
Face Detection and

Recognition

Reading: Chapter 18.10

and, optionally,

“Face Recognition using

Eigenfaces” by M. Turk and

A. Pentland

Face Detection Problem

• Scan window over image

• Classify window as either:

– Face

– Non-face

Classifier

Window

Face

Non-face

Face Detection in most Consumer

Cameras and Smartphones for Autofocus The Viola-Jones Real-Time

Face Detector

P. Viola and M. Jones, 2004

Challenges:

• Each image contains 10,000 – 50,000

locations and scales where a face may be

• Faces are rare: 0 - 50 per image

• >1,000 times as many non-faces as faces

• Want a very small # of false positives: 10-6

• Training Data (grayscale)

• 5,000 faces (frontal)

• 108 non-faces

• Faces are normalized

– Scale, translation

• Many variations

• Across individuals

• Illumination

• Pose (rotation both in plane and out)

Use Machine Learning to

Create a 2-Class Classifier

Use Classifier at All

Locations and Scales

Building a Classifier

• Compute lots of very simple features

• Efficiently choose best features

• Each feature is used to define a “weak

classifier”

• Combine weak classifiers into an

ensemble classifier based on boosting

• Learn multiple ensemble classifiers and

“chain” them together to improve

classification accuracy

Computing Features

• At each position and scale, use a sub-

image (“window”) of size 24 x 24

• Compute multiple candidate features for

each window

• Want to rapidly compute these features

Features

• 4 feature types (similar to “Haar wavelets”):

Two-rectangle

Three-rectangle

Four-rectangle

Value = ∑ (pixels in white

area) - ∑ (pixels in black

area)

Huge Number of Features

160,000 features for each window!

Computing Features Efficiently:

The Integral Image

• aka “Summed Area Table”

• Intermediate representation of the image
– Sum of all pixels above and to left of (x, y) in image i:

• Computed in one pass over the image:

 ii(x, y) = i(x, y) + ii(x-1, y) + ii(x, y-1) + ii(x-1, y-1)





yyxx

yxiyxii
','

)','(),(

Using the Integral Image

• With the integral image

representation, we can compute

the value of any rectangular sum

in constant time

• For example, the integral sum in

rectangle D is computed as:

 ii(4) + ii(1) – ii(2) – ii(3)

(x,y)

s(x, y) = s(x, y-1) + i(x, y)

ii(x, y) = ii(x-1, y) + s(x, y)

(0,0)

x

y

Features as Weak Classifiers

• Given window x, feature detector ft , and

threshold t, construct a weak classifier:

Boosting

• Boosting is a class of ensemble methods for

sequentially producing multiple weak classifiers,

where each classifier is dependent on the

previous ones

• Make examples misclassified by previous

classifier more important in the next classifier

• Combine weak classifiers linearly into combined

classifier:
weight weak classifier

Boosting

How to select the best features?

How to learn the classification function?

 C(x) = 1 h1(x) + 2 h2(x) +

AdaBoost Algorithm

Given a set of training windows labelled +/-, initially

give equal weight to each training example

Repeat T times

1. Select best weak classifier (min total weighted

error on all examples)

2. Increase weights of examples misclassified

by current weak classifier

• Each round greedily selects the best feature given all

previously selected features

• Final classifier weights weak classifiers by their accuracy

Each data
point has a
class label:

wt =1
and a weight:

+1 ()

-1 ()
yt =

AdaBoost Example

xt=1

xt=2

xt

Example
Weak learners from the family of lines

Each data
point has a
class label:

wt =1
and a weight:

+1 ()

-1 ()
yt =

Example

This one is best

Each data
point has a
class label:

wt =1
and a weight:

+1 ()

-1 ()
yt =

This is a ‘weak classifier’: It performs slightly better than chance

Example

Re-weight misclassified examples

Each data
point has a
class label:

wt wt exp{-yt ht}

Update the
weights:

