

How to quickly find images in a large database that match a given image region?

Image Representation and Matching

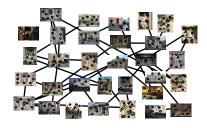
Compute feature points (aka keypoints) for every image in the database and the query

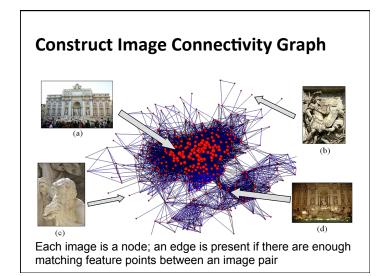
Image Matching

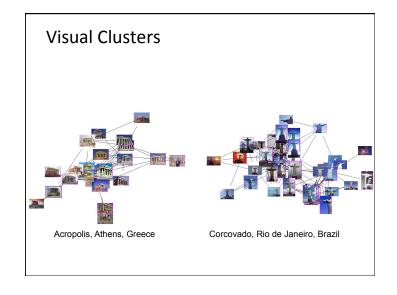
See how many feature points are close to feature points in each other image

Feature Detection

Detect feature points

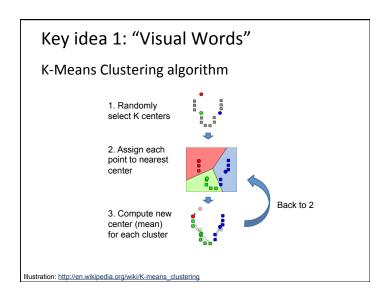

Feature Detection


Detect feature points



Pairwise Feature Matching

- Match features between each pair of images
 - Use a "descriptor" (i.e., a feature vector) for each feature point
 - For each feature point in image *I*, find 2 closest points in each other image, *J*, and accept if d1/d2 < 0.6



How to find Matches Fast?

Key idea 1: "Visual Words"

• Cluster the feature point descriptors

Key idea 1: "Visual Words" K-Means Clustering algorithm 1. Randomly select K centers 2. Assign each point to nearest center 3. Compute new center (mean) for each cluster Illustration: http://en.wikipedia.org/wiki/K-means_clustering

Key idea 1: "Visual Words"

- Cluster the feature point descriptors
- Assign each descriptor to a cluster number
 - What does this buy us?
 - Each descriptor was 128 dimensional floating point, now is 1 integer (easy to match!)
 - Is there a catch?
 - Need a lot of clusters (e.g., 1 million) if we want points in the same cluster to be very similar
 - Points that really are similar might end up in different clusters

Key idea 1: "Visual Words"

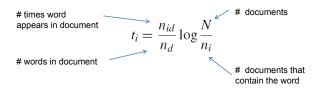
- Cluster the feature point descriptors
- Assign each descriptor to a cluster number
- Represent an image region with a count of these "visual words"

Naïve matching is still too slow

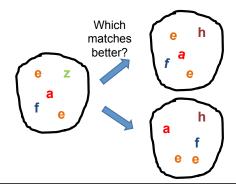
 Imagine matching 1,000,000 images, each with 1,000 feature points

Key idea 1: "Visual Words"

- Cluster the feature point descriptors
- Assign each descriptor to a cluster number
- Represent an image region with a count of these "visual words"
- An image is a good match if it has a lot of the same visual words as the query region



Key Idea 2: Inverse Document File


- Like a book index: keep a list of all the words (feature points) and all the pages (images) that contain them
- Rank database images based on tf-idf measure

tf-idf: Term Frequency - Inverse Document Frequency

Can we be more accurate?

So far, we treat each image as containing a "bag of words", with no spatial information

Can we be more accurate?

So far, we treat each image as containing a "bag of words", with no spatial information

Real objects have consistent geometry

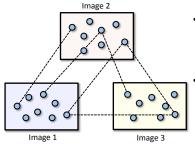
Final key idea: geometric verification

 Goal: Given a set of possible keypoint matches, figure out which ones are geometrically consistent

How can we do this?

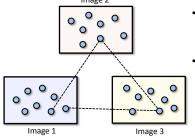
Final key idea: geometric verification RANSAC for affine transform Repeat N times: Randomly choose 3 matching pairs Estimate transformation Predict remaining points and count "inliers"

- 1. Collect all words within query region
- 2. Inverted file index to find relevant frames
- 3. Compare word counts
- 4. Spatial verification


[Sivic & Zisserman, ICCV 2003]

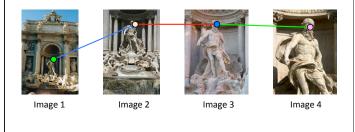
Demo online at http://www.robots.ox.ac.uk/~vgg/ research/vgoogle/index.html

From Pairwise Matches to Tracks


• Given pairwise matches, next step is to link up matches to form "tracks"

- Each track is a connected component of the pairwise feature match graph
- Each track will eventually grow up to become a 3D point

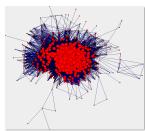
From Pairwise Matches to Tracks


• Given pairwise matches, next step is to link up matches to form "tracks"

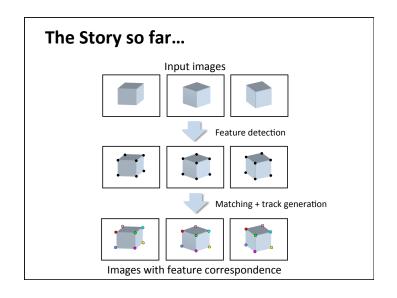
- Some tracks might be inconsistent
- We remove these features from the troublesome images

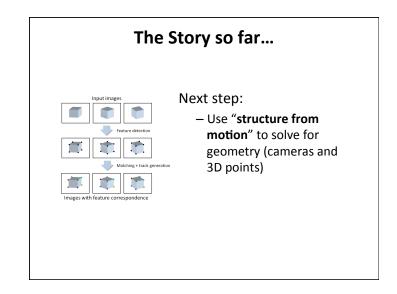
Correspondence Estimation

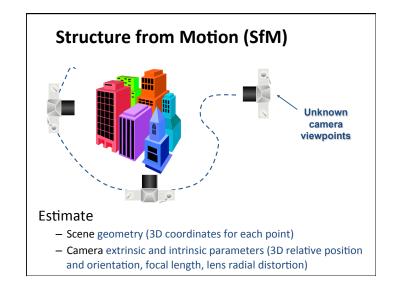

• Link up pairwise matches to form connected "tracks" of matching feature points across several images

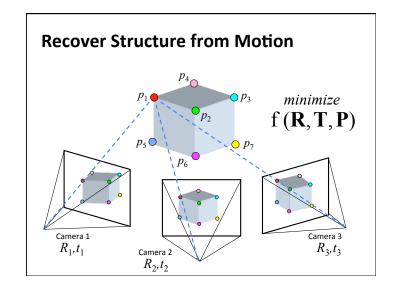


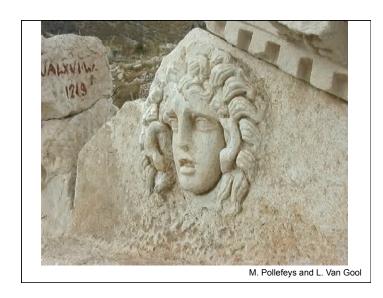
The Power of Transitivity


Image Connectivity Post-Track Generation






Raw image matches


Image matches after track generation

