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Abstract—We describe two new approaches to human pose estimation. Both can quickly and accurately predict the 3D positions of
body joints from a single depth image, without using any temporal information. The key to both approaches is the use of a large, realistic,
and highly varied synthetic set of training images. This allows us to learn models that are largely invariant to factors such as pose,
body shape, field-of-view cropping, and clothing. Our first approach employs an intermediate body parts representation, designed so
that an accurate per-pixel classification of the parts will localize the joints of the body. The second approach instead directly regresses
the positions of body joints. By using simple depth pixel comparison features, and parallelizable decision forests, both approaches can
run super-realtime on consumer hardware. Our evaluation investigates many aspects of our methods, and compares the approaches
to each other and to the state of the art. Results on silhouettes suggest broader applicability to other imaging modalities.
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1 INTRODUCTION

THE fast and reliable estimation of the pose of the hu-
man body from images has been a goal of computer

vision for decades. Robust interactive pose estimation
has applications including gaming, human-computer in-
teraction, security, telepresence, and even health-care.
The recent availability of high-speed depth sensors has
greatly simplified the task [1], [2], [3], [4], [5], [6]. How-
ever, until the launch of the Microsoft Kinect camera
and gaming platform [7] in November 2010, even the
best systems exhibited failures when faced with unusual
poses, occlusion, sensor noise, and the constraints of
super-realtime operation (i.e. with a budget of a fraction
of the total processor cycles).

This paper describes some of the research behind a
core component of the skeletal tracking pipeline that
ships in with Kinect [7]. The aim to ship a consumer
product necessitated two important design goals: robust-
ness and computational efficiency. We wanted to build
something that could work without calibration for any
human body shape, so that anyone could start using the
system immediately. The system also had to be able to
run for hours at a time without failing catastrophically.
Our final requirements came in the form of tight budgets
for compute and memory usage.

Towards these goals, this paper presents two related
approaches for estimating human pose, illustrated in
Fig. 1. We will refer to these as body part classification
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(BPC) and offset joint regression (OJR). The BPC and OJR
algorithms output high-quality shortlists of confidence-
weighted proposals for the 3D locations of the skeletal
body joints. These proposals are computed at each frame
and for each joint independently.

Traditional human body tracking algorithms [8], [9],
[1], [10], [6], [11] infer a complete skeleton by exploit-
ing kinematic constraints and can achieve high frame-
rates by using temporal coherence from frame-to-frame.
However, without regular re-initialization, tracking al-
gorithms are prone to catastrophic loss of track. Our
original design was for our 3D body joint proposals to
provide initialization and per-frame recovery to comple-
ment any appropriate tracking algorithm. However, our
per-frame, per-joint proposals have proven remarkably
accurate, and might well be usable without tracking a
full body model.

Both BPC and OJR use an efficient decision forest that
is applied at each pixel in the image. Evaluating the
contribution of each pixel to each joint separately avoids
any combinatorial search over body joints. The forest
uses simple yet discriminative depth comparison image
features that give 3D translation invariance while main-
taining high computational efficiency. In an optimized
implementation, these features and the classifier itself
can be evaluated in parallel across each pixel on a GPU
[12] or multi-core CPU. Both algorithms can run at super-
realtime rates on consumer hardware, leaving sufficient
computational resources to allow complex game logic
and graphics to run in parallel.

The two methods also share their use of a very large,
realistic, synthetic training corpus, generated by render-
ing depth images of humans. Each render is assigned
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Fig. 1. Method overview on ground truth exam-
ple. Body part classification (BPC) first predicts a (color-
coded) body part label at each pixel, and then uses
these inferred labels to localize the body joints. Offset
joint regression (OJR) instead more directly regresses the
positions of the joints. The input depth point cloud is
shown overlaid on the body joint positions for reference.

randomly sampled parameters including body shape,
size, pose, scene position, etc. We can thus quickly
and cheaply generate hundreds of thousands of varied
images with associated ground-truth (the body part label
images and the set of 3D body joint positions). This
allows us to train deep forests, without the risk of
overfitting, that can naturally handle a full range of
human body shapes undergoing general body motions
[13], self-occlusions, and poses cropped by the image
frame.

Body part classification, originally published in [14],
was inspired by recent object recognition work that
divides objects into parts (e.g. [15], [16], [17], [5]). BPC
uses a randomized classification forest to densely pre-
dict discrete body part labels across the image. Given
the strong depth image signal, no pairwise terms or
CRF have proved necessary for accurate labeling. The
pattern of these labels is designed such that the parts
are spatially localized near skeletal joints of interest.
Given the depth image and the known calibration of the
depth camera, the inferred per-pixel label probabilities
can be reprojected to define a density over 3D world
space. Offset joint regression [18] instead employs a
randomized regression forest to directly cast a set of 3D
offset votes from each pixel to the body joints. These
votes are used to again define a world space density.
Modes of these density functions can be found using

mean shift [19] to give the final set of 3D body joint
proposals. Optimized implementations of our algorithms
can run at around 200 frames per second on consumer
hardware, at least one order of magnitude faster than
existing approaches.

To validate our algorithms, we evaluate on both
real and synthetic depth images, containing challenging
poses of a varied set of subjects. Even without exploiting
temporal or kinematic constraints, the 3D body joint
proposals are both accurate and stable. We investigate
the effect of several training parameters and show a sub-
stantial improvement over the state of the art. Further,
preliminary results on silhouette images suggest more
general applicability of our approach to scenarios where
depth cameras are not available.

1.1 Contributions

Our main contribution are as follows.
• We demonstrate that using efficient machine learn-

ing approaches, trained with a large-scale, highly
varied, synthetic training set, allows one to accu-
rately predict the positions of the human body joints
in super-realtime.

• We show how a carefully designed pattern of body
parts can transform the hard problem of pose esti-
mation into an easier problem of per-pixel semantic
segmentation.

• We examine both classification and regression ob-
jective functions for training the decision forests,
and obtain slightly surprising results that suggest
a limitation of the standard regression objective.

• We employ regression models that compactly sum-
marize the pixel-to-joint offset distributions at leaf
nodes. We show that these make our method both
faster and more accurate than Hough Forests [20].
We will refer to this as ‘vote compression’.

This paper builds on our earlier publications [14],
[18]. It unifies the notation, explains the approaches in
more detail, and includes a considerably more thorough
experimental validation.

1.2 Depth imaging

Depth imaging technology has advanced dramatically
over the last few years, and has finally reached a con-
sumer price point [7]. Pixels in a depth image indicate
the calibrated distance in meters of 3D points in the
world from the imaging plane, rather than a measure of
intensity or color. We employ the Kinect depth camera
(and simulations thereof) to provide our input data.
Kinect uses structured infra-red light and can infer depth
images with high spatial and depth resolution at 30
frames per second.

Using a depth camera gives several advantages for hu-
man pose estimation. Depth cameras work in low light
conditions (even in the dark), help remove ambiguity in
scale, are largely color and texture invariant, and resolve
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silhouette ambiguities. They also greatly simplify the
task of background subtraction which we assume in this
work as a pre-processing step. Most importantly for our
approach, since variations in color and texture are not
imaged, it is much easier to synthesize realistic depth
images of people and thus cheaply build a large training
dataset.

1.3 Related Work
Human pose estimation has generated a vast literature,
surveyed in [21], [22]. We briefly review some of the
recent advances.

1.3.1 Recognition in parts
Several methods have investigated using some notion
of distinguished body parts. One popular technique,
pictorial structures [23], was applied by Felzenszwalb &
Huttenlocher [24] to efficiently estimate human pose by
representing the body by a collection of parts arranged
in a deformable configuration. Springs are used be-
tween parts to model the deformations. Ioffe & Forsyth
[25] group parallel edges as candidate body segments
and prune combinations of segments using a projected
classifier. Ramanan & Forsyth [26] find candidate body
segments as pairs of parallel lines and cluster their
appearances across frames, connecting up a skeleton
based on kinematic constraints. Sigal et al. [9] use eigen-
appearance template detectors for head, upper arms and
lower legs proposals. Non-parametric belief propagation
was then used to infer whole body pose. Tu’s ‘auto-
context’ was used in [27] to obtain a coarse body part
labeling. These labels were not defined to localize joints,
and classifying each frame took about 40 seconds. ‘Pose-
lets’ that form tight clusters in both 3D pose and 2D
image appearance, detectable using SVMs, were pre-
sented by Bourdev & Malik [17]. Wang & Popović [10]
proposed a related approach to track a hand clothed in
a colored glove; our BPC system could be viewed as
automatically inferring the colors of a virtual colored
suit from a depth image. As detailed below, our BPC
algorithm [14], extends the above techniques by using
parts that densely cover the body and directly localize
body joints.

