnormal, the system 
correctness is about 72%. The results for individual diagnostic cases have the same level of 
correctness except for ABN patients diagnosed as NL; this is a result of artifacts. These results 
were obtained using a database of 267 cases, each case includes 22 partial diagnoses, which gives 
5874 partial diagnoses in the validation data set. Because of the size of the database the results are 
quite reliable. 

5.4 Generation of diagnostic rules using CLIP3 algorithm 

The next task is to use partial diagnoses to come up with the overall diagnosis, which describes 
perfusion of the entire LV muscle. CLIP3 algorithm [4] is used to generate a set of diagnostic rules. 
We choose this algorithm because it was successfully used in another application with cardiac 
SPECT images [6] and performed as well as C4.5 and CN2 machine learning algorithms [5]. The 
CLIP3 algorithm is a descendent of the CLILP2 algorithm [2]. It is a hybrid of decision tree 
algorithms and rule-based algorithms [4]. CLIP3 uses IP model to select both key attributes and to 
generate the rules. There are three thresholds used by the CLIP3 algorithm [5]. The purpose of 
these thresholds is to control the complexity of the generated solutions, to decide when to stop 
forming rules, and to avoid creation of too many rules possibly describing noisy data. By using 
them we generate different sets of diagnostic rules. 
Two databases are used to generate different sets of diagnostic rules using CLIP3 algorithm.They 
are later analyzed using multi-criterion evaluation and the best database is chosen for later use. 
• Database of partial diagnoses (DPD) consist of 267 patient cases; it is created using previously 

described rules. Every record in this database consists of 22 partial diagnoses (each partial 
diagnosis is binary: normal or abnormal). 

• Database of features (DF) extracted from cardiac SPECT images, as described before. Each 
feature is a number describing perfusion in one of the ROIs; it has an integer value in the range 
[0,100]. 

As said above our goal is to generate rules for the overall diagnosis, for two categories: normal 
(NL) and abnormal (ABN), which correspond to seven overall diagnoses: Ischemia, Infarct, Infarct 
and Ischemia, Equivocal, Reverse Distribution, Artifact and LV Dysfunction. 
The new database contains complete diagnostic records, including 22 partial diagnoses and the 
overall diagnosis, as performed by cardiologists. Cases (examples) classified as normal are called 
positive examples, and those classified as abnormal are called negative examples. Table 5 shows 
details for both databases. 
 
Table 5.  Description of databases used to generate diagnostic rules for overall diagnoses. 
 

Database Number of positive 
examples 

Number of negative 
examples 

Number of 
examples 

Number of 
attributes 

Values of 
attributes 

DPD 55 212 267 22 Binary 
DF 55 212 267 22 Continuous 

 
In the first step the databases are divided into two parts: training and validation sets. Each set of 
rules generated from training data set is tested on validation data set.  
Since both databases have only 55 positive examples (Normals) and 212 negative examples 
(Abnormals) two different divisions of data into training and validation data sets for each database 
are created. The reason for doing that is that better rules are generated when number of positive 
examples is approximately equal to the number of negative examples. Table 6 shows training and 
validation data sets. Because of the division we are able to directly compare the rules generated 
using different databases and divisions into training and validation data sets. 
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Table 6.  Training and validation data sets used to generate diagnostic rules. 
 

Training data set Validation data set 
 Number of 

positive examples 
Number of negative 

examples 
Number of positive 

examples 
Number of negative 

examples 

Total 
examples 

DPD 1 40 40 15 172 267 
DPD 2 40 162 15 50 267 
DF 1 40 40 15 172 267 
DF 2 40 162 15 50 267 

 
 
In order to evaluate the “goodness” of generated rules we check their ability to generalize on new, 
unseen validation data. The measures used to evaluate the rules are described below. 
Verification test 
In verification test there are three evaluation criteria [5]. Possible outcomes of a verification test, 
and the criterion definitions are shown in Table 7. 
 
Table 7.  Possible outcomes from verification test and the verification test criterions. 
 

 Test result 
positive 

Test result 
negative Verification test criterions 

Hypothesis 
positive TP FN 

Hypothesis 
negative FP TN 

%100⋅
+

=
FNTP

TP
ysensitivit ,      %100⋅

+
=

FPTN
TNyspecificit  

%100⋅
+++

+
=

FNFPTNTP
TNTPaccuracypredictive  ̀

 
Sensitivity measures how many of positive examples from validation data set are correctly 
recognized. 
Specificity measures how many of negative examples from validation data set are correctly 
recognized - they were excluded or not recognized as positive examples. 
Predictive accuracy measures how many examples from entire validation data set are correctly 
recognized. 
Using the verification test, the chosen best set of rules is the one that gives high values for all three 
criteria. The study performed by in [17] shows the importance of the trade-off between the 
sensitivity and specificity measures. 
One additional criterion is also used: number of rules generated. The preferred situation is when 
there is a fewer number of rules generated. 
Table 8 compares best sets of rules chosen for the four cases (chosen from all the rules generated 
using different values of CLIP3 parameters). 
 
Table 8.  Comparison of results obtained for the four considered databases using validation data set. 
 