+1 ()

-1 ()
yt =

Example

Select 2nd weak classifier

Each data
point has a
class label:

wt wt exp{-yt ht}

Update the
weights:

+1 ()

-1 ()
yt =

Example

Re-weight misclassified examples

Each data
point has a
class label:

wt wt exp{-yt ht}

Update the
weights:

+1 ()

-1 ()
yt =

Example

Select 3rd weak classifier

Each data
point has a
class label:

wt wt exp{-yt ht}

Update the
weights:

+1 ()

-1 ()
yt =

Example

The final (non-linear) classifier is the
combination of all the weak (linear) classifiers

h1 h2

h3

h4

Classifications (colors) and
weights (size) after 1 iteration
Of AdaBoost

3 iterations
20 iterations

from Elder, John. From Trees to Forests
and Rule Sets - A Unified Overview of
Ensemble Methods. 2007. Slide by T. Holloway

AdaBoost - Adaptive Boosting

• Learn a single simple classifier

• Classify the data

• Look at where it makes errors

• Re-weight the data so that the inputs where we made
errors get higher weight in the learning process

• Now learn a 2nd simple classifier on the weighted data

• Combine the 1st and 2nd classifier and weight the data
according to where they make errors

• Learn a 3rd classifier based on the weighted data

• … and so on until we learn T simple classifiers

• Final classifier is the weighted combination of all T
classifiers

Example Classifier

ROC curve for 200-feature classifier

• A classifier with T=200 rectangle features was learned
using AdaBoost

• 95% correct detection on test set with 1 face in 14,084

 false positives

• Not quite competitive

false positive rate

c
o
rr

e
c
t
d
e
te

c
ti
o
n
 r

a
te

Learned Features

Classifier Error is Driven Down as

T increases, but Cost Increases
Cascading

• Improve accuracy and speed by “cascading” multiple

classifiers together

• Start with a simple (T small) classifier that rejects

many of the negative windows while detecting almost

all positive windows

• Positive results from the first classifier triggers the

evaluation of a second (more complex; bigger T)

classifier, and so on

– Each classifier is trained with the false positives from the

previous classifier

• A negative outcome at any point leads to the

immediate rejection of the window

Cascaded Classifier

1 Feature 5 Features

F

50%
20 Features

20% 2%

FACE

NON-FACE

F

NON-FACE

F

NON-FACE

IMAGE

WINDOW

• A T=1 feature classifier achieves 100% detection
rate and about 50% false positive rate

• A T=5 feature classifier achieves 100% detection
rate and 40% false positive rate (20%
cumulative)

– using data from previous stage

• A T=20 feature classifier achieve 100% detection
rate with 10% false positive rate (2% cumulative)

Results

Structure of the Detector

• 38 layer cascade

• 6,060 features

• Training time: “weeks”

L a y e r n u m b e r 1 2 3 to 4 5 to 3 8

N u m b e r o f fe a u tu re s 2 1 0 5 0 -

D e te c tio n ra te 1 0 0 % 1 0 0 % - -

R e je c tio n ra te 5 0 % 8 0 % - -

Results

• Notice detection at multiple scales

Results
Profile Detection

Profile Features Demos

• http://flashfacedetection.com/

• http://flashfacedetection.com/camdemo2.html

Face Recognition Problem

database

query image Query face

Face Verification Problem
• Face Verification (1:1 matching)

• Face Recognition (1:N matching)

http://flashfacedetection.com/
http://flashfacedetection.com/camdemo2.html

www.viisage.com

Application: Access Control

www.visionics.com

Biometric Authentication

Application: Video Surveillance

Face Scan at Airports

www.facesnap.de

Application: Autotagging Photos in

Facebook, Flickr, Picasa, iPhoto, …

iPhoto 2009

• Can be trained to recognize pets!

http://www.maclife.com/article/news/iphotos_faces_recognizes_cats

iPhoto 2009

• Things iPhoto thinks are faces

Why is Face Recognition Hard?