1.3.2 Pose from depth
Recent work has exploited improvements in depth imag-
ing and 3D input data. Anguelov et al. [28] segment pup-
pets in 3D range scan data into head, limbs, torso, and
background using spin images and a MRF. Grest et al. [1]
use Iterated Closest Point (ICP) to track a skeleton of a
known size and starting position from depth images. In
[3], Zhu & Fujimura build heuristic detectors for coarse
upper body parts (head, torso, arms) using a linear pro-
gramming relaxation, but require a T-pose initialization
to calibrate the model shape. Siddiqui & Medioni [4]
hand-craft head, hand, and forearm detectors, and show
that data-driven MCMC model fitting outperforms the

iterated closest point algorithm. Kalogerakis et al. [29]
classify and segment vertices in a full closed 3D mesh
into different parts, but do not deal with occlusions
and are sensitive to mesh topology. Plagemann et al. [5]
build a 3D mesh to find geodesic extrema interest points
which are classified into 3 parts: head, hand, and foot.
This method provides both a location and orientation
estimate of these parts, but does not distinguish left from
right, and the use of interest points limits the choice of
parts.

1.3.3 Regression
Regression has been a staple of monocular 2D human
pose estimation [30], [31], [32], [13]. Several methods
have explored matching exemplars or regressing from
a small set of nearest neighbors. The shape context
descriptor was used by Mori & Malik [33] to retrieve
exemplars. Shakhnarovich et al. [34] estimate upper body
pose, interpolating k-NN poses efficiently indexed by
parameter sensitive hashing. Agarwal & Triggs [30] learn
a regression from kernelized image silhouette features to
pose. Navaratnam et al. [32] use the marginal statistics
of unlabeled data to improve pose estimation. Local
mixtures of Gaussian Processes were used by Urtasun
& Darrell [13] to regress human pose. Our OJR approach
combines some ideas from these approaches with the
tools of high-speed object recognition based on decision
trees.

1.3.4 Other approaches
An alternative random forest based method for pose esti-
mation was proposed by [35]. Their approach quantizes
the space of rotations and gait cycle, though does not
directly produce a detailed pose estimate.

A related technique to our OJR algorithm is used in
object localization. For example, in the implicit shape
model (ISM) [36], visual words are used to learn vot-
ing offsets to predict 2D object centers. ISM has been
extended in two pertinent ways. Müller et al. [37] apply
ISM to body tracking by learning separate offsets for
each body joint. Gall and Lempitsky [20] replace the
visual word codebook of ISM by learning a random
forest in which each tree assigns every image pixel to
a decision-tree leaf node at which is stored a potentially
large collection of votes. This removes the dependence
of ISM on repeatable feature extraction and quantization,
as well as the somewhat arbitrary intermediate codebook
representation. Associating a collection of ‘vote offsets’
with each leaf node/visual word, these methods then
accumulate votes to determine the object centers/joint
positions. Our OJR method builds on these techniques
by compactly summarizing the offset distributions at the
leaf nodes, learning the model hyper-parameters, and
using a continuous test-time voting space.

1.4 Outline
The remainder of the paper is organized as follows.
Sec. 2 explains how we generate the large, varied train-
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ing set that is the key to our approach. Following that,
Sec. 3 describes the two algorithms in a unified frame-
work. Our experimental evaluation is detailed in Sec. 4,
and we conclude in Sec. 5.

2 DATA

Many techniques for pose estimation require training
images with high quality ground truth labels, such as
joint positions. For real images, these labels can be very
expensive to obtain. Much research has thus focused on
techniques to overcome lack of training data by using
computer graphics [34], [38], [39], but there are two
potential problems:

1) Rendering realistic intensity images is hampered
by the huge color and texture variability induced
by clothing, hair, and skin, often meaning that
the data are reduced to 2D silhouettes [30]. While
depth cameras significantly reduce this difficulty,
considerable variation in body and clothing shape
remains.

2) Synthetic body pose renderers use, out of necessity,
real motion capture (mocap) data. Although tech-
niques exist to simulate human motion (e.g. [40])
they do not yet produce a full range of volitional
motions of a human subject.

In this section we describe how we overcome these
problems. We take real mocap data, retarget this to a
variety of base character models, and then synthesize
a large, varied dataset. We believe the resulting dataset
to considerably advance the state of the art in both scale
and variety, and will demonstrate the importance of such
a large dataset in our evaluation.

2.1 Motion capture data
As noted above, simulating human pose data is an
unsolved problem. Instead, we obtain ground truth pose
data using marker-based motion capture of real human
actors. The human body is capable of an enormous range
of poses. Modeled jointly, the number of possible poses
is exponential in the number of articulated joints. We
cannot thus record all possible poses. However, there
is hope. As will be seen in Sec. 3, our algorithms,
based on sliding window decision forests, were designed
to only look at a local neighborhood of a pixel. By
looking at local windows, we factor whole body poses
into combinations of local poses, and can thus expect
the forests to generalize somewhat to unseen poses. In
practice, even a limited corpus of mocap data where
for example each limb separately moves through a wide
range of poses has proven sufficient. Further, we need
not record mocap with variation in rotation about the
vertical axis, mirroring left-right, scene position, body
shape and size, or camera pose, all of which can be
simulated. Given our core entertainment scenario, we
recorded 500K frames in a few hundred sequences of
driving, dancing, kicking, running, navigating menus,
etc.

Right hand appearances 

Fig. 3. A single body part varies widely in its context.

To create training data we render single, static depth
images because, as motivated above, our algorithms de-
liberately eschew temporal information. Often, changes
in pose from one mocap frame to the next are so small as
to be insignificant. We can thus discard many similar, re-
dundant poses using ‘furthest neighbor’ clustering [41].
We represent a pose P as a collection P = (p1, . . . ,pJ) of
J joints where each pj is a 3D position vector. Starting
with set Pall of all the recorded mocap poses, we choose
an initial pose at random and then greedily grow a set
P as

P := P ∪ { argmax
P∈Pall\P

min
P ′∈P

dpose(P, P
′) } , (1)

where as the distance between poses we use the maxi-
mum Euclidean distance over body joints j

dpose(P, P
′) = max

j∈{1,...,J}
‖pj − p′j‖2 . (2)

We stop growing set P when there exists no unchosen
pose P which has dpose(P, P ′) > Dpose for any chosen
pose P ′. We set Dpose = 5cm. This results in a final subset
P ⊂ Pall containing approximately 100K most dissimilar
poses.

We found it necessary to iterate the process of mo-
tion capture, rendering synthetic training data, training
the classifier, and testing joint prediction accuracy. This
allowed us to refine the mocap database with regions
of pose space that had been previously missed out. Our
early experiments employed the CMU mocap database
[42] which gave acceptable results though covers far less
of pose space.

2.2 Rendering synthetic data
We build a randomized rendering pipeline. This can be
viewed as a generative model from which we can sample
fully labeled training images of people. Our goals in
building this pipeline were twofold: realism – we want
the samples to closely resemble real images so that the
learned model can work well on live camera input; and
variety – the dataset must contain a good coverage of the
appearance variations we hope to recognize at test time.
Fig. 3 illustrates the huge space of possible appearance
variations we need to deal with for just one body part,
even when restricted to a pixel’s local neighborhood as
discussed above.

Our features achieve 3D translation invariance by
design (see below). However, other invariances such as
pose and shape cannot be designed so easily or effi-
ciently, and must instead be encoded implicitly through
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Fig. 2. Synthetic vs. real data. Pairs of depth images and corresponding color-coded ground truth body part label
images. The 3D body joint positions are also known (but not shown). Note wide variety in pose, shape, clothing, and
crop. The synthetic images look remarkably similar to the real images, lacking primarily just the high-frequency texture.

the training data. The rendering pipeline thus randomly
samples a set of parameters, using the best approxima-
tions we could reasonably achieve to the variations we
expected to observe in the real world. While we cannot
hope to sample all possible combinations of variations,
if samples contain somewhat independent variations (in
particular, excluding artificial correlations such as thin
people always wear a hat), we can expect the classifier
to learn a large degree of invariance. Let us run through
the variations we simulate:
Base Character. We use 3D models of 15 varied base
characters, both male and female, from child to adult,
short to tall, and thin to fat. Some examples are shown
in Fig. 4. A given render will pick uniformly at random
from the characters.
Pose. Having discarded redundant poses from the mo-
cap data, we retarget the remaining poses P ∈ P to each
base character using [43]. A pose is selected uniformly
at random and mirrored left-right with probability 1

2 to
prevent a left or right bias.
Rotation & Translation. The character is rotated about
the vertical axis and translated in the scene, uniformly at
random. Translation ensures we obtain cropped training
examples where the character is only partly in-frame.
Hair & Clothing. We add mesh models of several hair
styles and items of clothing chosen at random. A slight
gender bias is used, so that, for instance, long hair is
chosen more often for the female models, and beards
are only chosen for the male models.
Weight & Height Variation. The base characters already
include a wide variety of weights and heights. To add
further variety we add an extra variation in height
(±10%) and weight (±10%). For rendering efficiency, we
assume this variation does not affect the pose retarget-
ting.
Camera Position & Orientation. The camera height,
pitch and roll are chosen uniformly at random within a
range believed to be representative of an entertainment
scenario in a home living room.
Camera Noise. While depth camera technology has im-
proved rapidly in the last few years, real depth cameras
exhibit noise, largely due to non-IR-reflecting materials
(e.g. glass, hair), surfaces that are almost perpendicular

Base Character Models 

Fig. 4. Example base character models.

to the sensor, and ambient illumination. To ensure high
realism in our dataset, we thus add artificial noise to the
clean computer graphics renders to simulate the depth
imaging process: dropped-out pixels, depth shadows,
spot noise and disparity quantization.