Sensitivity Specificity Predictive Accuracy Number 
of rules Best Sets 

Of Rules 
[%] Correct / Total [%] Correct / Total [%] Correct / Total 

DF 2 66.67 10 / 15 88.00 40 / 50 83.08 54 / 65 2 
DF 1 73.33 11 / 15 77.32 133 / 172 77.00 144 / 187 1 
DPD 2 66.67 10 / 15 74.00 37 / 50 72.31 47 / 65 6 
DPD 1 73.33 11 / 15 80.23 138 / 172 79.68 149 / 187 2 
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Marked in bold in Table 8 is the set for which sensitivity and specificity values are close to each 
other and the number of corresponding rules is small. This set of rules has almost 80% predictive 
accuracy on the entire validation data set. 
After choosing this set of rules further study using the DPD1 database was performed. The method 
of calculating solution of the IP model was modified. Original method is described in [4]. The new 
method searches through set of columns in a probabilistic way choosing one set of columns as a 
solution. We call it semi-random method for solving the IP model. This method was used to 
generate new set of diagnostic rules for our problem. Table 9 compares best sets of rules generated 
for the DPD1 database using standard and the new semi-random mode for solving the IP model. As 
can be seen the new method results in significant increase of the accuracy of the rules compared to 
the accuracy of the rules generated using the standard mode. The rules finally chosen for the 
overall diagnosis are shown below: 

RULE 1 
 IF [F3=NL and F7= NL and F11= NL and F13= NL and F15= NL and F16= NL and F17= NL and F18= NL 

and F21= NL] THEN Overall Diagnosis = NL 
(covers 26 out of 40 positive examples) 

RULE 2 
 IF [F1=NL and F4=NL and F5=NL and F6=NL and F8=NL and F9=NL and F10=NL and F15=NL and 

F16=NL and F17=NL and F18=NL and F19=NL and F22=NL] THEN Overall Diagnosis = NL 
(covers 17 out of 40 positive examples) 

RULE 3 
 IF [F2=NL and F3=ABN and F5=NL and F16=NL and F22=NL] THEN Overall Diagnosis = NL 

(covers 4 out of 40 positive examples) 
where: features F1…F22 represent partial diagnoses corresponding to ROIs. 

 
Table 9.  Comparison of results obtained for validation data set using different modes for solving the IP 
model for the DPD1 database. 
 

Sensitivity Specificity Predictive Accuracy Number 
of rules 

Method for 
solving IP 
model [%] Correct / Total [%] Correct / Total [%] Correct / Total  
Standard 73.3 11 / 15 80.23 138 / 172 79.68 149 / 187 2 
Semi-Random 80.0 12 / 15 84.30 145 / 172 83.96 157 / 187 3 

 
To summarize, the rules for partial diagnoses are generated using heuristic approach and the rules 
for the overall diagnosis were generated using the CLIP3 algorithm. Rules for partial diagnoses use 
as an input cardiac SPECT images, and patient’s sex information. The rules for the overall 
diagnosis use as an input only partial diagnoses. 

6. Evaluation of the discovered knowledge 

Several iterations were performed during the described knowledge discovery process. These 
iterations included reviewing and changing image analysis algorithms, optimizing the system to 
evaluate and adjust its parameters, and searching for different sets of the overall diagnostic rules 
using different input variables.  Our goal during this iterative process was to improve accuracy of 
the algorithm so that it is as close as possible to diagnoses performed by a cardiologist. This 
iterative reviewing process resulted in significant increase of accuracy: about 16% increase for the 
case of evaluation of partial diagnoses (see Table 2) and about 4% increase for the overall 
diagnosis (see Table 9). 
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6.1 Analysis of the results 

Visual interpretation and diagnosing of clinical images is highly observer-dependent. Thus there is 
a need to create computer-based tools, which can assist a cardiologist during the diagnostic 
process. Several observations need to be made about the results: 
• Partial diagnoses are 81% accurate and the overall diagnoses are 84% accurate 
• The results are supported by using database of 267 patients 
• A small number of diagnostic rules for both partial and overall diagnoses was generated 
• The generated diagnostic rules have anatomical and physiological interpretation; they can be 

evaluated by experts 
• The results are influenced by the fact that cardiologist interpretation of the data was 

inconsistent. Different cardiologists interpreted SPECT studies and depending on their 
experience they were more or less accurate, but we still used them as a gold standard to train 
the algorithm. 

7. Using the discovered knowledge and discussion 

The newly discovered rules need to be evaluated by medical professionals on much larger data sets 
before they can be used in a hospital setting. The knowledge discovery process used appears to be 
very practical. We have shown that iterative process used for the creation of the new knowledge, or 
diagnostic rules, can significantly increase accuracy of the entire system.  
In this project we processed cardiac SPECT images to extract important features. Using these 
features we generated diagnostic rules using heuristic and inductive machine learning approaches. 
Both of these approaches resulted in simple, easy to understand, and highly accurate diagnostic 
rules. The system can be used as an assistant tool by cardiologists to help them to make more 
consistent diagnosis of cardiac SPECT studies. In the future we plan to use more patient 
information to improve system accuracy. 
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