The many faces of Madonna

http://www.maclife.com/article/news/iphotos_faces_recognizes_cats
http://www.flickr.com/groups/977532@N24/pool/

Recognition should be Invariant to

• Lighting variation

• Head pose variation

• Different expressions

• Beards, disguises

• Glasses, occlusion

• Aging, weight gain

• …

Intra-class Variability

• Faces with intra-subject variations in pose, illumination,

expression, accessories, color, occlusions, and brightness

Inter-class Similarity

• Different people may have very similar appearance

Twins Father and son

www.marykateandashley.com news.bbc.co.uk/hi/english/in_depth/americas/2000/us_el

ections

Blurred Faces are Recognizable

Blurred Faces are Recognizable

Michael Jordan, Woody Allen, Goldie Hawn, Bill Clinton, Tom Hanks,

Saddam Hussein, Elvis Presley, Jay Leno, Dustin Hoffman, Prince

Charles, Cher, and Richard Nixon. The average recognition rate at this

resolution is one-half.

Upside-Down Faces are

Recognizable

The “Margaret Thatcher Illusion”, by Peter Thompson

Context is Important

P. Sinha and T. Poggio, I think I know that face, Nature 384, 1996, 404.

Face Recognition Architecture

Feature

Extraction Image

(window)

Face

Identity Feature

Vector

Classification

Image as a Feature Vector

• Consider an n-pixel image to be a point in an n-

dimensional “image space,” x  n

• Each pixel value is a coordinate of x

• Preprocess images so faces are cropped and

roughly aligned (position, orientation, and scale)

x 1

x 2

x 3

Nearest Neighbor Classifier

 { Rj } is a set of training images of frontal faces

x 1

x 2

x 3

R1
R2

I

),(minarg IRdistID j
j



Key Idea

• Expensive to compute nearest neighbor when
each image is big (n dimensional space)

• Not all images are very likely – especially when
we know that every image contains a face. That
is, images of faces are highly correlated, so
compress them into a low-dimensional,
linear subspace that retains the key
appearance characteristics

Eigenfaces (Turk and Pentland, 1991)

• The set of face images is clustered in a

“subspace” of the set of all images

• Find best subspace to reduce the

dimensionality

• Transform all training images into the

subspace

• Use nearest-neighbor classifier to label a test

image

Linear Subspaces

convert x into v1, v2 coordinates:

• What does the v2 coordinate measure?

• Distance to line defined by v1

• What does the v1 coordinate measure?

• Position along the line

Dimensionality Reduction

• We can represent the orange points with only their v1

coordinates (since v2 coordinates are all essentially 0)

• This makes it much cheaper to store and compare points

• A bigger deal for higher dimensional problems

Principal Component Analysis (PCA)

− Problems arise when performing recognition in a high-

dimensional space (“curse of dimensionality”)

− Significant improvements can be achieved by first

mapping the data into a lower-dimensional subspace

− The goal of PCA is to reduce the dimensionality of

the data while retaining the important variations

present in the original data

Principal Component Analysis (PCA)

− Dimensionality reduction implies information

loss

− How to determine the best lower dimensional

subspace?

− Maximize information content in the

compressed data by finding a set of k

orthogonal vectors that account for as much

of the data’s variance as possible

− Best dimension = direction in n-D with max variance

− 2nd best dimension = direction orthogonal to first and

max variance

Principal Component Analysis (PCA)

− The best low-dimensional space can be

determined by the “best” eigenvectors of the

covariance matrix of the data, i.e., the

eigenvectors corresponding to the largest

eigenvalues – also called “principal

components”

− Can be efficiently computed using Singular

Value Decomposition (SVD)

Algorithm

• Each input image, Xi , is an nD column

vector of all pixel values (in raster order)

• Compute “average face image” from all M

training images of all people:

• Normalize each training image, Xi, by

subtracting the average face:





M

i

iX
M

A
1

1

AXY ii 

• Stack all training images together

• Compute n x n Covariance Matrix



i

iiYY
M

TT 1
YYC

Algorithm

]...[21 MYYYYn x M

matrix

Algorithm

• Compute eigenvalues and eigenvectors of

C by solving

 where the eigenvalues are

 and the corresponding eigenvectors are

 u1, u2, …, un

iii uu C

n  ...21

Algorithm

• Each ui is an n x 1 eigenvector called an

“eigenface” (to be cute!)