We use standard linear skinning techniques from com-
puter graphics to animate the chosen 3D mesh model
given the chosen pose, and a custom pixel shader is used
to render the depth images. Fig. 2 compares the varied
output of the pipeline to hand-labeled real depth images.
The synthetic data is used both as fully labeled training
data, and, alongside real hand-labeled depth images, as
test data in our evaluation.

In building this randomized rendering pipeline, we
attempted to fit as much variety in as many ways as we
could, given the time constraints we were under. Inves-
tigating the precise effects of the choice and amounts of
variation would be fascinating, but lies beyond the scope
of this work.

2.3 Training data labeling

A major advantage of using synthetic training images
is that the ground truth labels can be generated almost
for free, allowing one to scale up supervised learning to
very large scales. The complete rendering pipeline allows
us to rapidly sample hundreds of thousands of unique
images of people. The particular tasks we address in
this work, BPC and OJR, require different types of label,
described next.
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2.3.1 Body part classification labels
Our first algorithm, BPC, aims to predict a discrete body
part label at each pixel. At training time, these labels are
required for all pixels, and we thus represent the labels
as a color-coded body part label image that accompanies
each depth image (see Figs. 1 and 2).

The use of an intermediate body part representation
that can localize 3D body joints is a key contribution of
this work. It transforms the pose estimation problem into
one that can readily be solved by efficient classification
algorithms. The particular pattern of body parts used
was designed by hand to balance these desiderata:
• the parts must densely cover the body, as a predic-

tion is made for every pixel in the foreground;
• the parts should not be so small and numerous as

to waste capacity of the classifier; and
• the parts must be small enough to well localize a

region of the body.
By centering and localizing some of the parts around
body joints of interest, accurate body part predictions
will necessarily spatially localize those body joints, and,
because we have calibrated depth images, this localiza-
tion will implicitly be in 3D.

The parts definition can be specified in a texture
map and retargetted to the various 3D base character
meshes for rendering. For our experiments, we define
31 body parts: LU/RU/LW/RW head, neck, L/R shoulder,
LU/RU/LW/RW arm, L/R elbow, L/R wrist, L/R hand,
LU/RU/LW/RW torso, LU/RU/LW/RW leg, L/R knee,
L/R ankle, and L/R foot (Left, Right, Upper, loWer).
Distinct parts for left and right allow the classifier to
learn to disambiguate the left and right sides of the body.
The precise definition of these parts might be changed
to suit a particular application. For example, in an upper
body tracking scenario, all the lower body parts could
be merged into a single part.

2.3.2 Offset joint regression labels
Our second algorithm, OJR, instead aims to estimate the
3D joint positions more directly. As such, the ground
truth labels it requires are simply the ground truth 3D
joint positions. These are trivially recorded during the
standard mesh skinning process. In our experiments, we
use 16 body joints: head, neck, L/R shoulder, L/R elbow,
L/R wrist, L/R hand, L/R knee, L/R ankle, and L/R foot.
This selection allows us to directly compare the BPC and
OJR approaches on a common set of predicted joints.

3 METHOD

Our algorithms cast votes for the position of the body
joints by evaluating a sliding window decision forest
at each pixel. These votes are then aggregated to infer
reliable 3D body joint position proposals. In this section
we describe: (i) the features we employ to extract dis-
criminative information from the image; (ii) the structure
of a random forest, and how it combines multiple such
features to achieve an accurate set of votes; (iii) the

(a)

Image Features

(b)

𝜃2

𝝓1

𝜃2

𝝓2

𝝓1

𝝓2

Fig. 5. Depth image features. The yellow crosses in-
dicate the image pixel u being classified. The red circles
indicate the offset pixels as defined in Eq. 3. In (a), the two
example features give a large depth difference response,
i.e. |f(u|φ)| is large. In (b), the same two features at
new image locations give a much smaller response. In
practice, many such features combined in a decision
forest give a strong discriminative signal.

different leaf node prediction models used for BPC and
OJR; (iv) how the pixel votes are aggregated into a set of
joint position predictions at test time; and (iv) how the
forests are learned.

3.1 Depth image features
We employ simple depth comparison features, inspired
by those in [44]. Individually these features provide only
a weak discriminative signal, but combined in a decision
forest they prove sufficient to accurately disambiguate
different appearances and regions of the body. At a given
pixel u, the feature response is computed as

f(u|φ) = z

(
u +

δ1
z(u)

)
− z

(
u +

δ2
z(u)

)
, (3)

where feature parameters φ = (δ1, δ2) describe 2D pixel
offsets δ, and function z(u) looks up the depth at pixel
u = (u, v)> in a particular image. Each feature therefore
performs two offset ‘depth probes’ in the image and
takes their difference. The normalization of the offsets by
1

z(u) ensures that the feature response is depth invariant:
at a given point on the body, a fixed world space offset
will result whether the depth pixel is close or far from the
camera. The features are thus 3D translation invariant,
modulo perspective effects. If an offset pixel u′ lies on
the background or outside the bounds of the image, the
depth probe z(u′) is assigned a large positive constant
value.

During training of the tree structure, offsets δ are sam-
pled at random within a box of fixed size. We investigate
sampling strategies in Sec. 3.5.1, and evaluate the effect
of this maximum depth probe offset in Fig. 11(c). We
further set δ2 = 0 with probability 1

2 . This means that
roughly half the features evaluated are ‘unary’ (look at
only one offset pixel) and half are ‘binary’ (look at two
offset pixels). In practice the results appear to be fairly
insensitive to this parameter.

Fig. 5 illustrates two different features. The unary
feature with parameters φ1 looks upwards: Eq. 3 will
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Fig. 6. Randomized Decision Forests. A forest is an
ensemble of T decision trees. Each tree consists of split
nodes (blue) and leaf nodes (green). The red arrows
indicate the different paths that might be taken by different
trees for a particular input.

give a large positive response for pixels u near the
top of the body, but a value close to zero for pixels u
lower down the body. By similar reasoning, the binary
feature (φ2) may be seen instead to help find thin vertical
structures such as the arm.

The design of these features was strongly motivated
by their computational efficiency: no preprocessing is
needed; each feature need only read at most 3 image pix-
els and perform at most 5 arithmetic operations. Further,
these features can be straightforwardly implemented on
the GPU. Given a larger computational budget, one
could employ potentially more powerful features based
on, for example, depth integrals over regions, curvature,
or more complex local descriptors e.g. [45].

3.2 Randomized forests
Randomized decision trees and forests [46], [47], [48],
[49], [50] have proven fast and effective multi-class clas-
sifiers for many tasks [44], [51], [52], [50], and can be
implemented efficiently on the GPU [12]. As illustrated
in Fig. 6, a forest is an ensemble of T decision trees,
each consisting of split and leaf nodes. We will use n to
denote any node in the tree, and l to denote a leaf node
specifically. Each split node contains a ‘weak learner’
represented by its parameters θ = (φ, τ): the 2D offsets
φ = (δ1, δ2) used for feature evaluation above, and a
scalar threshold τ . To make a prediction for pixel u in a
particular image, one starts at the root and traverses a
path to a leaf by repeated evaluating the weak learner
function

h(u;θn) = [f(u;φn) ≥ τn] , (4)

where [·] is the 0-1 indicator. If h(u;θn) evaluates to 0, the
path branches to the left child of n, otherwise it branches
to the right child. This repeats until a leaf node l is
reached. We will use l(u) to indicate the particular leaf
node reached for pixel u. The same algorithm is applied
at each pixel for each tree t, resulting in the set of leaf
nodes reached L(u) = {lt(u)}Tt=1. More details can be
found in [50], a tutorial on decision forests.

3.3 Leaf node prediction models
At each leaf node l in each tree is stored a learned
prediction model. In this work we use two types of

prediction model. For BPC, where a classification forest is
used, the prediction model is a probability mass function
pl(c) over body parts c. For OJR, where a regression
forest is used, the prediction model is instead a set of
weighted relative votes Vlj for each joint j. In this section
we describe these two models, and show how both
algorithms can be viewed as casting a set of weighted
world space votes for the 3D positions of the each joint
in the body. Sec. 3.4 will then show how these votes are
aggregated in an efficient smoothing and clustering step
based on mean shift to produce the final 3D body joint
proposals.

3.3.1 Body part classification ( BPC)
BPC predicts a body part label at each pixel as an

intermediate step towards predicting joint positions. The
classification forest approach achieves this by storing a
distribution pl(c) over the discrete body parts c at each
leaf l. For a given input pixel u, the tree is descended to
reach leaf l = l(u) and the distribution pl(c) is retrieved.
The distributions are averaged together for all trees in
the forest to give the final classification as

p(c|u) = 1

T

∑
l∈L(u)

pl(c) . (5)

One can visualize the most likely body part inferred at
each pixel as an image, and examples of this are given in
Fig. 10. One might consider smoothing this signal in the
image domain. For example, one might use probabilities
p(c|u) as the unary term in a conditional random field
with a pairwise smoothness prior [53]. However, since
the per-pixel signal is already very strong and such
smoothing would likely be expensive to compute, we
do not use such a prior.

