Recognizing and Learning Object Categories

Based on work by R. Fergus, P. Perona, A. Zisserman, J. Ponce, S. Lazebnik, C. Schmid, F. DiMaio, and others

Traditional Problem: Single Object Recognition

Most Objects Exhibit Considerable Intra-Class Variability

Task: Recognition of object categories

Object categorization: the statistical viewpoint					
p(zebra image) vs. p(no zebra/image)					
Sayes's rule:					
p(zebra image)	p(image zebra)	p(zebra)			
p(no zebra image)	p(image no zebra)	p(no zebra)			
posterior ratio	likelihood ratio	prior ratio			

Generative					
§ Mode	§ Model $p(image zebra)$ and $p(image no zebra)$				
	p(image zebra)	p(image no zebra))			
826	Low	Middle			
	High	Middle Low			

Three main issues

§ Representation

 $\ensuremath{\mathbb{S}}$ How to represent an object category

§ Learning

§ How to form the classifier, given training data

S Recognition

§ How the classifier is to be used on novel data

Approach 2: Generative Methods using Bag of Words Models

- S An image is represented by a collection of "visual words" and their corresponding counts given a universal dictionary
- S Object categories are modeled by the distributions of these visual words
- S Although "bag of words" models can use both generative and discriminative approaches, here we will focus on generative models

Approach 3: Generative Methods using Part-Based Models

- S An object in an image is represented by a collection of parts, characterized by both their visual appearances and locations
- S Object categories are modeled by the appearance and spatial distributions of these characteristic parts
- § Issues for such models include efficient methods for finding correspondences between the object and the scene

Model Structure

S Model shape using Gaussian distribution on image location between parts and scale of each part

- Model **appearance** as patches of pixel intensities
- S Represent object class as graph of P image patches with parameters θ

Representation of Occlusion

- § Explicit
 - § Additional match of each part to missing state
- § Implicit
 - § Truncated minimum probability of appearance

Object categorization: the statistical viewpoint					
p(zebra image) vs. p(no zebra/image)					
§ Bayes rule:					
$\frac{p(zebra image)}{p(no \ zebra image)} =$ posterior ratio	$\underbrace{\frac{p(image \mid zebra)}{p(image \mid no \ zebra)}}_{likelihood \ ratio}$	$\frac{p(zebra)}{p(no \ zebra)}$ prior ratio			

Model Structure • Assume prior ratio is known or learned • Find values for parameters θ that maximizes the likelihood ratio $p(X, S, A | \theta) = \sum_{h \in H} p(X, S, A, h | \theta)$ • H is the set of all valid correspondences of image features to model parts, so $|H| = O(N^P)$ • Factor the likelihood to simplify computation (using Chain Rule)

Recognition

- § For each of *P* parts, run template over all locations in image
- S Detect local maxima, giving possible locations of each part
- § Given learned model, find maximum likelihood ratio of $p(\mathbf{X}, \mathbf{S}, \mathbf{A}|\theta)/p(\mathbf{X}, \mathbf{S}, \mathbf{A}|\theta_{bg})$ for all possible correspondences $-O(N^2P)$ where N = number of locations of each part in image
- § If greater than a threshold, signify object detected

Probabilistic Parts and Structure Models Summary

- § Correspondence problem
- § Efficient methods for large # parts and # positions in image
- § Challenge to get representation with desired invariance
- § Minimal supervision
- § Future directions:
 - § Multiple views
 - § Approaches to learning
 - § Multiple category training

ROC equal error rates

Pre-scaled data (identical settings):

				Model		
Dataset	Total size of dataset	~ Object width (pixels)	Motorbikes	Faces	Airplanes	Spotted Cats
Motorbikes	800	200	92.5	50	51	56
Faces	435	300	33	96.4	32	32
Airplanes	800	300	64	63	90.2	53
Spotted Cats	200	80	48	44	51	90.0

Scale-invariant learning and recognition:

	Total size	Object size	Pre-scaled	Unscaled
Dataset	of dataset	range (pixels)	performance	performance
Motorbikes	800	200-480	95.0	93.3
Airplanes	800	200-500	94.0	93.0
Cars (Rear)	800	100-550	84.8	90.3