• Each ui is a direction/coordinate in “face

space”

• Image is exactly reconstructed by a linear

combination of all eigenvectors

nni uwuwuwY  ...2211

AuwX
n

i

iii 
1

AuwX
k

i

iii 
1

Algorithm

• Reduce dimensionality by using only the

best k << n eigenvectors (i.e., the ones

corresponding to the largest k eigenvalues

• Each image Xi is approximated by a set of

k “weights” [wi1 , wi2, …, wik] = Wi where

)(T AXuw ijij 

Eigenface Representation

Each face image is represented by a weighted combination

of a small number of “component” or “basis” faces

Eigenface Representation

Using Eigenfaces

• Reconstruction of an image of a face

from a set of weights

• Recognition of a person from a new face

image

Face Image Reconstruction

• Face X in “face space” coordinates:

• Reconstruction:

= +

A + w1u1 + w2u2 + w3u3 + w4u4 + …

=

^
X =

Reconstruction

The more eigenfaces you use, the better the reconstruction,

but even a small number gives good quality for matching

Eigenfaces Recognition Algorithm

Modeling (Training Phase)

1. Given a collection of n labeled training images

2. Compute mean image, A

3. Compute k eigenvectors, u1 , …, uk , of

covariance matrix corresponding to k largest

eigenvalues

4. Project each training image, Xi, to a point in

k-dimensional “face space:”

)(compute ..., 1,for T AXuwkj ijij 

Xi projects to Wi = [wi1 , wi2, …, wik]

Eigenfaces Algorithm

Recognition (Testing Phase)

1. Given a test image, G, project it into face space

2. Classify it as the class (person) that is closest to it

(as long as its distance to the closest person is

“close enough”)

)(compute ..., 1,for T AGuwkj jj 

Choosing the Dimension K

K NM i =

eigenvalues

• How many eigenfaces to use?

• Look at the decay of the eigenvalues

– the eigenvalue tells you the amount of variance “in

the direction” of that eigenface

– ignore eigenfaces with low variance

Example: Training Images

[Turk & Pentland, 2001]

Note: Faces must be

approximately

registered (translation,

rotation, size, pose)

Eigenfaces

Average Image, A
7 eigenface images

159

Example

Training

images

160

Example

Top eigenvectors: u1,…uk

Average: A

Experimental Results

• Training set: 7,562 images of approximately

3,000 people

• k = 20 eigenfaces computed from a sample of

128 images

• Test set accuracy on 200 faces was 95%

Limitations
• PCA assumes that the data has a Gaussian

distribution (mean µ, covariance matrix C)

The shape of this dataset is not well described by its principal components

− Background (de-emphasize the outside of the face – e.g.,

by multiplying the input image by a 2D Gaussian window

centered on the face)

− Lighting conditions (performance degrades with light

changes)

− Scale (performance decreases quickly with changes to

head size); possible solutions:

− multi-scale eigenspaces

− scale input image to multiple sizes

− Orientation (performance decreases but not as fast as

with scale changes)

− plane rotations can be handled

− out-of-plane rotations are more difficult to handle

Limitations

167

Limitations

• Not robust to misalignment

Extension: Eigenfeatures

• Describe and

encode a set of

facial features:

eigeneyes,

eigennoses,

eigenmouths

• Use for detecting

facial features

Recognition

using

Eigenfeatures