The image space predictions are next re-projected into
world space. We denote the re-projection function as
x(u) = (x(u), y(u), z(u))>. Conveniently, the known
z(u) from the calibrated depth camera allows us to
compute x(u) and y(u) trivially.

Next, we must decide how to map from surface body
parts to interior body joints. In Sec. 2 we defined many,
though not all, body part labels c to spatially align with
the body joints j, and conversely most joints j have a
specific part label c. We will thus use c(j) to denote the
body part associated with joint j.

Algorithm 1 Body part classification voting
1: initialize X BPC

j = ∅ for all joints j
2: for all foreground pixels u in the test image do
3: evaluate forest to reach leaf nodes L(u)
4: evaluate distribution p(c|u) using Eq. 5
5: compute 3D pixel position x(u) = (x(u), y(u), z(u))>

6: for all joints j do
7: compute pushed-back position xj(u)
8: lookup relevant body part c(j)
9: compute weight w as p(c = c(j)|u) · z2(u)

10: add vote (xj(u), w) to set X BPC
j

11: return set of votes X BPC
j for each joint j
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Now, no matter how well aligned in the x and y
directions, the body parts inherently lie on the surface
of the body. They thus cannot align in the z direction
with the interior body joint position we are after. (See
Fig. 1). We therefore use a learned per-joint vector
ζj = (0, 0, ζj)

> that pushes back the re-projected pixel
surface positions into the world to better align with the
interior joint position: xj(u) = x(u) + ζj . This simple
approach effectively assumes each joint is spherical, and
works well and efficiently in practice. As an indication,
the mean across the different joints of the learned push-
backs ζ is 0.04m.

We finally create the set X BPC
j of weighted world space

votes using Algorithm 1. These votes will be used in
the aggregation step below. As you see, the position of
each vote is given by the pushed-back world space pixel
position xj(u). The vote weight w is given by the proba-
bility mass for a particular body part, multiplied by the
squared pixel depth. This depth-weighting compensates
for observing fewer pixels when imaging a person stand-
ing further from the camera, and ensures the aggregation
step is depth invariant. In practice this gave a small but
consistent improvement in joint prediction accuracy.

Note that each pixel produces exactly one vote for
each body joint, and these votes all share the same world
space position. In practice many of the votes will have
zero probability mass and can be ignored. This contrasts
with the OJR prediction model, described next, where
each pixel can cast several votes for each joint.

3.3.2 Offset joint regression ( OJR)

The OJR approach aims to predict the set of weighted
votes directly, without going through an intermediate
representation. The forest used here is a regression forest
[54], [50] since the leaves make continuous predictions.
At each leaf node l we store a distribution over the
relative 3D offset from the re-projected pixel coordinate
x(u) to each body joint j of interest. Each pixel can
thus potentially cast votes to all joints in the body, and
unlike BPC, these votes may differ in all world space
coordinates and thus directly predict interior rather than
surface positions.

Algorithm 2 Offset joint regression voting
1: initialize X OJR

j = ∅ for all joints j
2: for all foreground pixels u in the test image do
3: evaluate forest to reach leaf nodes L(u)
4: compute 3D pixel position x(u) = (x(u), y(u), z(u))>

5: for all leaves l ∈ L(u) do
6: for all joints j do
7: lookup weighted relative vote set Vlj
8: for all (∆ljk, wljk) ∈ Vlj do
9: compute absolute position x = x(u) + ∆ljk

10: compute weight w as wljk · z2(u)
11: add vote (x, w) to set X OJR

j

12: sub-sample X OJR
j to contain at most Nsub votes

13: return sub-sampled vote set X OJR
j for each joint j

Ideally one would like to make use of a distribution of
such offsets. Even for fairly deep trees, we have observed
highly multi-modal empirical offset distributions at the
leaves. Thus for many nodes and joints, approximating
the distribution over offsets as a Gaussian would be
inappropriate. One alternative, Hough forests [20], is to
represent the distribution as the set of all offsets seen
at training time. However, Hough forests trained on
our large training sets would require vast amounts of
memory and be prohibitively slow for a realtime system.

We therefore, in contrast to [36], [20], represent the
distribution using a small set of 3D relative vote vectors
∆ljk ∈ R3. The subscript l denotes the tree leaf node
(as before), j denotes a body joint, and k ∈ {1, . . . ,K}
denotes a cluster index.1 We have found K = 1 or
2 has given good results, and while the main reason
for keeping K small is efficiency, we also empirically
observed (Sec. 4.5.4) that increasing K beyond 1 gives
only a very small increase in accuracy. As described
below, these relative votes are obtained by clustering an
unbiased sample of all offsets seen at training time using
mean shift (see Sec. 3.5.2). Unlike [37], a corresponding
confidence weight wljk is assigned to each vote, given by
the size of its cluster, and our experiments in Sec. 4.5.6
show these weights are critical for high accuracy. We will
refer below to the set of relative votes for joint j at node
l as Vlj = {(∆ljk, wljk)}Kk=1.

We detail the test-time voting approach for OJR in
Algorithm 2, whereby the set X OJR

j of absolute votes
cast by all pixels for each body joint j is collected.
As with BPC, the vote weights are multiplied by the
squared depth to compensate for differing surface areas
of pixels. Optionally, the set X OJR

j can be sub-sampled
by taking either the top Nsub weighted votes or instead
Nsub randomly sampled votes. Our results show that this
can dramatically improve speed while maintaining high
accuracy (Fig. 13(c)).

Compared to BPC, OJR more directly predicts joints
that lie behind the depth surface, and can cope with
joints that are occluded or outside the image frame. Fig. 7
illustrates the voting process for OJR.

3.4 Aggregating predictions
We have seen above how at test time both BPC and OJR
can be seen as casting a set of weighted votes in world
space for the location of the body joints. These votes
must now be aggregated to generate reliable proposals
for the positions of the 3D skeletal joints. Producing
multiple proposals for each joint allows us to capture
the inherent uncertainty in the data. These proposals are
the final output of our algorithm. As we will see in our
experiments, these proposals can accurately localize the
positions of body joints from a single image. Given a
whole sequence, the proposals could also be used by

1. We use K to indicate the maximum number of relative votes
allowed. In practice we allow some leaf nodes to store fewer than
K votes for some joints.
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Fig. 7. Offset joint regression voting at test time. Each pixel (black square) casts a 3D vote (orange line) for each
joint. Mean shift is used to aggregate these votes and produce a final set of 3D predictions for each joint. The highest
confidence prediction for each joint is shown. Note accurate prediction of internal body joints even when occluded.

a tracking algorithm to self-initialize and recover from
failure.

A simple option might be to accumulate the global
centroid of the votes for each joint. However, the votes
are typically highly multi-modal, and so such a global
estimate is inappropriate. Instead we employ a local
mode finding approach based on mean shift [55].

We first define a Gaussian Parzen density estimator
per joint j as

pmj (x′) ∝
∑

(x,w)∈Xm
j

w · exp

−∥∥∥∥∥x′ − x

bmj

∥∥∥∥∥
2
 , (6)

where x′ is a coordinate in 3D world space, m ∈
{BPC, OJR} indicates the approach, and bmj is a learned
per-joint bandwidth.

Mean shift is then used to find modes in this density
efficiently. The algorithm starts at a subset X̂m

j ⊆ Xm
j

of the votes, and iteratively walks up the density by
computing the mean shift vector [55] until convergence.
Votes that converge to the same 3D position within some
tolerance are grouped together, and each group forms a
body joint proposal, the final output of our system. A
confidence weight is assigned to each proposal as the
sum of the weights w of the votes in the corresponding
group. For both BPC and OJR this proved considerably
more reliable than taking the modal density estimate (i.e.
the value pj(x′)). For BPC the starting point subset X̂ BPC

j

is defined as all votes for which the original body part
probability was above a learned probability threshold
αc(j). For OJR, all votes are used as starting points, i.e.
X̂ OJR

j = X OJR
j .

3.5 Training

Each tree in the decision forest is trained on a set
of images randomly synthesized using the method de-
scribed in Sec. 2. Because we can synthesize training data
cheaply, we use a different set of training images for
each tree in the forest. As described above, each image

is fully labeled: for BPC there is one body part label c
per foreground pixel u, and for OJR there is instead one
pose P = (p1, . . . ,pJ) of 3D joint position vectors pj per
training image. For notational simplicity, we will assume
that u uniquely encodes a 2D pixel location in a particular
image, and thus can range across all pixels in all training
images. A random subset of Nex = 2000 example pixels
from each image is used. Using a subset of pixels reduces
training time and ensures a roughly even contribution
from each training image.

The following sections describe training the structure
of the trees, the leaf node prediction models, and the
hyper-parameters. Note that we can decouple the train-
ing of the tree structure from the training of the leaf
predictors; more details are given below.

3.5.1 Tree structure training
To train the tree structure, and thereby the weak learner
parameters used at the split nodes, we use the standard
greedy decision tree training algorithm. At each node, a
set T of many candidate weak learner parameters θ ∈ T
is sampled (these θ parameters are those used in Eq. 4).
Each candidate is then evaluated against an objective
function I . Each sampled θ induces a partition of the
set S = {u} of all training pixels that reached the node,
into left SL(θ) and right SR(θ) subsets, according to the
evaluation of the weak learner function (Eq. 4). The best
θ is selected according to

θ? = argmin
θ∈T

∑
d∈{L,R}

|Sd(θ)|
|S|

I(Sd(θ)) (7)

which minimizes objective function I while balancing
the sizes of the left and right partitions. We investigate
both classification and regression objective functions, as
described below. If the tree is not too deep, the algorithm
then recurses on the example sets SL(θ?) and SR(θ?) for
the left and right child nodes respectively.

Training the tree structure is by far the most expen-
sive part of the training process, since many candidate
parameters must be tried at an exponentially growing
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number of tree nodes as the depth increases. To keep the
training times practical we employ a distributed imple-
mentation. At the high end of our experiments, training 3
trees to depth 20 from 1 million images takes about a day
on a 1000 core cluster. (GPU based implementations are
also possible and might be considerably cheaper). The
resulting trees each have roughly 500K nodes, suggesting
fairly balanced trees.

We next describe the two objective functions investi-
gated in this work.
Classification. The standard classification objective
Icls(S) minimizes the Shannon entropy of the distribu-
tion of the known ground truth labels corresponding to
the pixels in S. Entropy is computed as

Icls(S) = −
∑
c

p(c|S) log p(c|S) , (8)

where p(c|S) is the normalized histogram of the set of
body part labels c(u) for all u ∈ S.
Regression. Here, the objective is to partition the ex-
amples to give nodes with minimal uncertainty in the
joint offset distributions at the leaves [56], [20]. In our
problem, the offset distribution for a given tree node is
likely to be highly multi-modal (see examples in Fig. 9).
One approach might be to fit a Gaussian mixture model
(GMM) to the offsets and use the negative log likelihood
of the offsets under this model as the objective. However,
GMM fitting would need to be repeated at each node
for thousands of candidate weak learners, making this
prohibitively expensive. Another possibility might be to
use non-parametric entropy estimation [57], but again
this would increase the cost of training considerably.

Following existing work [20], we instead employ the
much cheaper sum-of-squared-differences objective:

Ireg(S) =
∑
j

∑
u∈Sj

||∆u→j − µj ||22 , (9)

where offset vector ∆u→j = pj − x(u), and

µj =
1

|Sj |
∑
u∈Sj

∆u→j , (10)

Sj = { u ∈ S | ‖∆u→j‖2 < ρ } . (11)

Unlike [20], we introduce an offset vector length thresh-
old ρ to remove offsets that are large and thus likely
to be outliers (results in Sec. 4.5.1 highlight importance
of ρ). While this model implicitly assumes a uni-modal
Gaussian, which we know to be unrealistic, for learning
the tree structure, this assumption is tractable and can
still produce satisfactory results.
Discussion. Recall that the two objective functions above
are used for training the tree structure. We are then at
liberty to fit the leaf prediction models in a different
fashion (see next section). Perhaps counter-intuitively,
we observed in our experiments that optimizing with the
classification objective Icls works well for the OJR task.
Training for classification will result in image patches
reaching the leaf nodes that tend to have both similar

Offset Proposal Distribution 

Offset Proposals Selected Offsets 

(b) Mixture 

(a) Uniform 

Fig. 8. Sampling strategies for δ. (a) A uniform proposal
distribution is used to sample the 2D feature offsets δ
(see Eq. 3) during tree structure training. After training,
a 2D histogram of the selected δ values across all split
nodes in the forest is plotted. The resulting distribution
is far from uniform. (b) Building a mixture distribution
to approximate these selected offsets, the tree structure
training selects a similar distribution of offsets. However,
as seen in Fig. 11(e,f), this can have a substantial impact
on training efficiency.

appearances and local body joint configurations. This
means that for nearby joints, the leaf node offsets are
likely to be small and tightly clustered. The classification
objective further avoids the assumption of the offset
vectors being Gaussian distributed.

We did investigate further node splitting objectives, in-
cluding various forms of mixing body part classification
and regression (as used in [20]), as well as variants such
as separate regression forests for each joint. However,
none proved better than either the standard classification
or regression objectives defined above.
Sampling θ. The mechanism for proposing T , the set
of candidate weak learner parameters θ, merits further
discussion, especially as the search space of all possible
θ is large. The simplest strategy is to sample |T | values
of θ from a uniform proposal distribution p(θ), defined
here over some range of offsets φ = (δ1, δ2) and over
some range of thresholds τ . If the forest is trained using
this proposal distribution, one finds that the empirical
distribution p(θ?) (computed over the chosen θ? across
all nodes in the forest) ends up far from uniform.

This suggests an iterative strategy: start from a uni-
form proposal distribution p(θ), train the forest, exam-
ine the distribution p(θ?) of the chosen θ?s, design an
improved non-uniform proposal distribution p′(θ) that
approximates p(θ?), and repeat. The intuition is that if
you show the training algorithm more features that are
likely to be picked, it will not need to see so many to
find a good one. To make this procedure ‘safe’ the new
proposal distribution p′(θ) can include a mixture with
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a uniform distribution with a small mixture coefficient
(e.g. 10%). In practice we observed a small but consistent
improvement in accuracy when iterating this process
once (see Fig. 11(e,f)), though further iterations did not
help. See Fig. 8 for an illustration. This idea is explored
further in [58].

3.5.2 Leaf node prediction models

Given the learned tree structure, we must now train the
prediction models at the leaf nodes. It is possible to first
train the tree structure as described in the previous sec-
tion, and then ‘retro-fit’ the leaf predictors by passing all
the training examples down the trained tree to find the
set of training examples that reach each individual leaf
node. This allows us to investigate the use of different
tree structure objectives for a given type of prediction
model; see results below in Sec. 4.5.1.

For the BPC task, we simply take pl(c) = p(c|S), the
normalized histogram of the set of body part labels c(u)
for all pixels u ∈ S that reached leaf node l.

For OJR, we must instead build the weighted relative
vote sets Vlj = {(∆ljk, wljk)}Kk=1 for each leaf and joint.
To do this, we employ a clustering step using mean
shift, detailed in Algorithm 3. This algorithm describes
how each training pixel induces a relative offset to all
ground truth joint positions2, and once aggregated across
all training images, these are clustered using mean shift.
To maintain practical training times and keep memory
consumption reasonable we use reservoir sampling [59]
to sample Nres offsets. Reservoir sampling is an algo-
rithm that allows one to maintain a fixed-size unbiased
sample from a potentially infinite stream of incoming
samples; see [59] for more details. In our case, it allows
us to uniformly sample Nres offsets at each node from
which to learn the prediction models, without having to
store the much larger set of offsets being seen.

Mean shift mode detection is again used for clustering,

2. Recall that for notational simplicity we are assuming u defines a
pixel in a particular image; the ground truth joint positions P used
will therefore correspond for each particular image.

Algorithm 3 Learning relative votes
1: // Collect relative offsets
2: initialize Rlj = ∅ for all leaf nodes l and joints j
3: for all training pixels u ∈ S do
4: descend tree to reach leaf node l = l(u)
5: compute 3D pixel position x(u)
6: for all joints j do
7: lookup ground truth joint positions P = {pj}
8: compute relative offset ∆u→j = pj − x(u)
9: store ∆u→j in Rlj with reservoir sampling

10: // Cluster
11: for all leaf nodes l and joints j do
12: cluster offsets Rlj using mean shift
13: discard modes for which ‖∆ljk‖2 > threshold λj

14: take top K weighted modes as Vlj
15: return relative votes Vlj for all nodes and joints

this time on the following density:

plj(∆
′) ∝

∑
∆∈Rlj

exp

(
−
∥∥∥∥∆′ −∆

b?

∥∥∥∥2
)

. (12)

This is similar to Eq. 6, though now defined over rel-
ative offsets, without weighting, and using a learned
bandwidth b?. Fig. 9 visualizes a few examples sets
Rlj that are clustered. The positions of the modes form
the relative votes ∆ljk and the numbers of offsets that
reached each mode form the vote weights wljk. To prune
out long range predictions which are unlikely to be
reliable, only those relative votes that fulfil a per joint
distance threshold λj are stored; this threshold could
equivalently be applied at test time though would waste
memory in the tree. In Sec. 4.5.4, we show that there is
little or no benefit in storing more than K = 2 relative
votes per leaf.

We discuss the effect of varying the reservoir capacity
in Sec. 4.5.7. In our unoptimized implementation, learn-
ing these relative votes for 16 joints in 3 trees trained
with 10K images took approximately 45 minutes on a
single 8-core machine. The vast majority of that time is
spent traversing the tree; the use of reservoir sampling
ensures the time spent running mean shift totals only
about 2 minutes.

3.5.3 Learning the hyper-parameters
Some of the hyper-parameters used in our methods
are the focus of our experiments below in Sec. 4.4
and Sec. 4.5. Others are optimized by grid search to
maximize our mean average precision over a 5K image
validation set. These parameters include the probability
thresholds αc (the chosen values were between 0.05
and 0.3), the surface push-backs ζj (between 0.013m to
0.08m), the test-time aggregation bandwidths bmj (be-
tween 0.03m and 0.1m), the shared training-time band-
width b? (0.05m).

4 EXPERIMENTS

In this section we describe the experiments performed
to evaluate our method on several challenging datasets.
We begin by describing the test data sets and error met-
rics, before giving some qualitative results. Following
that, we examine in detail the effect of various hyper-
parameters on BPC and then OJR. We finally compare
the two methods, both to each other and to alternative
approaches.

4.1 Test data
We use both synthetic and real depth images to evaluate
our approach. For the synthetic test set (‘MSRC-5000’),
we synthesize 5000 test depth images, together with the
ground truth body part labels and body joint positions,
using the pipeline described in Sec. 2. However, to
ensure a fair and distinct test set, the original mocap
poses used to generate these test images are held out
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left hand joint left shoulder joint left elbow joint right knee joint 

Fig. 9. Empirical offset distributions for offset joint regression. We visualize the set Rlj of 3D relative offset vectors
∆u→j . Each set of axis represents a different leaf node, and the orange squares plot the vectors ∆u→j ∈ Rlj at that
leaf. (The red, green, and blue squares indicate respectively the positive x, y, and z axes; each half-axis represents
0.5m in world space). We also show training images for each node illustrating the pixel that reached the leaf node as
a cyan cross, and the offset vector as an orange arrow. Note how the decision trees tend to cluster pixels with similar
local appearance at the leaves, but the inherent remaining ambiguity results in multi-modal offset distributions. The
OJR algorithm compresses these distributions to a very small number of modes while maintaining high test accuracy.
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Fig. 10. Example inferences on both synthetic and real test images. In each example we see the input depth
image, the inferred most likely body part labels (for BPC only), and the inferred body joint proposals shown as front,
right, and top views overlaid on a depth point cloud. Only the most confident proposal for each joint above a fixed,
shared threshold is shown, though the algorithms predict multiple proposals per joint. Both algorithms achieve accurate
prediction of body joints for varied body sizes, poses, and clothing. We show failure modes in the bottom rows of the
two larger panels. There is little qualitatively to tell between the two algorithms, though the middle row of the OJR
results shows accurate prediction of even occluded joints (not possible with BPC), and further results in Sec. 4.6
compare quantitatively. Best viewed digitally at high zoom.
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from the training data. Our real test set consists of 8808
frames of real depth images over 15 different subjects,
hand-labeled with dense body parts and 7 upper body
joint positions. We also evaluate on the real test depth
data from [6].

As we will see, the results are highly correlated be-
tween the synthetic and real data. Furthermore, our
synthetic test set appears to be far ‘harder’ than either
of the real test sets due to its extreme variability in pose
and body shape. After some initial experiments we thus
focus our evaluation on the harder synthetic test set.

In most of the experiments below, we limit the rotation
of the user to ±120◦ in both training and synthetic test
data since the user is facing the camera (0◦) in our main
entertainment scenario. However, we do also investigate
the full 360◦ scenario.

4.2 Error metrics

We quantify accuracy using (i) a classification metric (for
BPC only) and (ii) a joint prediction metric (for both
BPC and OJR). As the classification metric, we report
the average per-class segmentation accuracy. This metric
is computed as the mean of the diagonal elements of
the confusion matrix between the ground truth body
part label and the most likely inferred label. This metric
weights each body part equally despite their varying
sizes.

As the joint prediction metric, we generate recall-
precision curves as a function of the predicted confi-
dence threshold, as follows. All proposals below a given
confidence threshold are first discarded; varying this
threshold gives rise to the full recall-precision curve.
Then, the first body joint proposal within a threshold
Dtp meters of the ground truth position is taken as a
true positive, while any other proposals that are also
within Dtp meters count as false positives. This penalizes
multiple spurious detections near the correct position
which might slow a downstream tracking algorithm.
Any proposals outside Dtp meters also count as false
positives. Any joint for which there is no proposal of
sufficient confidence within Dtp is counted as a false
negative. However, we choose not to penalize joints that
are invisible in the image as false negatives.

Given the full recall-precision curve, we finally quan-
tify accuracy as average precision (the area under the
curve) per joint, or mean average precision (mAP) over
all joints. Note that, for example, a mean squared error
(MSE) metric is inappropriate to evaluate our approach.
Our algorithms aim to provide a strong signal to ini-
tialize and re-initialize a subsequent tracking algorithm.
As such, evaluating our approach on MSE would fail
to measure joints for which there are zero or more than
one proposal, and would fail to measure how reliable
the joint proposal confidence measures are. Our mAP
metric effectively measures all proposals (not just the
most confident): the only way to achieve a perfect score
of 1 is to predict exactly one proposal for each joint

that lies within Dtp of the ground truth position. For
most results below we set Dtp = 0.1m as the threshold,
though we investigate the effect of this threshold below
in Fig. 14c.

For BPC we observe a strong correlation of classifica-
tion and joint prediction accuracy (cf. the blue curves
in Fig. 11(a) and Fig. 15(b)). This suggests the trends
observed below for one also apply for the other. For
brevity we thus present results below for only the more
interesting combinations of methods and metrics.

4.3 Qualitative results
Fig. 10 shows example inferences for both the BPC and
OJR algorithms. Note high accuracy of both classification
and joint prediction, across large variations in body and
camera pose, depth in scene, cropping, and body size
and shape (e.g. small child vs. heavy adult). Note that
no temporal or kinematic constraints (other than those
implicitly encoded in the training data) are used for
any of our results. When tested on video sequences (not
shown), most joints can be accurately predicted in most
frames with remarkably little jitter.

A few failure modes are evident: (i) difficulty in dis-
tinguishing subtle changes in depth such as the crossed
arms; (ii) for BPC, the most likely inferred part may be
incorrect, although often there is still sufficient correct
probability mass in distribution p(c|u) that an accurate
proposal can still result during clustering; and (iii) fail-
ure to generalize well to poses not present in training.
However, the inferred confidence values can be used to
gate bad proposals, maintaining high precision at the
expense of recall.

In these and other results below, unless otherwise
specified, the following training parameters were used.
We trained 3 trees in the forest. Each was trained to
depth 20, on 300K images per tree, using Nex = 2000
training example pixels per image. At each node we
tested 2000 candidate offset pairs φ and 50 candidate
thresholds τ per offset pair, i.e. |T | = 2000 × 50. Below,
unless specified, the number of images used refers to the
total number used by the whole forest; each tree will be
trained on a subset of these images.

4.4 Body part classification (BPC) experiments
We now investigate the effect of several training pa-
rameters on the BPC algorithm, using the classification
accuracy metric. The following sections refer to Fig. 11.

4.4.1 Number of training images
In Fig. 11(a) we show how test accuracy increases ap-
proximately logarithmically with the number of ran-
domly generated training images, though starts to tail
off around 100K images. This saturation could be for
several reasons: (i) the model capacity of the tree has
been reached; (ii) the error metric does not accurately
capture the continued improvement in this portion of
the graph (e.g. the underlying probability distribution is
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Fig. 11. Training parameters vs. classification accuracy of the body part classification (BPC) algorithm. (a) Number
of training images. (b) Depth of trees. (c) Maximum depth probe offset. (d) Number of trees. (e,f) Number of candidate
features φ and thresholds τ evaluated during training, for both real and synthetic test data, and using a uniform and
mixture proposal distribution during tree structure training (see Sec. 3.5.1).

improving but the MAP label is constant); or (iii) the
training images are rendered using a fixed set of only
100K poses from motion capture (though with randomly
chosen body shapes, global rotations and translations).
Given the following result, the first of these possibilities
is quite likely.

4.4.2 Depth of trees
Fig. 11(b) shows how the depth of trees affects test
accuracy using either 15K or 900K images. Of all the
training parameters, depth appears to have the most
significant effect as it directly impacts the model capacity
of the classifier. Using only 15K images we observe
overfitting beginning around depth 17, but the enlarged
900K training set avoids this. The high accuracy gradient
at depth 20 suggests even better results can be achieved
by training still deeper trees, at a small extra run-time
computational cost and a large extra memory penalty.

4.4.3 Maximum probe offset
The range of depth probe offsets φ allowed during
training has a large effect on accuracy. We show this in
Fig. 11(c) for 5K training images, where ‘maximum probe
offset’ means the maximum absolute value proposed for
both x and y coordinates of δ1 and δ2 in Eq. 3. The con-
centric boxes on the right show the five tested maximum
offsets, calibrated for a left shoulder pixel in that image

(recall that the offsets scale with the world depth of the
pixel). The largest maximum offset tested covers almost
all the body. As the maximum probe offset is increased,
the classifier is able to use more spatial context to make
its decisions. (Of course, because the search space of
features is enlarged, one may need a larger set T of
candidate features during training). Accuracy increases
with the maximum probe offset, though levels off around
129 pixel meters, perhaps because a larger context makes
overfitting more likely.

4.4.4 Number of trees
We show in Fig. 11(d) test accuracy as the number
of trees is increased, using 5K images for each depth
18 tree. The improvement starts to saturate around 4
or 5 trees, and is considerably less pronounced than
when making the trees deeper. The error bars give an
indication of the remarkably small variability between
trees. The qualitative results illustrate that more trees
tend to reduce noise, though even a single tree can get
the overall structure fairly well.

4.4.5 Number of features and thresholds
Fig. 11(e,f) shows the effect of the number of candi-
date features φ and thresholds τ evaluated during tree
training. Using the mixture proposal distributions for
sampling φ and τ (see Sec. 3.5.1) allows for potentially
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𝐼reg (𝜌 = 0.3m) 

𝐼reg (𝜌 = ∞) 

𝐼cls 

Fig. 12. Comparison of tree structure objectives used to
train the offset joint regression forest. In all cases, after
the tree structure has been trained, the same regression
model is fit for each leaf node, as described in Sec. 3.5.2.

much higher training efficiency. Most of the gain occurs
up to 500 features and 20 thresholds per feature. On
the easier real test set the effects are less pronounced.
These results used 5K images for each of 3 trees to depth
18. The slight peaks on the mixture proposal curves are
likely down to overfitting.

4.4.6 Discussion
The trends observed above on the synthetic and real test
sets appear highly correlated. The real test set appears
consistently ‘easier’ than the synthetic test set, probably
due to the less varied poses present. For the remaining
experiments, we thus use the harder synthetic test set.

We now switch our attention to the joint prediction
accuracy metric. We have observed (for example, cf.
the blue curves in Fig. 11(a) and Fig. 15(b)) a strong
correlation between the classification and joint prediction
metrics. We therefore expect that the trends observed
above also apply to joint prediction.

4.5 Offset joint recognition (OJR) experiments
The previous section investigated the effect of many of
the system parameters for BPC. We now turn to the OJR
algorithm and perform a similar set of experiments. The
results in this section all make use of the average preci-
sion metric on joint prediction accuracy (see Sec. 4.2).

4.5.1 Tree structure objectives
The task of predicting continuous joint locations from
depth pixels is fundamentally a regression problem.
Intuitively, we might expect a regression-style objective
function to produce the best trees for our approach.
To investigate if this is indeed the case, we evaluated
several objective functions for training the structure of
the decision trees, using forests trained with 5K images.
The results, comparing average precision on all joints,
are summarized in Fig. 12.

Surprisingly, for all joints except head, neck, and
shoulders, trees trained using the classification objective

Icls (i.e. training the tree structure for BPC using Eq. 8,
but then retro-fitting the leaf prediction models for OJR;
see Sec. 3.5.2) gave the highest accuracy. We believe the
uni-modal assumption implicit in the regression objec-
tive (Eq. 9) may be causing this, and that classification
of body parts is a reasonable proxy for a regression
objective that correctly accounts for multi-modality. A
further observation from Fig. 12 is that the ρ threshold
parameter (used in Eq. 11 to remove outliers) does
improve the regression objective, but not enough to beat
the classification objective.

Another possible problem with Eq. 9 could be the
summation over joints j. To investigate this, we exper-
imented with training separate regression forests, each
tasked with predicting the location of just a single joint.
A full forest was trained with 5K images for each of four
representative joints: head, l. elbow, l. wrist, and l. hand.
With ρ =∞, they achieved AP scores of 0.95, 0.564, 0.508,
and 0.329 respectively (cf. the green bars in Fig. 12: 0.923,
0.403, 0.359, and 0.198 respectively). As expected, due
to greater model capacity (i.e. one forest for each joint
vs. one forest shared for all joints), the per-joint forests
produce better results. However, these results are still
considerably worse than the regression forests trained
with the classification objective.

Given these findings, the following experiments all use
the classification objective.

4.5.2 Tree depth and number of trees
Fig. 13(a) shows that mean average precision (mAP)
rapidly improves as the tree depth increases, though it
starts to level off around depth 18. As with BPC, the tree
depth is much more important than the number of trees
in the forest: with just one tree, we obtain a mAP of
0.730, with two trees 0.759, and with three trees 0.770.

4.5.3 Vote length threshold
We obtain our best results when using a separate voting
length threshold λj for each joint (see Algorithm 3).
These thresholds are optimized by grid search on a 5K
validation data set, using a step size of 0.05m in the
range [0.05, 0.60]m. In Fig. 13(b) we compare accuracy
obtained using a single learned threshold shared by all
joints (the blue curve), against the mAP obtained with
per-joint thresholds (the dashed red line). When using a
shared threshold it appears critical to include votes from
pixels at least 10cm away from the target joints. This is
likely because the joints are typically over 10cm away
from the surface where the pixels lie.

We next investigate the effect of the metric used to
optimize these thresholds. Interestingly, the optimized
length thresholds λj turn out quite differently, according
to whether the failure to predict an occluded joint is
counted as a false negative or simply ignored. In Table 1,
we see that longer range votes are chosen to maximize
mAP when the model is penalized for missing occluded
joints. In some cases, such as head, feet, and ankles,
the difference is quite large. This makes sense: occluded
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Fig. 13. Effect of various system parameters on the offset joint regression (OJR) algorithm. (a) mAP vs. tree
depth. (b) mAP vs. a single, shared vote length threshold for all joints. (c) mAP vs. fps. The blue curve is generated by
varying Nsub, the number of votes retained before running mean shift at test time.

joints tend to be further away from visible depth pixels
than non-occluded joints, and predicting them will thus
require longer range votes. This experiment used 30K
training images.

4.5.4 Number of votes per leaf K
Increasing K, the maximum number of votes stored
at each leaf, from 1 to 2 boosted mAP slightly from
0.763 to 0.770. However, for K ∈ [2, 10] there was no
appreciable difference in accuracy, and so for all other
experiments presented we used K = 2. We hypothesize
that aggregating over many image pixels that reach a
diverse set of leaf nodes makes storing multiple local
modes in each leaf node somewhat redundant. The
comparison in Sec. 4.7.3 illustrates how accuracy may
change as K gets much larger.

4.5.5 Using mean offsets
We tried using a single relative vote ∆lj1 chosen to be
the mean of the offsets reaching each leaf for each joint,
rather than the top local mode. (Note that our model

errors on occluded joints:
not penalized penalized

λj λj

Head 0.20 0.50
Neck 0.20 0.35

L. Shoulder 0.30 0.45
R. Shoulder 0.35 0.40

L. Elbow 0.15 0.15
R. Elbow 0.15 0.15

L. Wrist 0.10 0.10
R. Wrist 0.10 0.10
L. Hand 0.15 0.10
R. Hand 0.10 0.15
L. Knee 0.35 0.30
R. Knee 0.45 0.30

L. Ankle 0.15 0.45
R. Ankle 0.15 0.55

L. Foot 0.10 0.45
R. Foot 0.10 0.55

TABLE 1
Optimized values for the test-time vote length thresholds

λj under two different error metrics.

learned using mean shift with K = 1 is not the same as
taking the mean of all the data). To achieve a sensible
result, we found the mean vote’s weight wij1 to be very
important. The best result obtained took wij1 as the
number of offsets within 5cm of the mean. Performance
decreased from 0.763 (top local mode with K = 1) to
0.739 (mean of all offsets). Significant degradation was
observed in the arm joints which exhibit much more
multi-modality in the offsets: computed over elbows,
wrists, and hands, the mAP dropped from 0.726 to 0.639.
For robust results, using the top local mode thus appears
better than the mean.

4.5.6 Learned relative vote weights wljk

To quantify the role of the relative vote weights, we
tested our system with wljk = 1,∀l, j, k. This uniform
weight assignment decreased mAP dramatically from
0.770 to 0.542, underscoring the importance of learning
the vote weights.

4.5.7 Training-time reservoir capacity Nres

The size of the reservoir had relatively little effect on
accuracy. Reducing the reservoir capacity from 100 to
50 led to a small decrease in accuracy from mAP 0.770
to 0.766. Interestingly, increasing the reservoir capacity
to 200 and 300 also caused a small drop (0.755 and
0.747, respectively). These results suggest that even a
small sample of offsets is sufficient to characterize their
distribution well for clustering.

4.5.8 Test-time vote sub-sampling Nsub

Even with the learned vote length thresholds λj , an
average of about 1000 votes are cast per joint when
processing a test image. As described in Algorithm 2,
prior to aggregating votes with mean shift, we optionally
sub-sample the voting space to at most Nsub votes. First,
using fixed Nsub = 200, we experimented with different
sub-sampling strategies: top Nsub weighted votes; uni-
formly random sampling; random sampling weighted by
vote weight. These three methods achieved mAP scores
of 0.770, 0.727, and 0.753, respectively.

Second, using the top Nsub strategy, we found that
accuracy varies slowly with Nsub. We illustrate the sub-
stantial improvement in runtime speed this allows in
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Fig. 14. Comparing body part classification (BPC) with offset joint regression (OJR). (a) Effect of total number
of training images. The dashed line shows the best result of BPC trained with 900K images. (b) Average precision on
each of the 16 test body joints. (c) Effect of the true positive threshold Dtp on the metric.

Fig. 13(c). This graph plots mAP against fps as a function
of Nsub, and compares with the BPC algorithm (and
BPC running an approximate but faster implementation).
Representative values of Nsub from 1 to 400 are over-
laid on the plot. The best tradeoff between prediction
accuracy and prediction speed is at about Nsub = 50.
All timings were measured on an 8-core machine taking
advantage of CPU parallelism. Using sub-sampling to
achieve speedups, while maintaining acuracy, is only
possible if the vote weights are well correlated with
predictive strength, further underscoring the importance
of vote weight learning.

4.6 Comparison between BPC and OJR

Having investigated the BPC and OJR algorithms sepa-
rately above, we now compare these algorithms to each
other. Fig. 14(a) compares mean average precision for
different training set sizes. In all cases we observe OJR
performing more accurately than BPC. In Fig. 14(b) we
show a per-joint breakdown of these results, using the
best results obtained for each method (900K and 300K
training images for BPC and OJR respectively).3

There are several possible reasons for OJR giving a
more accurate result than BPC. One possibility is that
OJR can directly regress the positions of joints inside
the body. The joints showing the most substantial im-
provements (head, neck, shoulders, and knees) are also
those where surface body parts cover a large area and
are furthest from the joint center. Another ability of OJR
is predicting occluded joints. When the mAP metric is
changed to penalize failure to predict occluded joints,
the improvement of OJR over BPC is even more apparent:
0.663 vs. 0.560 (both methods trained with 30K images).
Example inferences showing localization of occluded
joints are presented in Fig. 10 (OJR panel, middle row).
As previously observed in Fig. 13(c), the OJR algorithm
can also make predictions faster than BPC.

3. The results for OJR at 300K images were already better than the
equivalent BPC forest trained with 900K images (see Fig. 14a), and so
we chose not to expend the considerable energy in training a directly
comparable 900K forest.

4.6.1 True positive threshold
A value of Dtp = 0.1m is used as the true positive radius
for most of the results presented here. We quantify the
effect of this threshold on the mAP score in Fig. 14(c).
The OJR algorithm maintains considerably higher mAP
score as the radius shrinks in comparison to BPC.

4.6.2 Full rotations
To evaluate the scenario of full 360◦ rotation of the user,
we trained BPC and OJR forests on images containing
full rotations, and tested on 5K synthetic full rotation
images. Despite the massive increase in left-right am-
biguity, both approaches do remarkably well. Trained
on 900K images, the BPC forest achieved an mAP of
0.655, while, trained on 300K images, the OJR forest
achieved an mAP of 0.711. These results indicate that
the forests can accurately learn the subtle visual cues
that distinguish front and back facing poses. The residual
left-right ambiguity might be handled by a tracking
algorithm that propagates multiple hypotheses through
time.

4.6.3 Multiple people
Our approach can propose joint positions for multiple
people in the image: neither the forest evaluation at each
pixel nor the aggregation step are limited to a single per-
son. The forest could be explicitly trained with images
containing multiple people, but in practice generalizes
well without such explicit training. Preliminary results
of this are given in the supplementary video.

4.6.4 Silhouette images
Although we focus on depth images in this paper, our
methods can be applied without modification to 2D
silhouette images. Silhouettes might readily be obtained
using color segmentation or static background subtrac-
tion from RGB images. To prototype this scenario, we
flattened both the training and test images to a fixed
canonical depth, 2m, producing silhouettes in which the
body size is unknown. To compute average precision for
this 2D prediction task, we modified the true positive
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Ganapathi et al. (tracking)
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Offset joint regression (per frame)

Combined Comparisons 
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Fig. 15. Comparisons to the state of the art. (a) Comparison with [6]. Even without the kinematic and temporal
constraints exploited by [6], both our approaches are able to more accurately localize body joints. (b) Comparison
between BPC and nearest neighbor matching. Example chamfer matches shown right.

radius to an absolute pixel distance, D̂tp = 10 pixels.
BPC achieves 0.465 mAP, and OJR achieves 0.596 mAP.
Example inferences of OJR from silhouettes appear in the
bottom right panel of Fig. 10, where the crosses show
the ground truth, and the circles show the inferred joint
predictions. Note how the proposal confidences (shown
as the circle radii) correlate well with the ambiguity in
the signal. The most probable reason for the significant
drop in accuracy is due to missing information. For ex-
ample, whenever a hand crosses in front of the body, the
silhouettes will likely not contain enough information to
reliably detect the hand.

4.7 Comparison to the state of the art
In this final evaluation section, we compare our algo-
rithms to other methods.

4.7.1 Comparison to Ganapathi et al. [6]
The authors of [6] kindly provided their test data and re-
sults for direct comparison. Their algorithm uses sparse
body part proposals from [5] and further tracks the
skeleton with kinematic and temporal information. Their
real data comes from a time-of-flight depth camera with
very different noise characteristics to our structured light
sensor. Without any changes to our training data or
algorithm, Fig. 15(a) shows considerably improved joint
prediction average precision for both BPC and OJR. Our
algorithms also run at least 10 times faster, though we
do of course require the large training corpus.

4.7.2 Whole pose nearest neighbor matching
Both of our methods attempt to find the body joints in-
dependently of each other. One alternative is to attempt
to match a whole pose at once. Whole pose matching has
the benefit of an extremely informative raw signal, but
unfortunately has a search space that is exponential in
the number of articulated joints. We compare our BPC
algorithm with two variants of whole pose matching
in Fig. 15(b). The first, idealized, variant matches the
ground truth test skeleton to a set of training exemplar
skeletons with optimal rigid translational alignment in

3D world space. Of course, in practice one has no access
to the test skeleton. While this oracle is thus not an
achievable algorithm, it does give us an upper bound
on whole pose matching accuracy. As an example of
a realizable system, the second variant uses chamfer
matching [60] to compare the test image to the training
exemplars. This is computed using depth edges and 12
orientation bins. To make the chamfer task easier, we
throw out any cropped training or test images. We align
images using the 3D center of mass, and found that
further local rigid translation only reduced accuracy.

Our BPC algorithm, recognizing in parts, generalizes
better than even the idealized skeleton matching until
about 150K training images are reached. The speed of
nearest neighbor chamfer matching is also drastically
slower (2 fps) than our algorithm. While hierarchical
matching [60] might be faster, one would still need a
massive exemplar set to achieve comparable accuracy.

4.7.3 Comparison between OJR and Hough forests [20]
We compare OJR and Hough forests [20], using an
identical tree structure for both. There are two main
algorithmic differences. First, OJR clusters the offsets
during training. This contrasts with Hough forests where
all offset vectors are stored. To compare, we re-train the
leaf nodes of our OJR forest, storing up to 400 offset
votes for each joint, uniformly sampled (using all votes
would have been prohibitive). The second difference is
that we use a continuous voting space at test time, while
Hough forests instead discretize the voting volume.
Unfortunately, the inherent 3D nature of our problem
makes discrete voting much less attractive than for 2D
prediction. Our test data covers a large voting volume of
4m × 4m × 5m. To allow accurate localization we used
a voxel resolution of 2cm per side, resulting in a voting
volume with 10 million bins. At test time, we smooth
the voting volume using a Gaussian of fixed standard
deviation 1.3cm.

Due to memory and runtime constraints we compare
on two representative joints (an ‘easy’ joint, head, and
a ‘hard’ joint, left hand) in Fig. 16. Interestingly, even
with discrete voting, using two votes per leaf performs
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slightly better than voting with a large number of stored
offsets. This is likely due to the clustering removing
many outliers making the final density much peakier.
The results also show the clear improvement obtained
by using the classification objective to train the tree
structure instead of the regression objective as used
in [20]. (This reiterates the findings from Fig. 12).

Our implementation of the Hough voting ran at ap-
proximately 0.5 fps for only 2 body joints, compared to
around 200 fps for OJR which predicts all 16 joints. We ex-
perimented with a few voxel resolutions and smoothing
kernel sizes, though the slow runtime speed prohibited
selection of per joint smoothing kernel widths by grid
search.

5 CONCLUSIONS

We have presented two algorithms, body part classifica-
tion and offset joint regression. The two algorithms have
much in common. They both use decision forests and
simple depth-invariant image features. Both methods
exploit a large, highly varied, synthetic training set,
allowing us to train very deep trees. We have shown that
the forests can learn invariance to both pose and shape
while avoiding overfitting. The BPC approach introduces
a set of surface body parts that the forest tries to infer.
These body parts are aligned with the joints of interest,
so that an accurate classification will localize the joints of
the body. The OJR approach instead casts votes that try
to directly predict the positions of interior body joints.
In both methods, mean shift is used to aggregate votes
to produce a final set of confidence-weighted 3D body
joint proposals.

Our experiments have demonstrated that both algo-
rithms can accurately predict the 3D locations of body
joints in super-realtime from single depth or silhouette
images. We have further shown state of the art accuracy
and speed against several competing approaches. The
body joint proposals might be used as an output in their
own right, or used for initialization and re-initialization
of a subsequent tracking and model fitting algorithm that
exploits temporal and kinematic constraints.

Of our two approaches, which should you use? The
numerical results show that OJR will give considerably
higher accuracy than BPC. OJR also seems intuitively
a ‘cleaner’ solution: it does not need the intermediate
definition of body parts, and the offsets vote directly
for interior joint positions. This also means that OJR is
capable of predicting occluded joints, while BPC will in-
stead give no proposals for an occluded joint. However,
OJR proved considerably more complex: the obvious re-
gression objective does not work well, and many hyper-
parameters had to be optimized against a validation set.
A promising direction for future work is to investigate
alternative efficient tree-structure learning objectives that
handle multi-modal problems effectively.
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Fig. 16. Comparison with Hough forest voting [20].
The Hough forest regression objective performs poorly
for articulated joint such as hands. Vote compression and
continuous voting improve accuracy slightly, while running
3200x faster (see text).
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